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Abstract 
In the study, we developed a new model of fuzzy correlation and empirically examined the 
fuzzy correlation with student test scores in subjects of Chinese and Mathematics. Our 
sample comprised 419 Taiwanese students in the 12-year compulsory education. We 
applied fuzzy theory and conducted simulations with the data from Normal, Uniform, 
and Cauchy distributions to illustrate the efficiency of our proposed methods.  
 
Keywords: fuzzy correlation, Chinese, Mathematics, 12-year compulsory education policy 
 
1. Introduction 

Taiwan has officially implemented 12-year compulsory education. Starting from year 
2011, 7th grade students in junior high school are required to take a national examination in 
their 9th grade. In the examination, the Chinese subject will include composition writing, the 
Mathematics subject will include non-multiple-choice questions, and the English subject will 
include listening ability. It is understandable to add English listening since listening is basic 
for language learning. However, why are Mathematics and Chinese subjects specifically 
emphasized? Do the two famous proverbs “Chinese is the predecessor of learning” and 
“Mathematics is the predecessor of science” serve as adequate reasons for adding 
Mathematics and Chinese subjects? This study analyzes correlations among examination 
subjects using student interval fuzzy scores and contributes to the policy of 12-year 
compulsory education by providing empirical research results of student performance 
correlations among Chinese, Mathematics, and English subjects. 

Generally, Pearson product-moment correlation is employed to estimate correlation 
coefficients. Because the new definition of fuzzy correlation intervals developed in Xie and 
Wu (2012) provided a more authentic and relevant fuzzy correlation interval, it enhanced the 
authenticity level of correlation estimation. This study employs this interval definition to 
calculate fuzzy correlation intervals among subjects. Regarding the new definition provided 
by this study, because, according to the definition of fuzzy correlation presented in Xie and 
Wu, fuzzy correlation interval type is an interval value (e.g., (r, r+ )); further application 
requires conversion into defuzzified values for use. For example, when comparing the 
strength or intensity of fuzzy correlation coefficients, a single value must be employed. To 
continue research on the fuzzy correlation defined by Xie and Wu (2012), this study further 
employs the defuzzified value of interval fuzzy numbers proposed by Wu (2005) to define the 
correlation coefficient fr of the defuzzified value for fuzzy correlation intervals. This 

represents another important motivation and contribution of this study.  
In the development of the social sciences, fuzzy correlation coefficients have gradually 

received increasing emphasis. Previous studies have investigated methods of calculating 
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correlation coefficients. For example, Chiang and Lin (1999) discussed the membership 
functions of fuzzy sets and established the membership degree as a concrete observation 
value to define fuzzy correlation coefficients. Chaudhuri and Bhattacharya (2001) 
investigated fuzzy grade correlation coefficients to calculate the correlations of two fuzzy sets. 
Lin (2004) proposed that the fuzzy correlation coefficients measure the similarity and 
correlation of fuzzy data. Chen (2005) employed random verification or examination methods 
to examine hypotheses of whether correlation coefficients equal zero. He used the extension 
principle proposed by Zadeh (1978) and adopted the recommendation of Liu and Kao (2002) 
regarding the α-cut of fuzzy sets to obtain the α-cut of fuzzy correlation coefficients. Based 
on these cuts, the membership function of fuzzy test statistics can be obtained. Hong (2006) 
also proposed a calculation method for fuzzy correlation. Hung and Wu (2007) argued that 
multiple correlations and three or more partial correlations of fuzzy sets are critically 
important; thus, they proposed a calculation method using the concept of the multiple 
correlation model and the multiple and partial correlation of fuzzy data.  

Xie and Wu (2012) developed fuzzy correlation coefficients based on correlation 
coefficients proposed by Liu and Kao (2002) and obtained fuzzy correlation intervals based 
on interval fuzzy sample data. Educational policies and administrative fields often employ 
traditional binary logic to process quantified data. Statistics generally employs Pearson 
correlation coefficients to express the intensity of the linear correlation between two variables 
and the direction of the correlation. The data that Pearson correlation coefficients process is 
concrete real values. However, when data represent fuzzy numbers, how to calculate general 
fuzzy correlation coefficients becomes an important problem. This study investigates interval 
fuzzy sample data values to obtain fuzzy correlation coefficients and proposes general fuzzy 
correlation coefficients. The proposed definition of fuzzy correlation interval can be applied 
to situations in which two sets of data values are real numbers or one of the sets is real 
numbers. This can be used to explain more correlation phenomena that occur in practical 
situations. However, utility problems remain during application, such as the range of 
correlation coefficients, calculating convenience, and problems when comparing intensities or 
strengths of fuzzy correlation intervals. This study intends to continue relevant research to 
develop a new model and increase the utility of the fuzzy correlation interval.  

