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Valuations of Mortality-Linked 
Structured Products
Meng-Lan Yueh, Hsin-Yu Chiu, and Shou-Hsun Tsai

This article studies variations of mortality-linked 
structured products that investment banks can issue 
for insurance companies and annuity providers 
to hedge their mortality and longevity risk. We 
examine how different types of mortality-linked 
structured notes might be constructed through the 
purchase or sale of mortality options. We further 
propose bullish and bearish mortality bonds whose 
redemption values depend on three different kinds of 
underlying mortality indexes. We demonstrate how 
their f lexible structures can enable investors with 
different views of future mortality trends to mon-
etize their expectations regarding mortality rates.

The occurrence of unexpected 
changes in mortality rates poses 
a direct challenge to the calcula-
tion of fair premium rates and risk 

reserves for the insurance and pensions indus-
tries. Annuity providers suffer the risk that 
pensioners will live longer than predicted 
by mortality projections, while life insurers 
experience the risk of unexpected increases in 
mortality. In recent years, securitization has 
become an important technique for primary 
insurers to repackage insurance risks and sell 
them to investors or other insurers. Since the 
mid-1990s, the repackaging of catastrophe 
risk as CAT bonds has established an alter-
native asset class for investors to participate 
in the insurance risk market. For discussions 
of securitization of catastrophic property 

risk, see Froot [2001]; Niehaus [2002]; 
Cummins, Lalonde, and Phillips [2004]. In 
this paper, we propose several different kinds 
of mortality-linked securities that could be 
issued by investment banks for life insurers or 
annuity providers to manage mortality and 
longevity risks.

Securitization is an attractive means for 
the insurance industry to off load its mortality 
risk exposure onto capital markets. With 
regard to the mortality risk securitization, 
the Swiss Re issued the first mortality-risk-
linked security in December 2003. The Swiss 
Re mortality bond linked its principal repay-
ment to the experienced mortality rates in 
five countries, and was designed to reduce 
the exposure of Swiss Re to catastrophic 
mortality deterioration over its three-year 
period. That is, the bond redemption values 
decrease for bondholders if the realized mor-
tality rate climbs higher. To transfer the other 
tail of mortality risk, i.e., longevity risk, to 
capital markets, the European Investment 
Bank (EIB) issued the 25-year longevity 
bond to provide a solution for U.K. pension 
schemes to hedge their long-term systematic 
longevity risks in November 2004. The EIB 
longevity bond was an annuity bond with 
f loating coupon payments, and its coupon 
payments were linked to a cohort survivor 
index based on the realized mortality rates 
of English and Welsh males each  year.1 
For a review of the life insurance and annuity 

 by guest on January 8, 2018http://jod.iijournals.com/Downloaded from 

mailto:mlyueh@nccu.edu.tw
mailto:chadchiu%40mail2.nccu.tw?subject=
mailto:soshing@gmail.com
http://jod.iijournals.com/


The Journal of Derivatives      67Winter 2016

securitizations conducted in recent years, please see 
Cowley and Cummins [2005]; Blake et al. [2006]; 
and Lane and Beckwith [2006, 2007]. Both mortality 
and longevity bonds are simply instruments designed 
to allow life insurers and pension funds to hedge their 
exposure to the risk of losses that may arise from payouts 
under unexpected increases or decreases in mortality 
rates. Insurance companies and annuity providers use 
mortality-risk-linked products to transfer or acquire 
reinsurance risk or manage the portfolio of underlying 
risks, thus prompting a greater convergence of capital 
markets and the insurance industry.

The coupon payments of the EIB longevity bond 
are proportional to the survivorship rate of the speci-
fied reference population. The bonds can be viewed as 
“coupon-based” longevity bonds. The Swiss Re mor-
tality bonds pay higher coupon rates than comparable 
Treasury bonds as compensation for the associated risk, 
because the principal values of the bonds are not guar-
anteed to be redeemable at the maturity date. They can 
be classified as “principal-at-risk” bonds. From this per-
spective, both bonds can be viewed as mortality-linked 
structured notes, which are conventional, fixed-income 
securities combined with derivative elements. 

The incorporation of derivative contracts into 
fixed-income debts enables coupon payments or redemp-
tion amounts at the maturity of the notes to depend on 
the performance of the underlying benchmark, such as 
interest rates, equity market indexes, exchange rates, or 
corporate credits. (For introductions of more complex 
structured products, see Das [2001].) Mortality-linked 
structured notes are just debt instruments whose repay-
ments of principal or payments of interest are tied to 
the performance of the underlying mortality index. 
High-yield structured notes like Swiss Re mortality 
bonds target aggressive investors with strong risk appe-
tites who are willing to put their investment at risk to 
obtain higher coupons. For risk-averse investors seeking 
to preserve capital while maintaining low-risk exposure 
to the underlying mortality index, principal-guaranteed 
structured notes emerge to meet demand.

For principal-guaranteed, mortality-linked struc-
tured notes, the coupons of notes are foregone to create 
a long position on options and thus maintain the upside 
potential of the underlying mortality index. Principal-
guaranteed, mortality-linked structured notes are 
attractive to investors because the principal amount 
of investments is guaranteed, but they still have the 

prospect of earning extra returns if the mortality options 
are in-the-money at maturity. For high-yield, mortality-
linked structured notes, enhanced coupons get gener-
ated by the premium income obtained from the sale 
of mortality options. When the sold options become 
in-the-money at the option maturity date, investors of 
high-yield, mortality-linked structured notes (i.e., the 
writers of mortality options) are obligated to execute the 
transaction, which requires risking their principal. For 
that reason, high-yield structured notes generally are not 
principal-protected.

The payoff of the mortality options is engineered 
into the fixed income securities, thus principal-guaran-
teed or high-yield, mortality-linked structured notes, 
depending on the positions of the mortality options. 
The incorporation of mortality options into vanilla bond 
structures provides a way for insurers or pension plans 
to take a position in mortality options to hedge their 
death benefit or annuity liability risks. It also offers an 
opportunity for potential investors to express their views 
on movements of the underlying mortality index rates. 
In addition, because mortality-linked securities have low 
correlation with returns on equity, foreign exchanges, 
and other financial assets, the mortality-linked product 
has become a particularly attractive way for investors to 
improve their portfolio performance. Therefore, mor-
tality risk represents a unique and differentiated asset class 
that may diversify investment portfolios.

