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Many popular life insurance products contain option-
like covenants: minimum return guarantees,
participating clauses, and/or surrender options.
Improper pricing, reserving, and/or hedging of these
guarantees and options impair the solvency of an
insurer. There are two paradigms to handle the
issues. Actuarial associations in UK, US, and Canada
adopted the stochastic simulation method (also called
the actuarial approach) to analyze these embedded
guarantees and options. The idea is to simulate the



payoff distribution of an embedded guarantee/option
using stochastic models in the real-world probability
measure. Insurers then estimate the expected cost of
the guarantee/option and the associated reserves
based on the simulated distribution. Academics on
the other hand employed the machinery of option
pricing for the valuation of the embedded guarantees
and options. In this so-called option pricing
approach or financial approach, computations take
place under a risk-neutral probability measure with
certain assumptions on the market (e.g., completeness
and no arbitrage).

This project extends the literatures of comparing and
integrating these two approaches in three aspects.
Firstly, we extend Boyle and Hardy (1997) by
analyzing the cliquet-style type of periodic
guarantee and incorporating surrender options.
Secondly, we turn the procedure proposed by Barbarin
and Devolder (2005) the other way around: performing
risk-neutral valuation first for policy premiums and
then conducting stochastic simulation to calculate
the associated economic capital. Thirdly, we extend
Kling et al. (2007), Gatzert and Kling (2007),
Gatzert (2008), and Graf, Kling, and Russ (2009) by
analyzing how investment strategies affect the
valuation of insurance policies and the solvency of
insurance companies with some popular strategies,
e.g., constant proportion portfolio insurance (CPPI)
and time-invariant portfolio protection (TIPP). We
further employ a heuristic search algorithm to solve
for the optimal combination of investment strategies,
surplus distribution schemes, contract parameters,
and capital structure in a more comprehensive
framework.

The resources and implementation of this project have
produced one journal article and six working papers
that are currently under review or will be submitted
in the near future. We expect more papers will be
produced when the above extensions are written up.
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Abstract

Many popular life insurance products contain option-like covenants: minimum return
guarantees, participating clauses, and/or surrender options. Improper pricing, reserving,
and/or hedging of these guarantees and options impair the solvency of an insurer. There are
two paradigms to handle the issues. Actuarial associations in UK, US, and Canada adopted
the stochastic simulation method (also called the actuarial approach) to analyze these
embedded guarantees and options.  The idea is to simulate the payoff distribution of an
embedded guarantee/option using stochastic models in the real-world probability measure.
Insurers then estimate the expected cost of the guarantee/option and the associated reserves
based on the simulated distribution.  Academics on the other hand employed the machinery
of option pricing for the valuation of the embedded guarantees and options. In this so-called
option pricing approach or financial approach, computations take place under a risk-neutral
probability measure with certain assumptions on the market (e.g., completeness and no

arbitrage).

This project extends the literatures of comparing and integrating these two
approaches in three aspects. Firstly, we extend Boyle and Hardy (1997) by analyzing the
cliquet-style type of periodic guarantee and incorporating surrender options. Secondly, we
turn the procedure proposed by Barbarin and Devolder (2005) the other way around:
performing risk-neutral valuation first for policy premiums and then conducting stochastic
simulation to calculate the associated economic capital. Thirdly, we extend Kling et al.
(2007), Gatzert and Kling (2007), Gatzert (2008), and Graf, Kling, and Russ (2009) by
analyzing how investment strategies affect the valuation of insurance policies and the
solvency of insurance companies with some popular strategies, e.g., constant proportion

portfolio insurance (CPPI) and time-invariant portfolio protection (TIPP). We further



employ a heuristic search algorithm to solve for the optimal combination of investment
strategies, surplus distribution schemes, contract parameters, and capital structure in a more

comprehensive framework.

The resources and implementation of this project have produced one journal article

and six working papers that are currently under review or will be submitted in the near future.

We expect more papers will be produced when the above extensions are written up.