 
2. Research Methods 

The research methodology for this study is the application of fuzzy theory. The first 
research step is to newly define student interval fuzzy scores (Definition 2.1). The second is 
to calculate the fuzzy correlation interval (Definition 2.2 and Definition 2.3). The third step is 
to defuzzify the fuzzy correlation interval (Definition 2.4), and the final step is to perform 
trial calculations and analysis using actual examples; the research samples are general tests 
for 419 students who are in their third year in junior high school. For statistical methods, we 
use statistical software, MINITAB16.0, for the quantified statistical analysis. Because the 
samples from the research are not necessarily distributed normally, using nonparametric 
analysis is more appropriate to actual situations (Wu, 2005; Wu and Xie, 2010; Hung, Vladik, 
Wu, and Gang, 2011; Hung and Wu, 2006). Figure 2.2 shows the research process framework. 
 
2.1 Fuzzy Correlation  

.The correlation coefficient is a commonly used statistics that presents a measure 
of how two random variables are linearly related in a sample. The population 
correlation coefficient, which is generally denoted by the symbol,  is defined for 
two variables x and y by the formula: 

YXYX

YX YXCov




 ),(,   

In this case, the more positive  is the more positive the association is. This also 
indicates that when   is close to 1, an individual with a high value for one variable 
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will likely have a high value for the other, and an individual with a lower value for 
one variable will likely to have a low value for the other. On the other hand, the more 
negative  is , the more negative the association is, this also indicate that an individual 
with a high value for one variable will likely have a low value for the other when  is 
close to -1 and conversely.  When  is close to 0, this means there is little linear 
association between two variables. In order to obtain the correlation coefficient, we 
need to obtain 2

X , 2
Y and the covariance of x and y. In practice, these parameters 

for the population are unknown or difficult to obtain. Thus, we usually use xyr , which 

can be obtained from a sample, to estimate the unknown population parameter. The 
sample correlation coefficient xyr is expressed as: 
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where )( , ii yx  is the ith pair observation value, ni ........,3,2,1 .  x , y  are sample mean 

for x and y respectively.  
Yang, Wu and Sriboonchitta (2012) defined fuzzy correlation .Pearson correlation is a 

straightforward approach to evaluate the relationship between two variables. However, 
if the variables considered are not real numbers, but fuzzy data, the formula above is 
problematic. For example, Mr.Lai is a new graduate from college; his expected annual 
income is 48,000 dollars. However, he can accept a lower salary if there is a promising 
offer. In his case, the annual income is not a definite number but more like a range. 
Mr.Lai’s acceptable salary range is from 46,000 to 51,000. We can express his annual 
salary as an interval [46000, 51000]. In addition, when Mr.Lai has a job interview, the 
manager may ask how many hours he can work per day. In this case, Mr.Lai may not 
be able to provide a definite number since his everyday schedule is different. However, 
Mr.Lai may tell the manger that his expected working hours per day is an interval [7, 
9].  

We know Mr. Lai’s expected salary ranges from [46000, 51000] and his expected 
working hours are [7, 9]. If we collect this kind of data from many new graduates, how 
can we use this data and calculate the correlation between expected salary and working 
hours? Suppose xC is the expected salary for each new graduate, yC is the working 

hours they desired, then the scatter plot for these two sets of fuzzy interval numbers 
would approximate that shown in Figure 2.1. 

 
Figure 2.1 Fuzzy correlation with interval data 
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Figure 2.2 Research process frameworks 

 

The correlation estimation of score performance among subjects using the new model of fuzzy correlation  

419 third-year junior high school students in one school are used as statistical targets 

Estimating the level of correlation coefficients for eight subject score performances 

using the new fuzzy correlation model
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from the first periodic exam 
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correlation coefficient (r) 
of the interval center 

number; interval center 
number= (the first score 
+ the second score) ÷2 

 

Scores of eight subjects from the first 

periodic exam 

Fourth Category: Defining the correlation coefficients of the defuzzified value of the interval fuzzy numbers 
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Definition 2.1: Student performance interval fuzzy scores 
Definition 2.1 is student performance interval fuzzy scores (a, b). For this, a and b 

represent two different test scores for the same student, and ba  . For example, considering 
a student’s two recent Mathematics test scores, these scores are calculated using a 
one-hundred point system; the scores are 88 and 78. The student’s Mathematics performance 
is represented using the interval fuzzy score (78, 88), which indicates that the student’s 
Mathematics ability performance is between 78 and 88 points. Using the fuzzy score (78,88) 
to express this performance is more appropriate to the student’s actual performance ability 
than employing the traditional method of calculating the average of the two numbers 
(78+88)/2= 83. This is because human ability is a fuzzy description. Using a single value for 
description is easier but not authentic or real.   