Although mortality-linked structured products can 
be highly customized with a wide range of mortality-
rate-related underlying assets, such as specific books of 
liabilities of insurance companies or annuity providers, 
asymmetric information problems may arise as holders 
of mortality risk exposures, i.e., insurance companies 
or annuity providers, have superior knowledge of the 
underlying risks due to their access to better experi-
enced mortality data. Therefore, in this paper, we do 
not study securitizations of specific books of insurance 
firms or pension plans’ liabilities, but analyze structured 
products with their payoffs linked to publicly available 
mortality indexes.

Mortality-linked structured products written on 
publicly available indexes based on government data 
have the advantages of standardization and transparency. 
The securitization of mortality risks with a payoff linked 
to public demographic indexes is similar to the transfer 
of credit risk via synthetic collateralized debt obliga-
tions (CDOs), as synthetic CDOs are not backed by 
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cash f lows of underlying assets. It is also analogous to the 
application of the synthetic CDO technology to create 
tranches of credit default swap indexes (CDXs). Wills 
and Sherris [2010] propose a tranched longevity bond 
structure with payments based on a specified popula-
tion mortality index. In this article, we propose three 
different types of mortality-linked structured products 
with their payoffs depending on some publicly available 
mortality indexes.

A wide range of mortality models have been pro-
posed to analyze mortality dynamic processes for pricing 
mortality-linked securities. Milevsky and Promislow 
[2001] construct a stochastic hazard rate model, as opposed 
to a deterministic force of mortality, and use both discrete 
and continuous time models to price mortality options. 
Dahl [2004] also specifies the mortality intensity as a sto-
chastic process. Having observed the similarities between 
the force of mortality and interest rates, Cairns, Blake, 
and Dowd [2006] show how to model mortality risks and 
price mortality-linked instruments using the frameworks 
developed for interest rate derivatives, such as short rate 
models, forward mortality models, and mortality market 
models. Additional stochastic mortality rate models are 
proposed by Biffis [2005], Schrager [2006], and Miltersen 
and Persson [2005]. Cox, Lin, and Wang [2006] argue 
that a good stochastic mortality model should take into 
account mortality jumps, and then propose a jump-
diffusion model to describe mortality rate dynamics. Lin, 
Cox, and Pedersen [2010] combine a general mortality 
trend, a diffusion process, a permanent longevity jump 
process, and a temporary mortality jump process into 
their mortality rate model.

In order to price mortality-linked securities, the 
underlying mortality rate process needs to be specified 
under a risk-adjusted probability measure. However, 
since there are not enough traded assets that can be 
used to replicate the payoffs of mortality-linked securi-
ties, mortality-linked securities have to be priced in an 
incomplete market setting. Derivative pricing in incom-
plete markets suggests choosing one of the equivalent 
martingale measures in some economically or math-
ematically motivated methods, such as those based on 
hedging arguments, utility or equilibrium-type con-
siderations, or distance minimization (see Schweizer 
[1996]; Davis [1997]; and Frittelli [2000], among others). 

To price financial and insurance risks in an incom-
plete market, Wang [2000, 2002] postulates a frame-
work that is based on the application of a distortion 

operator to the probability distribution of the risk. Both 
Cox et al. [2006] and Lin and Cox [2008] use the Wang 
transform technique to price mortality-linked securities. 
With regard to model calibration, although there is no 
liquid and deep market for trading mortality risk, several 
authors suggest using existing mortality-linked securities 
like annuity data to imply the market price of risk. For 
example, see Biffis [2005]; Blake et al. [2006]; and Lin 
and Cox [2005], among others.

Investors in capital markets can express their views 
on future mortality rates by taking positions in these 
structured notes. Blake, Cairns, and Dowd [2006] pro-
pose several variations of hypothetical mortality-linked 
securities, such as mortality swaps, futures, options, 
and swaptions, and investigate their potential applica-
tions. Because the option is a basic component usually 
embodied in a securitization, we specifically study the 
use of mortality options for constructing mortality-
linked structured notes.

Given our focus on mortality-linked structured 
notes, especially mortality option-embedded structured 
notes, we first follow Cox, Lin, and Wang [2006] and 
model the mortality index as a jump-diffusion process, 
and estimate the parameters of the process using the 
maximum likelihood estimation method. We then apply 
the Wang transform to convert the physical projected 
mortality rates into mortality rates under the risk-neutral 
probability measure.2 Finally, we describe how mortality-
linked structured notes could determine their coupons or 
redemption values on the basis of the mortality index. For 
principal-guaranteed, mortality-linked structured notes, 
we study the relationship between the level of principal 
protection and units of mortality options purchased. For 
high-yield, mortality-linked structured notes, we ana-
lyze how to produce the extra coupon spread through 
the sale of different units of mortality options. 

We also analyze a hypothetical debt security with 
both bullish and bearish mortality bonds, such that 
changes in the redemption value of one bond are offset 
by changes in the redemption value generated by another 
bond. The debt security with both bullish/bearish mor-
tality bonds is attractive to issuers because it can produce 
known cash f low payments, regardless of the underlying 
mortality index realization. For investors, the bullish 
and bearish mortality bonds also offer a f lexible way to 
monetize their view of future mortality trends.

The remainder of this article is organized as follows: 
We review the jump-diffusion mortality rate model 
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employed herein, and follow with a section deriving 
the analytical pricing formulas for mortality call and put 
options under the jump-diffusion model. The next sec-
tion first introduces U.S. mortality rate data and then 
provides the estimation results. Using the estimated 
model, we then analyze three different types of mortality-
linked structured products: principal-guaranteed struc-
tured notes, high-yield structured notes, and bullish and 
bearish mortality bonds. For each structured product, we 
explain how its value depends on the realized underlying 
mortality rate and examine its fair price. The last section 
serves as the conclusion to our analysis.

THE MORTALITY MODEL

Mortality-linked structured notes connect cou-
pons or principal redemptions to some designated mor-
tality indexes. Mortality rate is the ratio of the number 
of deaths over a given period in an age-specific group 
to the entire population size of that group. The his-
torical mortality rate time series constitutes a mortality 
index. To study mortality-linked securities, a realistic 
mortality rate model is thus required. Lin and Cox 
[2008] note that a sudden spike in death rates, which 
may result from epidemics, hurricanes, earthquakes, or 
man-made disasters like wars, will cause severe losses 
to insurance industries due to huge claim payments. 
They further argue that the mortality dynamics should 
include “normal” deviations from the trend as well as 
“unanticipated” mortality shocks. Since the rationale 
behind the design of mortality-linked structured prod-
ucts is for insurance companies or annuity providers to 
hedge their unexpected mortality risks, good mortality 
dynamics should incorporate mortality jumps into the 
model. Therefore, of the different stochastic mortality 
rate models suggested in the literature, we employ the 
jump-diffusion model that Cox, Lin, and Wang [2006] 
propose to specify the mortality index process. We 
brief ly review the model in this section.