Keywords: Insurance Finance, Simulation, Life Insurance
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1. Kuo, Weiyu, Ming-Hua Hsieh, Chenghsien Tsai, and Yu-Ching Li, 2014, Generating
Economics Scenarios for the Long-Term Solvency Assessment of Life Insurance
Companies: The Orthogonal ARMA-GARCH Approach, to be submitted to the 2014
Annual Meeting of American Risk and Insurance Association.

2. Hsieh, Ming-Hua, Jin-Lung Peng, Chenghsien Tsai, Jennifer L. Wang, and Ko-Lun Kung,
2014, Explaining the Rate Spreads on Life Settlements, to be submitted to Journal of Risk
and Insurance (earlier versions were presented in 2013 Risk Theory Seminar and 2013
American Risk and Insurance Association Annual Meeting).

3. Chan, Linus Fang-Shu, Cary Chi-Liang Tsai, and Chenghsien Tsai, 2014, Relational
Modeling on Mortality Rates: International Tests and Hedging, to be submitted to
Insurance: Mathematics and Economics (an earlier version was presented in 2012
International Longevity Risk and Capital Markets Solutions Conference).

4. Wang, Jennifer L., Ming-Hua Hsieh, and Chenghsien Tsai, 2014, Using Life Settlements to
Hedge the Mortality Risk of Life Insurers: An Asset-Liability Management Approach, to be
submitted to Journal of Derivatives or re-submitted to Journal of Risk and Insurance

(earlier versions were presented in 2011 International Longevity Risk and Capital Markets
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Solutions Conference and 2012 American Risk and Insurance Association Annual
Meeting).

5. Chan, Linus Fang-Shu, Cary Chi-Liang Tsai, and Chenghsien Tsai, 2014, Empirical Tests
on a Relational Model of Mortality Rates with Applications to Internal Hedging, to be
submitted to Journal of Risk and Insurance (an earlier version was presented in 2011
International Longevity Risk and Capital Markets Solutions Conference).

6. Hwang, Ya-Wen and Chenghsien Tsai, 2013, The Longevity Risk of Life Insurance Policies

Induced by Pricing Errors, submitted to the /UP Journal of Financial Risk Management.
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Abstract
How to measure the risk of policy reserves is important for life insurers because
policy reserves are the largest liabilities with long durations. In this paper, we propose
the ,,QPQ“ method for determining the risk of policy reserves. We compare our
approach with the traditional P-measure approach and Q-measure approach proposed
by QIS 2 of Solvency Il. Under the P-measure approach, the discount rate should be
theothetically adjusted by risk premiums. However, it is difficult to determine the risk
premiums of liabilities and thus most literatures did not consider the risk premium
adjustment. Under the Q-measure approach, risk factors are simulated under the
assumptions of risk nutrality. The movements of the risk factors however do not
reflect the real movements of risk factors and thus can not reflect the possible
real-world fluctuation of the reserves. The QPQ method can avoid the drawbacks of
the above approaches.
Based on the QPQ method, life insurers use best estimate valuation to determine their
reserves at time ¢=0 under Q measure. Then they generate stochastic future
economic states (risk factors) from time O to time T under P-measure and apply the
best estimate valuation to quantify their reserves at time ¢= H . For each scenario of
the simulated stochastic future economic states, the reserve is again computed using
best estimate valuation. The distribution of the reserve at time ¢r=H is then
discounted back to time =0 by the risk-free rate with maturity # . At the last step,
commonly used risk measures (e.g., VaR and CTE) on the reserve distribution at time
t =0 are used to quantify the risk margin of the reserves.
We apply the QPQ method to calculate the risk of reserves of the endowment policy,
interest sensitive annuity, and and equity-indexed annuity. We find that there exist
significantly differences between the QPQ approach and P-measure/Q-measure
approaches. The risk of reserves is overestimated under P-measure. However, the risk
margin under Q-measure is lower than that under the QPQ method and suggesting
that the risk of reserves is underestimated under Q-measure. Since the adequacy of
policy reserves is critical to the solvency of life insurers, we suggest life insurers
adopt the QPQ method to estimate and manage the reserve risk.