 
Definition 2.2: Fuzzy correlation interval (adopting the interval center point and length 
methods; Xie and Wu, 2012) 

When calculating the fuzzy correlation interval as defined by Xie and Wu (2012), 

suppose the length of the continuous interval sample ix  is ixl , and the length of the 

continuous interval sample iy  is yi
l . Consequently, the correlation coefficient for length 

modification is as follows:  

δ＝
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Because 0＜ lr ＜1, and the range of   is 0＜δ＜0.3069, set ixc  and iyc  as the fuzzy 

sample interval center point derived from the population X、Y, ixl  and iyl  as the interval 
length, r  as the correlation coefficient of the center point, and   as the correlation 
coefficient of length modification. Consequently, the correlation interval is defined as 
follows:  
(1) If r ≧0, lr ≧0,( r , min(1, r + ))      (2) If r ≧0, lr ＜0,( r － , r )  

(3) If r ＜0, lr ≧0,( r , r + )            (4) If r ＜0, lr ＜0,(max(－1, r － ), r ) 
 
Definition 2.3: Defuzzifying interval fuzzy numbers (Wu, 2005) 

Make X= (a, b) the interval fuzzy number, c = 
2

ba 
 its interval center, and l=|b-a| its 

interval range. Consequently, the defuzzified value of interval fuzzy numbers is  

fx = c +
X

X )1ln(
1


   (Formula 1).     Where, 

X

X )1ln(
1




 
 (Formula 2).is the

 

interval length defuzzified function. 

If a b , then fx  approaches the range center value
2

ba 
. 

Definition 2.4：The new model proposed by this study: The correlation coefficient fr  of 

the defuzzified value of the fuzzy correlation interval 
Make X= ( r , s ) the definition of the fuzzy correlation interval calculated and defined 

by Xie and Wu (2012), and r  the correlation coefficient of its interval center value. The 
interval value is c=（ r ＋ s ）÷2, and  =| r - s | is the interval range.  

Consequently, the defuzzified value of the interval fuzzy number is fr . 
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      fr = r  +

 )1ln(

1


   (Formula 3),   where,  

 )1ln(

1


  (Formula 4) 

In addition, r ≦ fr ≦min (1, r +0.128). Because -1≦ r ≦1, the range of fr  is located 

between -1≦ fr ≦1.  

 
Definition 2.4.1：Calculating the range of the correlation coefficient fr  (Formula 3) of 

the defuzzified value of the interval fuzzy numbers 
The range of fr  is calculated below.  

Because  0＜ ＜0.3069, based on fr = r  +

 )1ln(
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Therefore, the minimum value of 

 )1ln(

1


  is 1-1=0; the maximum value is 1-0872 = 

0.128.Consequently, the minimum value of fr = r  +

 )1ln(

1


  is r , and the maximum 

value is min (1, r +0.128). 
 
Definition 2.4.2：Determining the strength intervals of the correlation coefficients for the 
new model  

Winpot software 3D graphics are used to 
estimate the location value of fr  at 20%, 40%, 

60%, and 80%, as shown in Fig. 2.3 to the right. 
This shows the function diagram of Formula 3 as 
a virtually vertically inclined plane. Therefore, 
that this study performed five equal portion 
estimations for the Z-axis coordinate value 
(i.e., fr ) to transform it into the determination for 

correlation coefficient strength intervals is 
appropriate and acceptable. That is, every 20% 
section is approximately 1.128÷5 ＝ 0.2256. 

Relevant details are listed in Table 2.1. fr = r  

+1－
ln(1 )




 (Formula 3). Where, -1≦ r ≦1;  

0＜ ＜0.3069. 
 

x

y

z
(-1.20,0.34,1.34)

(1.20,-0.03,-1.21)  
 
              Figure 2.3 
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Definition 2.4.3：The intensity range of the correlation coefficients for the new model 
Because, for various groups of boundary points, the explanation of strength and 

weakness for correlation coefficients is specious and difficult, the intensity of correlation 
coefficients applied in this study is transformed into triangular fuzzy numbers for 
consideration. Furthermore, defuzzification is conducted using the center of gravity method 
and simple sequencing is performed. Regarding the definition of triangular fuzzy numbers, as 

long as the left end point ( 1a ), the center point( 2a ), and the right end point( 3a ) of the 
triangular fuzzy numbers are decided, the triangular fuzzy number can be determined and 

represented as A
~

＝( 1a , 2a , 3a ). The definition of the membership function is )(~ x
A

 , and 
depictions of the membership function are shown in Figs. 2.4 and 2.5:  
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Symbol and 
correlation 
levels 

L1 
Extremely low 
correlation 

L2 
Low correlation  

L3 
Medium 
correlation  

L4 
High correlation  
 

L5 
Extremely high 
correlation 

Figure 2.5 
 

Table 2.1 the intensity range and meaning of the correlation coefficients for the new model 
The intensity range of the 
correlation coefficients for 
the new model (triangular 

fuzzy number) 