Cox et al. [2006] propose the following dynamics 
to model the mortality index under the physical prob-
ability measure P:

	 ( ) ( 1) ,
dq

q
k dt dW Y dNt

t
t
P

t
P= α − λ + σ + − 	 (1)

where a is the instantaneous expected change percentage 
of the mortality rate. The mortality rate improves if a is 

negative. In addition, σ is the instantaneous volatility of 
the mortality rate if no jump events occur. The number 
of jumps N between time 0 and time t is governed by 

a Poisson distribution, ( )
( )

!
prob N n e

t
nt

P t
n

= = λ−λ  where 

λ is the jump intensity of the Poisson process Nt
P under 

the physical probability measure P. If the jump event 
occurs at time t, the mortality rate changes from qt to 
Yqt, where the jump size Y is an independent random 
variable. We assume Y = exp(m + su), where m and s are 
constants, and u is standard normally distributed; that is, 
u ~ N(0, 1). Thus, the jump size is lognormally distrib-

uted. We define k as [ 1] exp
1

2
12≡ − = +



 −k E Y m s  

to ensure that a is the instantaneous expected change 
percentage of the mortality rate.

Using Itô’s lemma, we can explicitly solve the sto-
chastic differential equation for qt under the probability 
measure P, qt

P, to yield
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, YP is the cumulative jump size 
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P is 

independently and identically distributed.
Conditional on Nt = n, from Equation (2), we 

can calculate µn , or the mean of variable ln( )qt
P , as 
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Because ln ( )qt
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probability density function for qt, conditional on cur-
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Henceforward, we evaluate Equation (4) by cutting 
off the summation of jump events at n = 10, because the 
probability of the event Nt > 10 is small enough to be 
ignored.

We can then work out the cumulative distribution 
function as follows:

( ) ( )

1

2

( )

!

( )

!

ln
,

0

2

1
2

ln

0
0

0

2

F q q f q x dx

x
e

e t
n

dx

e t
n

q

t
P

t
P

q

n

x t n

n

q

t n
n

nn

n

n











∫

∑∫

∑

( )

≤ = =

=
πσ

× λ

= λ Φ
− µ

σ






−
−µ

σ






−λ

=

∞
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∞

where Φ(⋅) is the cumulative standard normal distribution.
The model specification of Equation (1) has the 

advantage of mathematical tractability, which allows a 
closed-form formula for the expected future mortality 
rate to be derived as in Equation (2). The model has also 
been widely implemented as a stock-price jump-diffusion 
model, for which closed-form solutions for options and 
other securities are available. Because of this closed-form 
solution, the model may provide useful mortality dynamics 
for mortality simulation, as well as being useful in the 
capital market applications we discuss in the next section.

For pricing purposes, we need the mortality rate 
distribution under the risk-neutral probability measure. 
To derive the risk-adjusted mortality rate distribution, 
we apply the Wang [2000, 2002] transform technique:

	 ( ) [ ( ( )) ],1= Φ Φ + ψ−F x F xQ 	 (5)

where Φ(⋅) denotes the standard normal cumulative 
distribution, and ψ > 0 is a constant. The transform 
produces a risk-adjusted cumulative distribution func-
tion FQ(x). Wang [2007] further proves that normal and 
lognormal distribution properties are preserved under 
the Wang transform.

We assume that the risk-adjustment parameters of 
the physical mortality distribution of Brownian motions 
and jump sizes remain constant. That is, ψW = ψY = ψ, 
where ψW is the market price of risk for Brownian 
motion W, and ψY is the market price of risk for jump 
size Y. According to the Wang transform, we can change 
the measures of the Brownian motion and jump sizes to 
get the risk-neutralized distribution. Conditional on the 

current information set F0, the qt under the risk-adjusted 
Q measure becomes
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where the mean and variance for ln( )qt
Q , given the current 

information set F0 and Nt = n under the Q measure, is 
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and 2 2 2 2
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sure change alters the mean but not the variance.

VALUATIONS OF MORTALITY OPTIONS

To analyze mortality option-embedded structured 
notes, we need to know the values of the mortality 
options. In this section, we derive the values of mortality 
call and put options with one unit of notional principal. 
The following proposition provides the foundation for 
calculating the value of a European mortality call option.

Proposition 1. Assuming that the interest rate r is 
constant and independent of mortality rate, the initial market 
value C0(q, K ) of the European mortality call option with 
one unit of notional principal, strike rate K, and payoff as 
max[(qT - K), 0] at maturity (T + 1) is given by
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where Φ(⋅) is the cumulative probability function of a standard-
ized, normally distributed variable, and B. is the money market 
account accumulator, Bt = e-rt.

Proof. The value of the European mortality 
call option equals the expected value of the payoff 
max[(qT - K ), 0] at maturity date (T + 1), under the 
risk-neutral probability measure Q. The detailed cal-
culation of the expectation [( ) ]0E q KQ

T − +  appears in 
Appendix A.� 

Remark 2. The European mortality put option with 
one unit of notional principal, strike rate K, and payoff as 
max[(K - qT), 0] at maturity (T + 1), is equal to
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The derivation can be constructed by following Proposition 1, 
and we omit the detailed calculation here.

MORTALITY-LINKED 
STRUCTURED PRODUCTS

In this section, we study the use of mortality deriv-
atives to construct mortality-linked structured products. 
Specifically, we demonstrate how mortality options can 
be combined with traditional fixed-income securities to 
create principal-guaranteed or high-yield, mortality-
linked structured notes to attract investors with various 
mortality risk tolerances. Moreover, we introduce bullish 
and bearish mortality bonds with offsetting redemption 
values, which allow the issuer to remain immunized 
against the underlying mortality risk.