Keywords: Risk Management, Life Insurance, Reserving
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1. INTRODUCTION

Assessing the long-term solvency of a life insurer is important since the
protections/promises offered by the insurer now are usually not realized until decades later.
The protections will be invalid should the insurer be insolvent in the meantime. Insurance
regulators and other stakeholders of life insurers thus have devised various ways to assess and
maintain the solvencies of life insurers over a long run.  For instance, regulators may ask
insurers to establish adequate reserves to cover future liabilities and to maintain adequate
capital to absorb unexpected losses.

How to assess the adequacies of reserves and capital are not easy tasks, however. The
adequacies depend not only on the investment and business strategies of the insurer but also
on exogenous economic conditions. For example, the low interest rate era that has persisted
over the past decade in several countries threatens the solvencies of many insurers that had
sold products with high pricing rates set according to the high interest rates prevailing during
1990s. Low stock returns from the end of 1990s to the beginning of 2010s aggravated the
distress on the insurers’ solvencies.

The actuarial professions and insurance supervisors therefore devoted resources to
establishing the models that could generate possible economic scenarios of the returns on
major asset classes for solvency assessment. We might trace back the modeling
development to the Maturity Guarantees Working Party (1980) and the subsequent works of
Wilkie (1986a; 1986b; 1987; 1992; 1995). Similar modeling was applied to the economic
series / investment returns of other countries including Australia (Carter, 1991; Hua, 1994),
Switzerland (Metz and Ort, 1993), and South Africa (Thomson, 1994). Starting from 1999,
the American Academy of Actuaries (AAA) established three-phase economic scenario
generation (ESG) models for reserve adequacy tests and the interest rate risk component (C-3

component) of the Risk-Based Capital (RBC) requirements. The Casualty Actuarial Society



together with the Society of Actuaries (SOA) also commissioned an ESG project (Kevin,
D’Arcy, and Gorvett, 2004) meanwhile.  As the uses of ESG models became popular,
private-sector companies such as Barrie and Hibbert joined the modeling development. The
insurance supervisors in both North America and Europe now encourage insurers to develop
their own ESG models (O’Brien, 2009).

The key issues in establishing a comprehensive ESG models include: how to deal with
the large number of risk factors, how to model the dynamics of some chosen factors, and how
to incorporate the relations among risk factors. Tackling the first issue essentially calls for
reducing the modeling dimension, i.e., reducing the number of risk factors to be modeled.
The significance of this first issue increases with the number of economic series and countries
to be covered in the ESG models. With regard to the second issue, the dynamics of the
chosen factors should reflect observed time-series characteristics of return volatilities (e.g.,
volatility clustering) as well as change patterns (e.g., autoregression). The choice of
econometrics methods hinges on the number of factors to be modeled. Retaining more
factors usually leads to simpler methods. The third issue, the relations among risk factors,
may be coped with correlations and/or explicit functional relations. The choice depends on
the model developers’ views about whether the relations are from correlated random shocks
or subject to common factors.

For instance, the phase-I models for the C-3 component of US RBC intended to cover
the Treasury yields with 10 maturities ranging from 3 months to 30 years. To reduce the
number of risk factors to be modeled, the in-charged task force assumed that the treasury
curve was driven by two key rates: a long-term interest rate and the excess of a short-term
rate over the long rate. The changes of these rates and the changes in the variance of the

long rate’ were then modeled to take into account mean reversion and stochastic variance.

! The variance of the spread was assumed to be constant.
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The two key rates were endogenous to each other with additional correlated random shocks.
Interpolation formulas were imposed to recover the yield curve in the last stage.’

The C-3 phase-11 models extended to cover 9 asset classes. To reduce modeling
dimensions, the work group assumed that risks were driven by four stock index returns and
three bond index returns.  The volatilities and drifts of individual stock index returns were
modeled by stochastic log volatility models. The bond index returns were assumed to be
functions of Treasury yields* with stochastic deviations.>®  The stock returns and bond
returns were subject to correlated random shocks.’