New model 
(defuzzification using 
the center of gravity 

method) 

Correlation level of 
variables 

Comparison with Pearson 
correlation coefficient 
range (absolute value) 

(0.75, 1, 1) (0.90 and above) 
Extremely high 
correlation ( L5) (0.80 and above) 

(0.5, 0.75, 1) (0.68-0.90) High correlation (L4) (0.60-0.80) 
(0.25,0.5, 0.75) (0.45-0.68) 

Medium 
correlation( L3) (0.40-0.60) 

(0, 0.25,0.5) (0.23-0.45) Low correlation (L2) (0.20-0.40) 
(0,0,0.25) (0-0.23) 

Extremely low 
correlation (L1) (0-0.20) 

 
3. Simulation Studies 

In this section, we will use the MINITAB simulation to generate several sequence of 
fuzzy data set and then compare their correlations with different definition as proposed at 
the section 2.  The distribution for the centric and area are generated by the normal, 
uniform, and Cauchy distribution respectively. The procedure to calculate correlation 
coefficient is described below: Table 3.1 illustrates the result 
Step 1. Generate fuzzy set of sequence X from the normal, uniform, and Cauchy  

distribution respectively. 
Step 2. Let Y=aX+e, calculate the fuzzy data set Y by the fuzzy data set X. 
Step 3.Let interval score be ( x , y ), where x, y chose from the normal, uniform, and  

Cauchy distribution respectively. 
Step 4. Find the correlation coefficient from the fuzzy data set by above definitions. 
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Table 3.1 provides the following results: (1) When interval fuzzy score ( x , y ) been 
combined by (Normal, Uniform) & (Cauchy, Normal), the correlation coefficient is very 
close. (2) When interval fuzzy score ( x , y ) been combined by (Uniform, Normal) & 
(Cauchy, Uniform), the correlation coefficient is very close. (3) When interval fuzzy score 
( x , y ) been combined by (Cauchy, Uniform) & (Normal, Cauchy), the correlation 
coefficient is very close. (4) There are different advantages to test the correlation by 
definition 2.2 or definition 2.4. The interval correlation of Definition 2.2 is better to 
represent the interval property of statistics and more robustic. But the correlation 
coefficient of Definition 2.4 is a real value that is more robustic and useful to test the 
advanced statistics. 

  
Table 3.1 the fuzzy correlation coefficient for various center and area model with 

definition 2.2, definition 2.4. 
Simulation  Normal(0,1) Uniform(0,1) Cauchy(0,1) Normal(0,1) 

Interval ( x , y )  (Normal, Uniform) (Cauchy, Normal) 
Center value ( x + y )/2 ( x + y )/2 

Pearson cor. coe. -0.07 
Definition 2.2 （-0.13, -0.07） 
Definition 2.4 -0.04 

Simulation Uniform(0,1) Normal(0,1) Cauchy(0,1) Uniform(0,1) 
Interval ( x , y )  (Uniform, Normal) (Cauchy, Uniform) 

Center value ( x + y )/2 ( x + y )/2 
Pearson cor. coe. -0.02 

Definition 2.2 （-0.02, 0.10） 
Definition 2.4 0.01 

Simulation Cauchy(0,1) Uniform(0,1) Normal(0,1) Cauchy(0,1) 
Interval ( x , y )  (Cauchy, Uniform) (Normal, Cauchy) 

Center value ( x + y )/2 ( x + y )/2 
Pearson cor. coe. -0.13 

Definition 2.2 （-0.36, -0.13） 
Definition 2.4 -0.08 

 
4. Empirical Studies 

The case study for this research employs 419 third-year junior high school students in 
one school as the subjects for statistical analysis. Correlation analysis is conducted using 
scores for eight subjects from the first and second periodic exams of the first semester in 2011. 
Because this study attempted to estimate the correlation coefficients for ideas regarding 
“Chinese is the predecessor of learning” and “Mathematics is the predecessor of science” 
without conducting cause-and-effect inferences, the correlation matrix of all eight subjects 
(Chinese (C), Mathematics (M), English (E), Natural Science (N), Biology (B), Geography 
(G), History (H), and Civic Studies (Z)) was analyzed. This study adopted the analysis of four 
data types for correlation analysis and divided the results into four types of correlation 
coefficients. The first type applies original data to directly conduct Pearson product-moment 
correlation and Spearman correlation analysis. It includes the data for the first periodic test 
and the second periodic test as shown in Tables 4.1 and 4.2. The second type employs the 
interval center value for the original scores of the two periodic tests to conduct Pearson 
product-moment correlation and Spearman correlation analysis. Using Mathematics as an 
example, the method for calculating the interval center value is the arithmetic mean of the 
subject score from the first and second periodic exam, that is, the interval center value c of 
Mathematics, as shown in Table 4.3. The third type calculates the fuzzy correlation intervals 
using the fuzzy correlation defined by Xie and Wu (2012), as shown in Tables 4.4 and 4.5. 
The fourth type is the new definition (Definition 2.4) proposed by this study. Because the 
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third type is an interval value as determined by the definition of fuzzy correlation proposed by 
Xie and Wu (2012) (e.g., (r, r+ )), for further application, conversion into a defuzzified 
value must be conducted. Therefore, this study continues research regarding the fuzzy 
correlation defined by Xie and Wu (2012) and employs the defuzzified value of interval fuzzy 
numbers proposed by Wu (2005) to define the defuzzified correlation coefficient fr  for 

fuzzy correlation intervals, as shown in Table 4.6. 
 