The creation of a desired mortality risk expo-
sure within mortality-linked structured notes requires 
linking either the coupon or the redemption value to the 
nominated mortality index. The position of the incorpo-
rated mortality option ref lects the nature of a structured 
note. A long position in mortality options implies that 
part of the coupon or the principal of the structured note 
must be sacrificed to pay for the option premium; a short 

position indicates a higher coupon can be generated by 
the premium obtained from the written options. In the 
former case, an option buyer is not obliged to exercise 
the option and does so only when it is profitable. The 
structure thus provides a guaranteed principal while also 
maintaining some exposure to the underlying mortality 
risk. In the latter case, an option writer receives the pre-
mium up front, but suffers potential liabilities later when 
that counterparty, an option buyer, chooses to exercise. 
An option writer’s loss then gets funded through the 
reduction of principal. Therefore, the role played by 
option positions provides a means to construct different 
types of structured notes.

To analyze examples of mortality-linked structured 
notes, we download the death number and population 
size of the United States for each year from 1900 to 2013 
from the Human Mortality Database.3 The mortality 
rate is computed as the ratio of death counts to popula-
tion size. Exhibit 1 plots the U.S. mortality rate for the 
period 1900 to 2013.

Following Lin and Cox [2008], we employ the 
maximum likelihood estimation method to calibrate 
Equation (6) to historical U.S. mortality rate data.4 
We report the estimation result that appears in Exhibit 2. 
To price mortality-linked structured products, which we 
discuss subsequently in this section, we set the param-
eters in the mortality process of Equation (6) to those 
listed in Exhibit 2.

We can determine the market price of risk ψ in the 
risk-neutral process of qt from the retail market for life 
insurance or annuity products by Equation (5), so that 
the current market price of a life insurance or annuity 
product equals the model price under the transformed 
distribution. However, as there is no active and deep 
market for mortality risk trading, risk-adjusted stochastic 
mortality rate processes may not be easily calibrated to 
the limited market prices of mortality-linked securities. 
Because we lack mortality products price data to estimate 
the market price of risk ψ in the risk-neutral process of 
qt, we will not estimate ψ via model calibration. Instead, 
we exogenously assume the values of the market price of 
risk ψ to be 0, 0.4, 0.8, and 1.2, in line with the estimates 
that were made in the literature, e.g., Lin and Cox [2008].

Exhibit 3 displays the Wang-transformed prob-
ability density distribution (PDF) of U.S. mortality 
rates taking the market price of risk ψ to be 0, 0.5, 
and 1. The dotted line denotes the transformed PDF 
of mortality rate qt with ψ = 0.5, and the dashed line 
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denotes that with ψ = 1. When setting the market price 
of risk ψ equal to 0, the line shows the physical PDF 
of mortality rate qt. Exhibit 3 shows that with a larger 
market price of risk, the transformed PDF of qt shifts 
more to the right of the physical PDF of qt. This means 
that more weights will be put on the right tail of the 
PDF of qt for a larger market price of risk.

Principal-Guaranteed Mortality-Linked 
Structured Notes

Principal-guaranteed structured notes have engen-
dered a lot of interest lately. The typical principal-
guaranteed structure comprises a zero-coupon bond, 
which pays back par at maturity to deliver capital pro-
tection when the situation involves a 100% capital guar-
antee. The sacrificed coupon payments may be used to 
purchase options, which offer upside potential while 
limiting downside risks.

In this subsection, we introduce two kinds of 
principal-guaranteed, mortality-linked structured notes: 
one constructed through the combination of the purchase 
of mortality call options with a traditional fixed-income 
security, and another constructed through the combination 
of the purchase of mortality put options and a traditional 
fixed-income security. Investors who choose the former 
anticipate that the mortality index will increase; investors 
who select the latter expect it will decrease. Both products 
ensure principal protection, which typically guarantees the 
repayment of a pre-determined percentage of the initial 
investment and enables these investors to participate in 
the growth or decline of the underlying mortality index.

In the following example, we assume the note, with 
a maturity of five years, is issued at par with a price of 
$5 million. For the options embedded in the note, we con-
sider a five-year option issued in 2013 based on the U.S. 
mortality index with a notional amount of $5 million and 
a strike price of 0.73%, set equal to the U.S. mortality rate 

E x h i b i t  1
U.S. Historical Mortality Index

E x h i b i t  2
Parameter Estimates for the Mortality Rate Model

Note: S.e. is the standard errors of the estimates.
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of the year 2013. Therefore, all options studied in Exhibit 4 
are at-the-money options. We simulate the mortality 
index using the estimated values reported in Exhibit 2. 
The initial reserve is the value that, if invested in a risk-
free savings account today, could guarantee the required 
percentage of the note’s principal repayment at the matu-
rity date. We calculate the initial reserve as the present 
value of the capital-guaranteed amount at the maturity 
date, as listed in Exhibit 4. The difference between the 
bond price and the initial reserve is the amount available 
for purchasing options. We then calculate the number of 
calls (puts) to be purchased in the structured notes in the 
case of 100% and 90% capital protections, and report them 
in columns 4 and 6 (5 and 7) of Exhibit 4.

The numerical results in Exhibit 4 show that the 
lower the principal-guaranteed level an investor requires, 
the lower the initial reserve that should be deposited in 
the risk-free account. As a result, more cash is avail-
able for purchasing more options. Investors then receive 
higher payoffs from positions in which they have more 
purchased options if those options are valuable at matu-
rity. The results in Exhibit 4 also show that the larger 
the market price of risk, the higher (lower) the call (put) 
price. Based on Equation (5) or Exhibit 3, a positive 
market price of risk ψ implies that the transformed prob-
ability density function of the mortality rate qt lies on the 
right of the probability density function of qt under the 
physical probability measure. It indicates that the market 

E x h i b i t  3
Wang-Transformed Mortality Rate Probability Distribution with Different ψ

E x h i b i t  4
Principal-Guaranteed Structured Notes under Different Degrees of Capital Protection

Notes: ψ is the market price of risk.
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expects a greater probability of having a higher mortality 
rate than the actual probability suggests. This explains 
why the premium of a call (put) with a fixed strike rate 
is higher (lower) for a higher market price of risk ψ.

At maturity, the payoff of the principal-guaranteed, 
mortality-linked structured note that investors will 
receive equals the protected capital plus any profits 
earned from holding options. This structure highlights 
the intrinsic attraction of the principal-guaranteed struc-
ture for risk-averse investors seeking to create expo-
sure to the underlying mortality risk. One variation of 
the basic structure involves the introduction of a par-
ticipation rate into the payoff function of embedded 
options. Different participation levels thus allow greater 
customization and fit the various risk-return trade-offs 
demanded by individual investors.