Ahlgrim, D’ Arcy, and Gorvett (2004) covered the term structures of inflations and real
interest rates, two stock index returns, dividend yields, real estate returns, and unemployment
rates in US markets. To reduce the number of risk factors involved in the term structures,
they assumed that the term structure of inflation rates followed the one-factor Vasicek (1977)
model while that of interest rates followed the two-factor Vasicek model.®  Dividend yields
and real estate returns were modeled as the first-order autoregressive (AR) processes. An
AR(1) process was also applied to unemployment rates with an additional term to consider
the impact from inflation rates. The authors applied regime-switching models to the excess
returns of stock indexes.” They modeled the relations among generated economic series

mostly by correlated random shocks but some by functions (e.g., nominal interest rates were

2 The number of dynamic models is therefore three.

® Interested readers may refer to AAA’s October 1999 report, Phase | Report of the American Academy of
Actuaries' C-3 Subgroup of the Life Risk Based Capital Task Force to the National Association of Insurance
Commissioners' Risk Based Capital Work Group.

* The models for Treasury yields in Phase I are the same as those in Phase I.

> The deviations were generated using normal distributions with constant standard deviations.

® The number of dynamic models is eleven: three for bond index returns and four pairs for the four stock index
return models.

" Interested readers may refer to AAA’s January 2006 report, Construction and Use of Pre-Packaged Scenarios
to Support the Determination of Regulatory Risk-Based Capital Requirements for Variable Annuities and
Similar Products. A joint group of AAA and SOA has been refining the interest rate and stock return models as
well as updating the model parameters since then without major modeling changes.

¢ The volatility terms of these risk factors were thus constant. So were other time series except the returns
of stock indexes.

® The number of dynamic models is thus eight.



functions of inflations and real interest rates).

Wilkie (1995) covered exchange rates and other economic series similar to those
covered by Ahlgrim, D’ Arcy, and Gorvett (2004) under a cascade framework. His
fundamental variable was inflation that was modeled by an AR process and autoregressive
conditional heteroscedasticity (ARCH) process. He then analyzed the univariate property of
wages and further investigated the relation between wages and inflation by cointegration and
vector autoregression (VAR). Other economic series were modeled similarly: univariate
AR-ARCH and/or cointegration-VAR with other series, but subject to certain cascade
relations.® He further applied univariate AR-ARCH modeling to several economic series of
other countries.  The relations of several economic series™ across countries were
considered using correlated residuals. Wilkie (1995) did not conduct dimension reduction
when modeling because he did not consider the entire yield curve that usually involves about
a dozen concerned risk factors.”> Neither did he examine the relations of the economic
series within the countries other than UK."

We propose a simple but comprehensive and flexible modeling approach, called
orthogonal ARMA-GARCH (autoregressive moving average — generalized autoregressive
conditional heteroscedasticity) modeling in this paper, to generate large-scale economic
scenarios. Many insurers are exposed to risk factors that easily reach seventy, eighty, or
even a hundred. One yield curve may contain 10 or more risk factors that have significant
impacts on the values of the bonds held by insurers as US RBC identified. For the insurer
that hold not only treasury bonds but also corporate bonds rated as AAA, AA, A, and BBB

classes, the risk factors reflecting the uncertainties about risk-free rates and credit risk spreads

1% For instance, Wilkie (1995) assumed that the long-term interest rate was determined by real interest rate
following an AR process, inflation rate, and dividend yield that was also affected by inflation rate.

! They included: inflation rates, dividend yields, dividend indexes, and exchange rates.

2 The number of UK’s economic series considered in Wilkie (1995) is about ten.

3 Indeed, the economic series such as interest rates, stock indexes, property indexes in other countries were not
analyzed.



can reach fifty. The number of risk factors underlying a stock index ranges from one (when
believing in a single-factor model such as the capital asset pricing model (CAPM)), three to
five (Fama-French models), dozens (when treating each industry as a risk factor), to hundreds
(adopted by many historical simulation methods used to calculate the value at risk (VaR) for
the insurer). For the insurers having significant international investments, the number of
risk factors multiplies. The ESG models that can adequately capture the risk characteristics
of insurers’ investments thus have to cover dozens or even hundreds of risk factors. Without
an effective way to reduce the modeling dimension, model building is infeasible.