4.1 Matrix of the correlation coefficients among subjects 
 (1) The correlation coefficients for the first type: Directly applying Pearson 

product-moment correlation and Spearman correlation analysis 
 

Table 4.1 The first periodic exam (The lower triangle is the Pearson correlation coefficients; 
the upper triangle is Spearman correlation coefficients)  
 C E N M B G H Z 

C 1 0.700 0.729 0.709 0.764 0.786 0.724 0.724 
E 0.698 1 0.751 0.768 0.778 0.769 0.711 0.731 
N 0.731 0.751 1 0.800 0.838 0.828 0.751 0.737 
M 0.686 0.747 0.772 1 0.823 0.804 0.748 0.713 
B 0.769 0.784 0.847 0.790 1 0.857 0.804 0.781 
G 0.757 0.736 0.798 0.788 0.820 1 0.852 0.827 
H 0.644 0.635 0.668 0.704 0.708 0.834 1 0.805 
Z 0.621 0.618 0.641 0.690 0.655 0.800 0.774 1 

 
Table 4.2 the second periodic exam (The lower triangle is Pearson correlation coefficients; the 

upper triangle is Spearman correlation coefficients)  
 C E N M B G H Z 

C 1 0.759 0.747 0.769 0.808 0.822 0.750 0.795 
E 0.753 1 0.730 0.758 0.734 0.736 0.677 0.751 
N 0.737 0.739 1 0.780 0.802 0.790 0.734 0.761 
M 0.769 0.743 0.753 1 0.800 0.794 0.719 0.776 
B 0.802 0.717 0.768 0.790 1 0.884 0.794 0.838 
G 0.817 0.725 0.772 0.782 0.865 1 0.816 0.860 
H 0.705 0.635 0.659 0.694 0.761 0.777 1 0.755 
Z 0.751 0.686 0.679 0.737 0.787 0.827 0.721 1 

 
 (2) The correlation coefficients for the second type: Using the interval center value for 
the original scores of the two exams to conduct Pearson product-moment correlation 
and Spearman correlation analysis  
 
Table 4.3 Interval center values (The lower triangle is Pearson correlation coefficients; the 

upper triangle is Spearman correlation coefficients)  
 C E N M B G H Z 

C 1 0.766 0.789 0.793 0.840 0.858 0.782 0.825 
E 0.766 1 0.776 0.792 0.788 0.778 0.723 0.780 
N 0.792 0.779 1 0.836 0.872 0.857 0.781 0.805 
M 0.779 0.774 0.804 1 0.855 0.836 0.769 0.801 
B 0.838 0.788 0.869 0.839 1 0.916 0.836 0.866 
G 0.844 0.762 0.832 0.823 0.902 1 0.882 0.898 
H 0.715 0.660 0.696 0.731 0.774 0.851 1 0.824 
Z 0.743 0.686 0.709 0.756 0.783 0.864 0.791 1 
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(3) The correlation coefficients for the third type: Calculating fuzzy correlation intervals 
using the definition proposed by Xie and Wu (2012) 
 
Table 4.4 Difference value (The lower triangle is Pearson correlation coefficients; the upper 

triangle is the   value.) 
 C E N M B G H Z 

C 1 0.033 0.019 0.052 0.006 0.034 0.009 0.027 
E 0.069 1 0.037 0.068 0.096 0.055 0.026 0.098 
N 0.040 0.078 1 0.102 0.016 0.104 0.089 0.053 
M 0.112 0.149 0.235 1 0.069 0.076 0.102 0.103 
B 0.012 0.219 0.032 0.151 1 0.073 0.009 0.089 
G 0.071 0.119 0.242 0.168 0.161 1 0.100 0.127 
H 0.019 0.053 0.201 0.236 0.018 0.230 1 0.102 
Z 0.056 0.225 0.114 0.239 0.201 0.305 0.235 1 