High-Yield Mortality-Linked  
Structured Notes

High-yield structured notes represent a specif ic 
type of interest-paying, non-principal-protected, 
medium-term notes with embedded sold options. The 
premium on the written options gets incorporated into 
a bond to generate a significantly above-market coupon 
in return for the investor’s willingness to undertake 
option risks. Payment of the high-yield, mortality-
linked structured note at maturity is determined by 
the performance of the underlying mortality rates. 
If the value of the underlying mortality rate is equal 
to or smaller (greater) than the strike price at matu-
rity for written mortality call (put) options, investors 
receive their initial invested principal and agreed-upon 
interest. However, if the underlying mortality rate is 
greater (smaller) than the initial strike rate at matu-
rity for written mortality call (put) options, the initial 
principal outlay gets reduced by the amount of losses 
resulting from the written options.

In the following example, we assume the high-
yield, mortality-linked structured note is initially issued 
into the markets at a par of $5 million. The coupon 
is paid semi-annually, and the maturity of the note is 
f ive years. The other option settings are the same as 
those described in the previous subsection. Because the 
note is priced at par, the expected compensation should 
be readily observable in the form of higher coupon rates.

The valuation of the high-yield, mortality-linked 
structured note involves determining the fair coupon 

spread s above the LIBOR rate that investors demand 
as compensation for risking their principal. The fair 
spread can be solved numerically by equating the note’s 
expected future cash f lows to its issuance price. For 
selling m units of mortality put options, the coupon 
spread s can be determined by numerically solving the 
following equation:

0,
2 2

(0, )( ( ( ) )) ,

0
1

2

{ } { }

∑= 





+








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+ + − × − × 

=

≥ <

F E P
t LIBOR s

P T I F I F m K q F

Q

t

T

q K q K T OT T  
� (7)

where P(0, t) is the discount factor for maturity t; F is 
the par value of the note; FO is the notional principal of 
the option; T is the maturity of the structured note; K 
is the strike rate of the written options; m is the number 
of options sold; I{⋅} denotes the indicator function; 0 [ ]⋅EQ  
denotes the expectation operator over the risk-neutral 
probability measure Q; LIBOR is the LIBOR rate; and 
s is the coupon spread above the LIBOR rate. The focus 
of this example is not the forecast of future LIBOR 
rates, so for simplicity, we assume that the expected 
future LIBOR rates are equal to the spot LIBOR rates.5 
At maturity, if the underlying mortality index is not 
greater than the strike rate K, the put options sold incur 
losses, and the principal redemption at maturity becomes 
[ ( )]{ }− × × −<F m F I K qO q K TT

, where the expected value 
of ( ){ }I K qq K TT

−<  can be computed using the put option 
formula listed in Remark 2.

In the following numerical analysis, we assume 
T = 5, F = $5 million, FO = $5 million, and m = 100 
and 200. We set the strike rate equal to the mortality rate 
of 2013, that is K = 0.73%. We simulate the mortality 
index using the estimated values reported in Exhibit 2. 
The volatility of the underlying index is 2.8%. The cal-
culated fair spreads associated with the sales of 100 and 
200 mortality call and put options appear in Exhibit 5. 
The results show that the more options an investor sells, 
the higher the spreads he or she can obtain. However, 
through the sales of options, option writers might incur 
potential liabilities later.

Bullish and Bearish Mortality Bonds

In this subsection, we extend the basic idea of 
incorporating options into a plain-vanilla bond in which 
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we divide the issue into two classes, such that one class 
provides the positive link and the other the negative 
link to the underlying mortality index. This innova-
tive design can simultaneously meet the mortality rate 
expectations of different investors. Moreover, the inte-
gration of derivatives with different payoffs into bonds 
can create offsetting securities that produce known cash 
f low payments for the issuer.

For illustration purposes, we set out an indica-
tive term sheet of a hypothetical bond with a matu-
rity of 10 years in Exhibit 6. The issue consists of two 
classes: a bullish mortality bond with face value $PM 
and a bearish mortality bond with face value $PL. Both 
classes are issued at par, with redemption values set in 
accordance with the formula listed in Exhibit 6. The 
proposed mortality bonds allow the issuers to remain 
immunized against the risk of mortality-linked redemp-
tion values even when both bonds have different prin-
cipals, i.e., PM ≠ PL. For example, if PM = κ × PL, then in 
order to make the final redemption value of both bonds, 
RM + RL, equal to the principal of a plain-vanilla bond 
from which the two mortality bonds are generated, the 
participation rate of the bullish mortality bond ηM has to 

be set as 
1η =
κ

ηM L. For illustration purposes, we plot the 

redemption values at maturity for both classes of bonds 

when the underlying is set to case (1) ˆ max
2014 2023

1

=




≤ ≤

−

q
q

qT
t

t

t

 
in Exhibit 7.

KM(KL) is the strike rate at which, for example, 
when ˆ< <K q KD T U, and ˆ ( )=q K KT M L , the payoff of a 
bullish (bearish) mortality bond apart from its principal 
$PM ($PL) is zero. KD is the rate at which the payoff 
of a bullish (bearish) mortality bond starts increasing 
(decreasing) when ˆ >q KT D, but the upside (downside) 

payoff beyond KU is capped and fixed. Both bullish and 
bearish mortality bonds limit an investor’s upside poten-
tial as well as downside risk. To be more specific, for a 
bullish mortality bond, if the underlying index q̂T is high 
and greater than the higher strike rate KU, the payoff 
is the upper bound PM(1 + ηM (KU - KM)). However, if 
the index q̂T at the expiration date lies between the two 
strike rates KD and KU, the payoff is (1 ( ˆ )),+ η −P q KM M T M  
and if the index q̂T  is below the lower strike rate KD, 
the payoff is the lower bound of PM(1 + ηM (KD - KM)). 
The redemption value of a bullish mortality bond at a 
maturity date is similar to the payoff of a bull spread 
strategy. Bullish mortality bonds will have more payoffs 
when the realized underlying index q̂T  is higher. We 
use the subscript M to stand for the bullish mortality 
bonds as the bonds can be used to hedge unexpected 
mortality risks, i.e., a higher-than-expected underlying 
mortality index. 