To reduce the dimension, we propose to apply factor analysis to asset class. Factor
analysis addresses the problem of analyzing the structure of the relations/correlations among
a large number of variables by using a much smaller number of factors/dimensions. For
instance, we may apply factor analysis to condense the information contained in a yield curve
into three factors. Adopting factor analysis renders three important advantages. The first
crucial benefit is that the retrieved common factors can be orthogonal to each other, which
enables us to bypass the obstacles in modeling the dynamics of these factors under the
multi-variate framework. Secondly, adopting factor analysis allows us to model the
relations among the risk factors within an asset class by common factors. This is new to the
ESG related literature and makes more economic sense than using correlated random shocks.
Thirdly, factor analysis renders fitness statistics (especially the percentage of variance
explained). The methods/assumptions used in other papers (e.g., assuming yield curves are
driven by two key rates) provides no such statistics to assess modeling risk.

After retrieving the orthogonal common factors, we model the dynamics of these
factors by ARMA-GARCH processes. We are therefore afforded great flexibilities in
establishing the time-series models of individual factors. We use the ARMA processes to

model the dynamics of the mean/drift terms and the GARCH processes for the volatility



terms, respectively. The ARMA and GARCH processes are popular in the literature and
practice: adequate in fitting and forecasting, robust in estimating parameters, and easy to use.
Another rationale for using GARCH is to capture the fat tails that have been identified in
many papers for many financial market series, which is important for ESG models to
sufficiently reflect the larger-than-normal risks through the simulated scenarios.

Next, we construct the covariance matrix of the common factors to incorporate the
correlations across asset classes. We apply Cholesky decomposition to the matrix and
multiply the decomposed triangle matrix to the independent random numbers generated for
the ARMA-GARCH processes. In the last stage we utilize the factor loadings to recover
from the simulated common factors to dozens of the initial concerned risk factors.

By combining factor analysis with ARMA-GARCH, we are capable of constructing
ESG models adequately capturing the risk characteristics of numerous risk factors as
demanded by life insurers as well as associated stakeholders. Our idea, albeit seemingly
simple, is new to this line of literatures and has potential. It can further incorporate the risk
factors of insurance liabilities and facilitate the calculation of economic capital in a unified

framework.

2. THE ORTHOGONAL ARMA-GARCH APPROACH

The idea of using factor models with GARCH has been around for over two decades.

For instance, Engle, Ng, and Rothschild (1990) proposed a CAPM-based framework in which

the volatilities and correlations between individual asset returns were generated using the

univariate GARCH variance of market returns. This is in essence a one-factor model that

reduces modeling dimension from dozens to one. To tackle the difficulties in multi-variate

modeling, Ding (1994) suggested the use of PCA with GARCH models. He however did



not address the dimensionality issue since he retained all retrieved factors. It was Alexander
and Chibumba (1996) and Alexander (2000, 2001, 2002) that advocated retaining only a few
components to reduce the number of to-be-modeled risk factors and enhance the practicability.
They fit GARCH (1, 1) models to all retained components.

We generalize Alexander’s modeling to establish an ESG model covering distinct asset
classes. The generalization is in two aspects in addition to extending to more asset classes.
The ESG-generated scenarios are usually used for long-term concerns and thus should
consider conditional means in addition to conditional volatilities. ~Secondly, fitting the
dynamics of the components representing different economic series with general ARMA (p, q)
- GARCH (m, n) models is more appropriate than imposing universal GARCH (1, 1) models.