 
Table 4.5 Fuzzy correlation intervals 

 C E N M B G H 
E (0.77,0.80)       
N (0.80,0.82) (0.78,0.82)      
M (0.78,0.83) (0.77,0.84) (0.80,0.91)     
B (0.83,0.84) (0.79,0.88) (0.87,0.89) (0.84,0.90)    
G (0.84,0.88) (0.76,0.82) (0.83,0.94) (0.82,0.90) (0.90,0.98)   
H (0.72,0.73) (0.66,0.69) (0.70,0.79) (0.73,0.83) (0.77,0.79) (0.85,0.95)  
Z (0.74,0.77) (0.69,0.78) (0.71,0.76) (0.76,0.86) (0.78,0.87) (0.86,0.99) (0.79,0.89)

  
 (4) The correlation coefficients for the fourth type: The new correlation coefficient 
model defined by this study 

The fourth type of correlation coefficient in this study continues research regarding the 
definition of fuzzy correlation proposed by Xie and Wu (2012), and further employs the 
defuzzified value of interval fuzzy numbers proposed by Wu (2005) to define the defuzzified 
correlation coefficient fr  of the fuzzy correlation intervals. The critical calculation 

principles and processes are based on the following four steps. The first step is based on 
Definition 2.1: student performance interval fuzzy scores. The second step is based on 
Definition 2.2: fuzzy correlation interval (adopting the interval center points and length 
methods; Xie and Wu, 2012). The third step is based on Definition 2.3: defuzzifying interval 
fuzzy numbers (Wu, 2005). The fourth step is based on Definition 2.4 (the new model 
proposed by this research): the correlation coefficient fr  of the defuzzified value of the 

fuzzy correlation interval. Calculation values are shown in Table 4.6.  
 
Table 4.6 the fuzzy correlation for the new model proposed by this study 

 C E N M B G H Z 
C 1        
E 0.782 1       
N 0.802 0.797 1      
M 0.804 0.806 0.852 1     
B 0.841 0.833 0.877 0.872 1    
G 0.861 0.789 0.881 0.859 0.937 1   
H 0.720 0.673 0.738 0.779 0.778 0.898 1  
Z 0.756 0.732 0.735 0.804 0.825 0.923 0.839 1 

 
(5) Overall integration of the correlation coefficients: The conclusion “Chinese is the 
predecessor of learning” shows high correlation; cause-and-effect inferences are not 
discussed. Shown in Table 4.7. 
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Table 4.7 Overall integration of the correlation coefficients for Chinese 
C E N M B G H Z 

Type 1-1 
Pearson 

0.698 
(L4) 

0.731 
(L4) 

0.686 
(L4) 

0.769 
(L4) 

0.757 
(L4) 

0.644 
(L4) 

0.621 
(L4) 

Spearman 0.700 
(L4) 

0.729 
(L4) 

0.709 
(L4) 

0.764 
(L4) 

0.786 
(L4) 

0.724 
(L4) 

0.724 
(L4) 

Type 1-2 
Pearson 

0.753 
(L4) 

0.737 
(L4) 

0.769 
(L4) 

0.802 
(L5) 

0.817 
(L5) 

0.705 
(L4) 

0.751 
(L4) 

Spearman 0.759 
(L4) 

0.747 
(L4) 

0.769 
(L4) 

0.808 
(L5) 

0.822 
(L5) 

0.750 
(L4) 

0.795 
(L4) 

Type 2 
Pearson 

0.766 
(L4) 

0.792 
(L4) 

0.779 
(L4) 

0.838 
(L5) 

0.844 
(L5) 

0.715 
(L4) 

0.743 
(L4) 

Spearman 0.766 
(L4) 

0.789 
(L4) 

0.793 
(L4) 

0.840 
(L5) 

0.858 
(L5) 

0.782 
(L4) 

0.825 
(L4) 

Type 3 (0.77,0.80) (0.80,0.82) (0.78,0.83) (0.83,0.84) (0.84,0.88) (0.72,0.73) (0.74,0.77) 

Type 4 0.782 
(L4) 

0.802 
(L4) 

0.804 
(L4) 

0.841 
(L4) 

0.861 
(L4) 

0.720 
(L4) 

0.756 
(L4) 

 
(6) Overall integration of the correlation coefficients: The conclusion “Mathematics is 
the predecessor of science” shows high correlation; cause-and-effect inferences are not 
discussed. Shown in Table 4.8. 
 