Exhibit 7 also shows that the redemption value of 
a bearish mortality bond at maturity date is similar to 
the payoff of a bear spread strategy. When the realized 
underlying index q̂T is smaller, bearish mortality bonds 
will have larger payoffs. Therefore, annuity providers or 
pension plans can buy bearish mortality bonds to pay 
for the more-than-expected pension benefits due to an 
unexpected smaller realized underlying mortality index. 
Since bearish mortality bonds can be used to hedge the 
longevity risk, we use subscript L to stand for the bearish 
mortality bonds. In summary, life insurers with mor-
tality risk exposures can use bullish mortality bonds 
to hedge their liabilities and pay for insurance claims, 
whereas annuity providers with exposures to an unex-
pected smaller realized underlying mortality index can 
buy bearish mortality bonds to hedge the longevity risk. 

E x h i b i t  5
Fair Coupon Spreads of High-Yield Structured Notes

Notes: ψ is the market price of risk, (100)sC  ( )(200)sC  is the spread above LIBOR when 100 (200) call options are sold, (100)sP  ( )(200)sP  is the spread above 
LIBOR when 100 (200) put options are sold.

 by guest on January 8, 2018http://jod.iijournals.com/Downloaded from 

http://jod.iijournals.com/


76      Valuations of Mortality-Linked Structured Products	 Winter 2016

E x h i b i t  6
Indicative Term Sheet of Hypothetical Bullish/Bearish Mortality Bonds

The two classes of mortality bonds issued in this struc-
ture are designed to benefit from either upward or 
downward movement of the underlying index.

The bullish and bearish mortality bonds carry 
coupons of cM = (LIBOR + sM) and cL = (LIBOR + sL), 

respectively. The underlying index q̂T of the two classes 
of bonds is set to ref lect the mortality trend during 
the bond-holding period. For the hypothetical struc-
tured bonds, we propose three different settings for the 
underlying index q̂T on which the redemption value of 
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the bonds depends. We assume that the mortality rates 
are observed at equally-spaced discrete times tj, tj = jΔ, 
j = 0, 1, …, h, and th = hΔ = T. In the first case, we set 
q̂T, the underlying index at maturity, as the maximum 
of the ratio of mortality rates of consecutive years, i.e., 

ˆ max
1

1
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≤ ≤
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. If the mortality rate steadily declines 

over time, then 
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q
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 would be a decreasing sequence.

In the second case, we set q̂T as the geometric 
average of the mortality rates observed each year, i.e., 

ˆ
0

1
1

∏=





=

+

q qT t
j

h h

j
. The redemption value to the holders 

of the structured bonds thus depends on the geometric 
average of the mortality rates over the life of the con-
tract. From the viewpoint of pricing, the geometric 
average has a technical advantage over the arithmetic 
one. Structured bonds with their redemption value 
linked to the geometric average of the mortality rates 
will be less sensitive to “spikes” of the underlying mor-
tality rates at contract maturity date. Moreover, this geo-
metric average underlying addresses a particular hedging 
demand: the hedge against the exposure to the average. 
Insurance companies or pension plans whose objective 
is to control average claim payments or average annuity 

payments might find structured bonds with redemp-
tion value depending on the geometric average of the 
mortality rates over the contract period ideal for them 
to manage their average risk exposure efficiently. That 
is why we set the underlying index at maturity as the 
geometric average of the mortality rates over the con-
tract period in the second case.

In the last case, we set q̂T as the sum of the mortality 
rates over the contract period, i.e., ˆ 0= Σ =q qT j

h
t j
. Therefore, 

the redemption value to the structured bond holders is 
linked to the mortality rates in a cumulative way. In this 
case, if we scale q̂T by the ratio of one to the number of 
mortality rates put in the summation, we obtain an arith-
metic average. Both geometric and arithmetic averages 
are used in financial markets, but the use of arithmetic 
averages is far more common. Accordingly, the struc-
tured bonds whose redemption value depends on the 
cumulative mortality rates can be valued using several 
techniques that have been proposed in the literature for 
pricing Asian options on the arithmetic average.

Pricing the bullish/bearish mortality bonds 
involves determining the fair coupon spreads of both 
bonds. Similar to the calculation of spreads in the 
high-yield, mortality-linked structured note case in 
the previous subsection, we solve the fair spread sM(sL) 
of the bullish/bearish mortality bonds numerically by 

E x h i b i t  7
Redemption Values of Bullish and Bearish Mortality Bonds
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equating the issuance price of the bond with the bond’s 
expected future cash f lows, which consist of two parts: 
the coupon payments and the redemption value at matu-
rity. For the first part of the future cash f lows, to sim-
plify the calculation, we assume that the expected future 
LIBOR rates equal the implied forward rates when we 
calculate the coupon payments.6 For the second part, we 
use the following proposition to calculate the expected 
redemption value of the bullish mortality bonds.

Proposition 3. The expected redemption value for the 
bullish mortality bond, denoted by [ ]0E RQ

M , is given by

[ ] [1 ( ( ˆ ))]0 = + ηE R P VT qQ
M M M T
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Proof. Recall the redemption value of the bullish 
mortality bond listed in Exhibit 6. We first define the 
redemption value of the bullish mortality bond as RM

D 
when the underlying index q̂T is not greater than KD, as 
RM

DU when the underlying index q̂T is greater than KD 
and not greater than KU, and as RM

U  when the underlying 
index q̂T is larger than KU. Denote FQ(⋅) as the cumula-
tive probability distribution of q̂T under measure Q, and 
I{⋅} as the indicator function, we then have
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After substituting the redemption values of ,RM
D  

RM
DU, and RM

U  into Equation (8), we can write E RQ
M[ ]0  as

E R P VT qQ
M M M T= + η[ ] [1 ( ( ˆ ))]0

where

( ˆ ) ( ˆ ) ( ˆ )

ˆ0 { ˆ }

VT q K F q K K F q K K

E q I

T D
Q

T D U
Q

T U M

Q
T K q KD T U

= ≤ + > −

+  < ≤

The rest of the proof requires the computation of 
the (a) F q xQ

T ≤( ˆ ) and (b) [ ˆ ]0 { ˆ }E q IQ
T K q KD T U< ≤  terms.

We denote qt j
, j = 1, …, h, as the mortality index 

observed at time tj, and assume that all observations are 
at equally-spaced discrete times tj, tj = jΔ, j = 0, 1, …, h, 
and th = hΔ = T. q qt Th

≡  is the mortality index observed 
at time T. For the bullish mortality bonds, all three types 
of payoff structures depend on the mortality indexes 
observed at equally-spaced discrete times tj.