To establish an orthogonal ARMA-GARCH (shortening as O-GARCH starting from
here) model, we first conduct factor analysis / PCA on the risk factors of an asset class™ to
extract principal components which can represent the original set of risk factors with a
minimum loss of information. Since PCA renders orthogonal components, we may apply
univariate ARMA-GARCH models to them to capture the characteristics of individual
components’ means and volatilities. The relations among asset classes are then incorporated

by the correlation matrix of all components. Our O-GARCH modeling is therefore

14 Defining an appropriate asset class for the purpose of conducting factor analysis involves subtle
considerations.  Asset classes are usually defined by distinct risk types such as stock return risks (price changes
and dividend yields), interest rate risk (bonds), credit risk (corporate bonds), foreign exchange rate risk, and real
estate return risks (price changes and rental yields). They may also be defined by geographic areas.
Researchers have to examine the characteristics of samples to determine appropriate classifications.
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computationally efficient (by using factor analysis), econometrically appropriate (in
identifying underlying driving factors and providing fitness statistics as well as by using
general time-series models to reflect changing means and clustering volatilities), and
economically sound (by using common factors in addition to random shocks to capture the
relations among risk factors).
2.1 Factor Analysis

Factor analysis postulates that each observed variable (i.e., risk factors in this paper) is
linearly dependent upon one or more common factors and one specific factor. Common
factors are unobservable variables which influence more than one risk factor; specific factors
are latent idiosyncratic variables that influence only one risk factor.  Since our purpose is
finding the minimum number of common factors needed to account for the maximum portion
of the variance resulted from the original set of variables, we adopt the principal component
analysis (PCA) method to obtain factor solutions.”> PCA defines common factors / principal
components as the linear combinations of original risk factors. Conversely, risk factors are
also linear combinations of principal components. This means that principal components
can account for total variances or a portion of total variances when some components are
dropped off.  Another advantage of using PCA is that PCA neither requires the distribution

assumption about the data nor has to determine the number of common factors in advance

> The most widely used methods to estimate parameters are maximum likelihood and principal component
(Johnson and Wichern, 2007).



(Tsay, 2005). Thirdly, the extracted principal components are orthogonal to each other.

Let X, be the vector of &k observed variables associated with an asset class at time ¢
(r=1,2,...T) with mean p and covariance matrix X. X, are further assumed to be
linearly dependent on m common factors f, and & specific factors €,, where m<k.
More specifically,

X, —p=L{f +¢,, 1)
where L isthe (kxm) matrix of factor loadings.

The underlying assumptions of factor analysis are: E(g,)=0, E(g,e))=D, E(f)=0,
E(ff)=1,,and E(fe)=0 where I, isa (mxm) identity matrixand D isa diagonal
matrix. Consequently, the (kxk) covariance matrix X of the observed variables can be
expressed as

L=LL+D. (2)
We thus may regard LL' as an approximation of the original covariance matrix, i.e.,
X~LL'.

2.1.1 Extracting factors by PCA

Let (ji,él),...,(/ik,ék) with 4, >4, 2---2@ be pairs of the eigenvalues and

eigenvectors of the sample covariance matrix Y. X canbe decomposed by the spectral
decomposition as:

r= i A8e. 3)



Sorting common factors by eigenvalues and retaining the first m factors, we may express the
matrix of estimated factor loadings by:
i= [\/Zél JA8, ...‘\Mmém]

The estimated specific variances are the diagonal elements of the matrix X—LL’. Thatis,

D= diag{&f,...,&,f}, where 62=62-"17, where &7 isthe (i,i)thelementof £.
=

ij means the contribution to the total sample variance from the jth factor. Since

!

[ fvé/} [\//Tjéjj = /’Atj and the eigenvector e, has unity length, the proportion of the total

J
k R k
sample variance » & explained by the jth factoris 1,/ > 6Z. When one applies the
i=1 i=1
spectral decomposition to normalized X, , the proportion of the total sample variance
explained by the ;th factor becomes ij /k. We choose to analyze normalized X, inthe
following to prevent the estimates of factor loadings from being influenced by the variables

with large variances (Johnson and Wichern, 2007).