Table 4.8 Overall integration of the correlation coefficients for Mathematics  

M C E N B G H Z 
Type 1-1 
Pearson 

0.686 
(L4) 

0.747 
(L4) 

0.772 
(L4) 

0.790 
(L4) 

0.788 
(L4) 

0.704 
(L4) 

0.690 
(L4) 

Spearman 0.709 
(L4) 

0.768 
(L4) 

0.800 
(L5) 

0.823 
(L5) 

0.804 
(L5) 

0.748 
(L4) 

0.713 
(L4) 

Type 1-2 
Pearson 

0.769 
(L4) 

0.743 
(L4) 

0.753 
(L4) 

0.790 
(L4) 

0.782 
(L4) 

0.694 
(L4) 

0.737 
(L4) 

Spearman 0.769 
(L4) 

0.758 
(L4) 

0.780 
(L4) 

0.800 
(L5) 

0.794 
(L4) 

0.719 
(L4) 

0.776 
(L4) 

Type 2 
Pearson 

0.779 
(L4) 

0.774 
(L4) 

0.804 
(L5) 

0.839 
(L5) 

0.823 
(L5) 

0.731 
(L4) 

0.756 
(L4) 

Spearman 0.793 
(L4) 

0.792 
(L4) 

0.836 
(L5) 

0.855 
(L5) 

0.836 
(L5) 

0.769 
(L4) 

0.801 
(L5) 

Type 3 (0.78,0.83) (0.77,0.84) (0.80,0.91) (0.84,0.90) (0.82,0.90) (0.73,0.83) (0.76,0.86) 

Type 4 0.804 
(L4) 

0.806 
 (L4) 

0.852 
 (L4) 

0.872 
 (L4) 

0.859 
 (L4) 

0.779 
 (L4) 

0.804 
 (L4) 

 
5. Discussion  

 
This study adopts four types of data to conduct correlation analysis. The first type 

employs original data to directly conduct Pearson product-moment correlation and Spearman 
correlation analysis. The second type employs the interval center value for the original scores 
of the two periodic tests to conduct Pearson product-moment correlation and Spearman 
correlation analysis. The third type calculates the correlation intervals using Definition 2.3 
proposed by Xie and Wu (2012) regarding fuzzy correlation intervals. The fourth type is the 
new definition (Definition 2.4) proposed by this study, which continues research regarding the 
fuzzy correlation interval defined by Xie and Wu (2012) and further uses the defuzzified 
value of interval fuzzy numbers proposed by Wu (2005) to define the defuzzified correlation 
coefficient fr  of the fuzzy correlation intervals. The fourth type of correlation coefficient is 

much closer to authentic correlations for human beings based on its definition method. The 
analysis results of Table 4.7 demonstrate that the correlation coefficient interval defuzzified 
values for Chinese in relation to English, Natural Science, Mathematics, Biology, Geography, 
History, and Civic Studies are 0.782, 0.82, 0.804, 0.841, 0.861, 0.720, and 0.756, respectively. 
According to Table 2.1, these values all represent high correlation. Consequently, based on 
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estimation analysis, the conclusion that Chinese is the predecessor of learning demonstrates 
high correlation. However, high correlation does not represent that cause-and-effect 
relationships exist between two variables. The analysis results of Table 4.8 show that the 
correlation coefficient interval defuzzified values for Mathematics in relation to Chinese, 
English, Natural Science, Biology, Geography, History, and Civic Studies are 0.804, 0.806, 
0.852, 0.872, 0.859, 0.779, and 0.804, respectively. Among these results, the correlation 
coefficient of Mathematics and Natural Science is 0.852 and the correlation coefficient of 
Mathematics and Biology is 0.872; both values evince high levels of correlation according to 
Table 2.1. Consequently, analyzing the conclusion that Mathematics is the predecessor of 
science demonstrates that a high correlation exists for this conclusion. However, high 
correlation does not represent that cause-and-effect relationships exist between two variables. 

This study organized the strength and weakness changes for the four types of correlation 
coefficients, and determined, based on Table 4.7, that the category changes of the correlation 
coefficients for Chinese and Biology according to type are L4 (high correlation), L4, L5 
(extremely high correlation), L5, L5, L5, and L4. The category changes of the correlation 
coefficients for Chinese and Geography according to type are L4, L4, L5, L5, L5, L5, and L4. 
Table 4.8 shows that the category changes of the correlation coefficients for Mathematics and 
Natural Science according to type are L4, L5, L4, L4, L5, L5, and L4. The category changes 
of the correlation coefficients for Mathematics and Biology according to type are L4, L5, L4, 
L5, L5, L5, and L4. The category changes of the correlation coefficients for Mathematics and 
Geography according to type are L4, L5, L4, L4, L5, L5, and L4. Finally, the category 
changes of the correlation coefficients for Mathematics and Civic Studies according to type 
are L4, L4, L4, L4, L5, and L4.  

The study also indicates that almost every other subject also demonstrates high 
correlation or an even higher level of correlation. For example, Table 4.6 shows the fuzzy 
correlation matrix for the study’s new model. The more unique results are as follows: the 
correlation coefficient of English and History (0.673) demonstrates a medium correlation, the 
correlation coefficient of Biology and Geography (0.937) demonstrates extremely high 
correlation, and the correlation coefficient of Geography and Civic Studies (0.923) 
demonstrates extremely high correlation. Therefore, subsequent cause-and-effect research 
warrants further attention.  
 