Following Fusai and Meucci [2008], we consider the 
demeaned log-increments of mortality index q between 
time tj-1 and tj as jξ∆, q q mj j j jξ ≡ − − ∆∆

∆ − ∆
∆ln( ) ln( ) ,( 1)  where 

mj
∆ is the deterministic component of the log-increments 

jξ∆, and 

m kj ∆ = α − σ − λ



 ∆ + σψ ∆





∆ 1

2
.2

Next, we work out the detailed derivations of the 
F q xQ

T ≤( ˆ ) and E q IQ
T K q KD T U< ≤[ ˆ ]0 { ˆ }  terms for (i) q̂T  is 

defined as MT, 

max ,
1

1

=










≤ ≤
−

M
q

qT
j h

t

t

j

j

in Appendix C, (ii) q̂T is defined as GT, 

,
0

1
1

∏=





=

+

G qT t
j

h h

j

in Appendix D, and (iii) q̂T is defined as AT, A qT j
h

t j
= Σ = ,0  

in Appendix E, respectively.� 
The derivation of the expected redemption value of 

the bearish mortality bond can be constructed by following 
Proposition 3. We omit the detailed calculation here.

On the basis of the derived analytical formula for 
the redemption values of both bonds, we next investigate 
the pricing behaviors of bullish/bearish mortality bonds 
subject to varying values of market price of risk ψ and 
contract-specific values of KD and KU. In the numerical 
analysis, we assume each bond has a principal amount 
of $50,000, and assume a participation rate ηM = ηL = η 
and take η to be 1 for simplicity. With regards to the 
benchmark case, for the first setting of q̂T, 

q
q

qT
j h

t

t

j

j

=










≤ ≤
−

ˆ max ,
1

1

we take ψ equal to 0.8 and the parameters in the bond’s 
redemption formula to KD = 1.05, KU = 1.2. For the 
second setting 

q qT t
j

h h

j∏=





=

+
ˆ ,

0

1
1

we set ψ to be 0.4, and KD = 1.05, KU = 1.2. For the 
last setting q qT j

h
t j

= Σ =ˆ ,0  we take ψ to be 0.4, and param-
eters in the bond’s redemption as KD = 1, KU = 1.2. 
For all three different underlying settings, we take 
KM = KL = 1.1 in the benchmark case studied. We run 
100,000 simulation paths to produce the simulated 
cumulative probability FQ (q̂T ≤ q) and the redemption 
values. Panel A of Exhibit 8 lists features of bullish and 
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bearish mortality bonds at different values of market 
price of risk ψ and contract-specific values of KD and 
KU for the setting of 

q
q

qT
j h

t

t

j

j

=










≤ ≤
−

ˆ max .
1

1

Panel B lists those for the setting of 

q qT t
j

h h

j∏=





=

+
ˆ ,

0

1
1

and Panel C presents those when q̂T  is def ined as 
q qT j

h
t j

= Σ =ˆ .0

All three panels show that the expected redemp-
tion value of bullish mortality bonds, E RQ

M[ ]0 , is an 
increasing function of the market price of risk ψ, which 
rises quite signif icantly with increasing value of ψ. 
Exhibit 8 also shows that the expected redemption value 
of bearish mortality bonds, E RQ

L[ ]0 , is a decreasing func-
tion of the market price of risk ψ. We can observe that 
with the increasing market price of risk ψ, PD, the proba-
bility that q̂T is less than KD, becomes smaller. Moreover, 
the probability that q̂T is greater than KU, PU, increases 

E x h i b i t  8
Features of Bullish and Bearish Mortality Bonds under Different Parameters

(continued  )
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with the market price of risk ψ. This is due to the fact 
that more weights are put on the right tail of the prob-
ability density function of mortality rates for higher ψ. 
Exhibit 3 shows that a higher market price of risk implies 
that the market expects a higher probability of having 
a higher mortality rate than the actual probability sug-
gests. Therefore, the larger ψ becomes, the higher the 
probability that q̂T is greater than KU, which results in 
a larger redemption value of bullish mortality bonds. 
Similarly, a larger ψ implies that the probability of q̂T 
less than KD is smaller, which gives rise to a smaller 
redemption value of bearish mortality bonds.

Next, we look at the sensitivity of contract-
specif ic parameter KD to bond features. When q̂T  is 
below KD, a bullish mortality bond will suffer its 
maximum loss, which is equal to PM (1 + η(KD - KM)). 

Exhibit 8 shows that as KD becomes smaller, PD, the 
probability of q̂T being smaller than KD, becomes lower. 
With a decreasing KD, the bullish mortality bond 
will incur a larger maximum loss PM × η(KD - KM) 
as KD < KM, which results in a smaller redemption 
value for a bullish mortality bond. For a bearish 
mortality bond, a smaller KD implies a larger prof it 
PL × η(KL - KD), resulting in a greater redemption 
value for a bearish mortality bond.

Finally we study how the features of mortality-
linked structured bonds vary with the parameter KU. 
At KU, the maximum gain of a bullish mortality bond is 
capped at PM × η(KU - KM), and the maximum loss of a 
bearish bond is limited at PL × η(KL - KU). For a larger 
KU, the probability of q̂T being more than KD becomes 
smaller, which is consistent with the results shown in 

E x h i b i t  8 (continued )
Features of Bullish and Bearish Mortality Bonds under Different Parameters

Notes: (1) ψ is the market price of risk; η is the participation rate; KD is the rate below which the bullish (bearish) mortality bond has its minimum 
(maximum) fixed payoff; KU is the rate above which the bullish (bearish) mortality bond has its maximum (minimum) fixed payoff. KM (KL) is the rate at 
which the payoff of a bullish (bearish) mortality bond apart from its principal is zero, KD < KM (KL ) < KU. We set KM = KL = 1.1 in the analysis.

(2) PD = prob(qTˆ  ≤ KD), the probability that the underlying qTˆ  is smaller than rate KD; PU = prob(qTˆ  ≥ KU), the probability that the underlying qTˆ  is 
larger than rate KD.

(3) E R E RQ
M

Q
L[ ]( [ ])0 0  is the expected redemption value of a bullish (bearish) mortality bond.

(4) sM (sL ) is the spread for the coupon of a bullish (bearish) mortality bond, and is reported in basis points.
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column 2, (PU) of Sensitivity of KU, of Exhibit 8. With an 
increasing KU, the bullish mortality bond will incur a 
larger maximum gain PM × η(KL - KM) as KU > KM, which 
results in a greater redemption value for a bullish mor-
tality bond. An increasing KU also implies a greater loss 
PL × η(KL - KU) for a bearish mortality bond as KU > KL, 
giving rise to a smaller redemption value for it.