2.1.2 Selecting factors

A critical decision to be made in factor analysis is to determine how many common

factors to be retained. It involves the tradeoff between model parsimony and model

plausibility (Fabrigar et al., 1999). A well-known criterion is retaining the common factors

with eigenvalues greater than 1.  Another informal but useful guidance is to examine the

scree plot which plots the eigenvalues in descending order. By looking for an “elbow”

where the last substantial drop in the magnitude of the eigenvalues happens, the researcher
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retains the factors prior to this last substantial drop (see e.g. Fabrigar et al., 1999; Tsay, 2005;

Johnson and Wichern, 2007). A bottom line for many researchers in determining the

number of factors to be retained is the cumulative proportion of the total sample variance

explained by the retained factors. Since ESG models should capture most variations in past

series so that the generated scenarios have high probabilities to cover the to-be-realized one, a

high threshold like 95% is desirable.

2.1.3 Rotating Factors

The factor loadings resulting from extracting factors represent the relations between the

common factors and the risk factors. The higher the loadings are, the more representative

the risk factors are on common factors. In most cases, however, the factor loadings do not

provide obvious or meaningful interpretations of the relations.  Factor rotation is to

redistribute the variance among factors to achieve a simpler, more meaningful factor pattern.

Among several rotation approaches, we choose the popular VARIMAX orthogonal

rotation (Kaiser, 1958). The first advantage of this approach is that it keeps the common

factors orthogonal to each other.  Secondly, it usually produces a simpler factor loading

structure in which the associations between risk factors and common factors are easier to

interpret than others. Another advantage is that the produced loading structure tends to be

more invariant when different subsets of variables are analyzed. The popularity of

VARIMAX is evident since most computer packages with factor analysis are equipped with
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this approach.

2.1.4 Calculating factor scores

A factor score represent a composite of all variables’ loadings on the factor (Hair et al.,
2010). Given any vector of observations x, , the ¢th factor score vector is given by
=pEi(x,-X), t=12,..T.

The resulted factor scores can then be used to represent the factors in subsequent analyses.

Dimension reduction is majorly accomplished by modeling upon factor scores instead of
original risk factors. The number of models to be built is reduced from £ to m. More
importantly, the common factors are orthogonal to each other so that we may proceed with
the modeling in a uni-variate setup for each factor individually rather than under the
multi-variate framework.

2.2 ARMA-GARCH Modeling

At the second stage of the O-GARCH method, the time series of the obtained orthogonal
factor scores from an asset class are modeled individually. We consider the general
univariate GARCH models with lagged variables in the mean equation. In other words,
models like AR, ARCH or GARCH are candidates.

Fora F;, ageneral AR(p)-GARCH(m, s) model has the form of

p
F=c+) ¢F_ +&, where & |Q_~N(0,07),

i=1
and
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Jtz:aOJrzajgt{jJrz Bo?,, where ©>0,a,f>0.

=1
This general modeling captures the possible presence of serial correlations and conditional
heteroscedasticity. For the sake of stationarity, the coefficients of the lagged factors in the
mean equation must sum to less than 1, and so must be the coefficients of the lagged errors
and lagged conditional variances in the variance equation. We employ the maximum
likelihood estimation in general; the least squares method is used only when conditional
heteroscedasticity is absent.

The estimation procedure is as follows.  Firstly, we test for serial correlation and use
the partial autocorrelation function (PACF) determine the order of AR terms if needed.
Then we test for conditional heteroscedasticity on the residuals of the mean equation. If the
conditional heteroscedasticity is found, we use PACF on the squared residuals to determine
the order of the variance equation.  Thirdly, we use the Ljung-Box statistics to check the
specification suitability. When there are several models passing the Ljung-Box test, we use
the Bayesian information criterion (BIC) to select the “optimal” model. ~ The Akaike
information criterion (AIC) is used as an auxiliary.

The resulted O-GARCH models enable us to simulate risk factor (e.g., stock returns and
interest rates) scenarios for the corresponding asset class. These scenarios will display
essential risk properties of assets such as auto-correlations and volatility clustering. The

scenarios will also reflect the relations among the risk factors within an asset class that are
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modeled by the retrieved common factors from that asset class. To further reflect the
relations among the risk factors across asset classes,
2.3 The Covariance Matrix across Different Groups of Risk Factors