6. Conclusion 

The new definition (Definition 2.4) proposed by this research, that is, the defuzzified 
correlation coefficient fr  of the fuzzy correlation intervals, possesses developmental 

characteristics. Using four types of data to conduct correlation analysis and dividing the 
coefficients into four types of correlation coefficients provides for greater authenticity. The 
results of the study show that establishing the new fuzzy correlation model based on 
defuzzifying fuzzy correlation intervals can resolve the two purposes or objectives of this 
study. One innovative contribution of this study is innovation. Based on a literature review, 
the new model defined by this study is much more appropriate to the actual abilities of 
students and can improve the standard of correlation evaluations. The second contribution 
refers to applications. The correlation coefficients for this study are single values and can be 
used to directly compare intensity. The new model correlation coefficient Definition 2.4 is a 
new definition proposed by this study. Because according to the definition proposed by Xie 
and Wu (2012), the fuzzy correlation interval is an interval value (e.g., (r, r+ )), for further 
application, it must be converted into a defuzzified value before it can be used to compare 
fuzzy correlation coefficients or for other purposes. Therefore, the new model of correlation 
coefficients proposed by this study possesses developmental characteristics.  

 
6.1 The new model. 
Definition 2.4: The new model of fuzzy correlation coefficients proposed by this study 
Making X= ( r , s ) is the fuzzy correlation interval calculated and defined by Xie and Wu 
(2012). r  is the correlation coefficient of the interval center value, and the interval center 
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value is c=（ r ＋ s ）÷2. δ=| r - s | is the interval range. Consequently, the defuzzified value of 

interval fuzzy numbers is fr . 

      fr = r  +

 )1ln(

1


   (Formula 3), where,   

 )1ln(

1


  (Formula 4) 

In addition, r ≦ fr ≦min (1, r +0.128). Because -1≦ r ≦1, the range of fr  is located 

between -1≦ fr ≦1. The intensity range and significance for the new model correlation 

coefficients is shown in Table 2.1. 
 
6.2 The study adopts four types of correlation coefficient analysis, providing for greater 

authenticity 
This study employs four types of data to analyze correlation coefficients. The first type 

employs original data to directly conduct Pearson product-moment correlation and Spearman 
correlation analysis. The second type uses the interval center value of the original scores from 
the two periodic exams to conduct Pearson product-moment correlation and Spearman 
correlation analysis. The third type calculates the fuzzy correlation intervals using Definition 
2.2 proposed by Xie and Wu (2012). The fourth type is the new correlation coefficient model 
2.4 proposed by this study. This model continues research regarding the fuzzy correlation 
interval defined by Xie and Wu (2012) and further uses the defuzzified value of interval fuzzy 
numbers proposed by Wu (2005) to define the defuzzified correlation coefficient fr  of the 

fuzzy correlation interval. Examining the fourth type or the new correlation coefficient model 
(definition 2.4), based on both definition method and empirical results, as shown in Tables 4.7 
and 4.8, it can be seen that this model is more appropriate to authentic correlations for human 
beings. 
 
6.3 The correlation coefficients among the eight subjects approached high correlation or 

above  
Through the overall integration of the correlation coefficients as shown in Tables 4.7 

and 4.8, correlation coefficients of the fourth level can be seen to be more appropriate to the 
authentic correlations of human beings based on the definition method. The analysis results 
show that the correlation coefficients of Chinese and English, Natural Science, Mathematics, 
Biology, Geography, History, and Civic Studies all demonstrate high correlation. The analysis 
results also show that the correlation coefficients for Mathematics and Chinese, English, 
Natural Science, Biology, Geography, History, and Civic Studies also demonstrate high 
correlation. The results further show that the correlation coefficients among the eight subjects 
approach high levels of correlation or higher. However, high correlation does not represent 
cause-and-effect relationships.  

Empirical analysis shows that the subjects, in which 12-year compulsory education has 
added extra non-multiple-choice questions, Chinese, Mathematics, and English, possess high 
correlation with the score performance of other subjects. However, high correlation does not 
represent cause-and-effect relationships. The fact that, within the 12-year compulsory 
education examination policy, extra composition writing tests are added for Chinese, 
calculation and proof questions are added for Mathematics, and listening ability tests are 
added for English, seems to weaken the other five subjects and warrants questions regarding 
the theoretical basis for these choices. Although this study employed four types of correlation 
coefficient analysis, and the results show that Chinese, Mathematics, and English have high 
correlations with the score performance for other subjects, the correlation coefficients of the 
other five subjects also show high correlations. Thus, this study provides the following 
suggestions for subsequent research: 1) how to separate Chinese, Mathematics, English, and 
the other five subjects to perform discussion and policy analysis should be studied further; 2) 
high correlation does not represent cause-and-effect relationships. Further research should 
develop more fully regarding the cause-and-effect relationships between subjects. 
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