Sensitivity analysis in Exhibit 8 reveals that the value 
of bullish/bearish mortality bonds is highly sensitive to 
the market price of mortality risk ψ. This indicates that 
finding an exact ψ is essential for pricing mortality-linked 
structured products. Traders and risk managers thus need 
to be careful with their choice of an underlying market 
price of mortality risk. Since the values of mortality-
linked structured bonds also vary with contract-specific 
parameters such as KD and KU, the setting of appropriate 
parameters in the contract may also be important. One 
can devise a more aggressive mortality-linked structured 
bond by widening the difference between KD and KU, 
which will give rise to a higher capped gain and a larger 
limited downside risk. A greater difference between KD 
and KU also means that the underlying mortality index 
q̂T must move upward (downward) by a larger degree for 
the bullish (bearish) mortality bond holders to realize the 
greater maximum profit.

CONCLUSION

In recent years, securities linked to insurance 
risks have emerged as a specific asset class in the capital 
market. Securitization of mortality risks provides a way 
for primary insurers and annuity providers to repackage 
and off load their risk exposures onto those who are 
willing to undertake them in the f inancial market. 
Swiss Re mortality and EIB bonds represent common 
examples. We suggest a new perspective from which to 
analyze these mortality-linked securities. Specifically, 
we introduce the idea of structured products and study 
how mortality-linked structured notes may be con-
structed through purchases or sales of mortality options. 
In this regard, we extend Blake, Cairns, and Dowd’s 
[2006] work by exploring a feasible application of mor-
tality options in practice. The structured notes proposed 
herein provide a means for investors with different views 
of future mortality trends to monetize their mortality 
rate expectations by buying or selling mortality options. 
We further propose a security containing two bond 
classes, a bullish mortality bond whose payoff provides 

the positive link to the underlying mortality index, and a 
bearish mortality bond whose payoff links negatively to 
the underlying mortality index. In this design, issuers of 
bonds become immunized against the risk of mortality-
linked redemption values.

We use mortality data from the United States to 
calibrate the jump-diffusion mortality index model. 
We then employ the estimated model to evaluate 
the proposed mortality-linked structured products. 
The numerical results reveal the relationship between 
the level of principal protections and the units of 
mortality options purchased in the case of principal-
guaranteed structured notes. For high-yield structured 
notes, our numerical results indicate the calculated 
extra coupon spread that can be generated through the 
sale of different units of mortality options. We also find 
coupon spreads for high-yield structured notes under 
different participation rates. We further suggest three 
different settings for the underlyings of the proposed 
bullish/bearish mortality bonds, and provide numerical 
analyses to study the impact of contract specifications 
on bond features.

The examples provided in this article demonstrate 
the f lexible structure of mortality-linked structured 
products, which investment banks could issue for life 
insurers or annuity providers to hedge their mortality/
longevity risks. Although the market for mortality 
derivatives is still in its infancy, we believe that the secu-
ritization of mortality risk by issuing mortality-linked 
structured products will strengthen the linkage between 
financial and insurance markets.

A p p e n d i x  A

In this appendix, we calculate the expected payoff of a 
European mortality call option. At the option maturity date, 
the expected payoff function is
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A p p e n d i x  B

We list the spot rates and implied forward rates used in 
the text in the following table.

A p p e n d i x  C

For ˆ max ,
1

1

≡ =










≤ ≤
−

q M
q

qT T
j h

t

t

j

j
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 is the 
number of jumps between time tj-1 and tj. It therefore 
follows that 
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With the help of Equations (9) and (10), we can work out 
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we can compute the two cumulative distribution functions 
using Equation (11).

A p p e n d i x  D

When the payoff of the bullish mortality bond depends 
on the geometric average of the mortality index observed at 
each time tj, j = 0, 1, …, h, q̂T  is defined as GT, 
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We further def ine the logarithm of the geometric 
average of the mortality index as XT, and express XT = ln GT 
in terms of the increments jξ∆ as
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Denote FX
Q

T
⋅( ) as the cumulative probability distribution 

function of the logarithm of the geometric average at time T, 
XT = ln GT, then we can construct FX
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⋅( ) using the inversion 

of the characteristic function as
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Accordingly, the probability that the geometric average 
GT at time T is below a specific level can be obtained as
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where the integration can be numerically calculated.

A p p e n d i x  E

When the payoff of the bullish mortality bond depends 
on the sum of the mortality index observed at each time tj, 
j = 0, 1, …, h, qT is defined as AT, A qT j
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the density of ∆B j  is thus the convolution of the density ∆f
Z j

 

and that of eB j+ +
∆

ln(1 )1 . Therefore the density of ∆f
B j

 satisfies 
the recursion

	

f x f x e f y dy

j h
B Z

y
Bj j∫= − +

= …
−∞

∞
∆ ∆

+
( ) ( ln(1 )) ( )

for – 1, , 1
1



	 (12)

with the initial condition set as ≡∆ ∆f f
B Zh

. Since ∆Z j  are i.i.d., 
we drop the index j for ∆Z j . The density function of ∆Z j , 

∆f
Z j

, does not depend on the time index j. The integration 
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in Equation (12) can be approximated using an M-point 
quadrature formula.

Accordingly, the probability that the sum of the mor-
tality index at time T, AT, is below a specif ic level can be 
obtained as
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Finally, the term 
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where the integration can be numerically calculated.

ENDNOTES

1Due to insufficient demand, the EIB longevity bond 
was withdrawn for redesign in late 2005. Blake et al. [2006] 
f ind that some features of this bond’s design might have 
discouraged investors, especially the basis risk embedded in 
the bond.

2Pelsser [2008] proposes an example to demonstrate that 
the Wang transform is not consistent with the arbitrage-free 
pricing approach. He argues that the Wang transform cannot 
be a universal framework for pricing insurance risks.

3The Human Mortality Database (HMD) provides easy 
access to comparable national mortality data via the Internet. 
The HMD is accessible at http://www.mortality.org.

4For details about the maximum likelihood estimation 
method, see Lin and Cox [2008].

5The spot rates R(0, T ) for different maturities T are 
interpolated from swap rates, which are available in the 
market. We use the spot rates to find the implied forward 
rate for a tenor of 0.5 years; that is, F(0; T, T + 0.5). We list 
the rates in Appendix B.

6To relax this assumption, we could choose a specific 
interest rate model to forecast the future LIBOR rates.
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