The last stage of the O-GARCH modeling involves assembling  As illustrated in
Alexander (2002), consider there are only two groups of m and n risk factors such as
interest rates and stock returns. Let P = (2, P,,...P.) and Q=(0,,0,,...0,) are common
factors extracted from group 1 and 2 separately where » and s are the number of common
factors. Denote by A (mxr) and B (nxs) the matrices of factor loadings of group 1 and
2 respectively. The full-dimensional covariance matrix of the original system is given by

AA'  ACB
(ACB') BB’ )

where AA' and BB’ are the within-group covariance matrices of group 1 and 2
respectively and ACB' is the cross-group covariance matrix among group 1 and 2 in which
C=cov(P,Q,) with (rxs) dimension can be estimated using O-GARCH again, now on a
system of the »+s common factors B, PB,,...P,0,,0,,...0, . Accounts need to be taken of
the positive semi-definiteness of the estimated full-dimensional covariance matrix. Although
AA'" and BB’ will always be positive semi-definite, it does not always guarantee to obtain
a positive semi-definitt ACB’' (Alexander, 2008).

3. IMPLEMENTATION OF THE ORTHOGONAL GARCH APPROACH

3.1 Data Description
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Four types of risk factors we examine include interest rates, stock indices, exchange

rates, and real estate. They are commonly regarded as major market risks that insurance

companies need to take account of and have been widely modeled in many economic

scenario models, like CAS-SOA and AAA. However, previous studies haven’t analyzed them

altogether from an international perspective. In consideration of this, we try to analyze the

risk factors of interest rates, stock indices, and exchange rates in a multinational setting with

the view of insurers in Taiwan. In contrast, real estate risks are confined to Taiwanese

domestic market due to regionality of real estate investing and the relatively lack of quality

international real estate data.

All data except for those of real estate are obtained from Bloomberg. It is well known

that time series like interest rates, exchange rates, or asset prices tend to be nonstationary. To

make sure stationarity, we employ the first differenced series of our data. Based on data

characteristics, we consider the change series of interest rates and the log returns of stock

indices, exchange rates, and real estate.

For grouping risk factors properly, things to consider include types of investment

instruments and geographic locations. In addition, a requirement of the factor model

presented previously that the number of risk factors (%) should be smaller than the sample

time periods (7) within each group needs to obey. Simulation performance is our concern as

well. 1t’s more possible to obtain easy to poor simulation performance if relatively low
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correlated risk factors are grouped together. Given these considerations, it turns out that

grouping happens not only among different risk types but also within identical type.

In what follows, the variables we use as well as how we group them are presented. \We

also collect all relevant data information in Table 1. Note that the sample spans of each group

are not probably the same. The idea that each group is treated independently in the context of

O-GARCH through orthogonalization allows us not to trim data observations in the

beginning of modeling until the correlation matrix of estimated factor scores is calculated.

[Insert Table 1 here]

Interest rates

Monthly zero coupon yields for the US dollar (USD), the Euro (EUR), the Australian

dollar (AUD), the New Zealand dollar (NZD), the Canadian dollar (CAD), and the New

Taiwan dollar (TWD) with 30 maturities between 1 year and 30 years are available. There are

180 interest rates totally considered apparently large than the sample observations we can

obtain. According to geographic location and the degree of correlation, we divide interest

rates into four groups. Among them, USD and CAD become the US-CA group which

represents the interest rates of American areas. Similarly, the AU-NZ group formed by AUD

and NZD represents the Oceania interest rates. EUR and TWD group by themselves.

Stock indices

We consider four market indices including the Dow Jones, S&P 500, Nasdag, and
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Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), which all use

month-end closing price adjusted for dividend, in terms of local currency. At first, only four

equity risk factors don’t raise any concerns about grouping. However, poor performance in

simulation later forces us to group them. When doing simulation, we figured out that the

performance of the four-index group was not better than that of groups of three-US-index as

well as TAIEX. It seems sensible because the O-GARCH model performs better in a

highly-correlated system. Any US stock index has lower correlation with TAIEX than other

two US indices. Therefore, all four stock indices are divided into two groups — one contains

three US indices and the other is TAIEX alone. Note that group containing only one risk

factor, like TAIEX, does not need to perform the orthogonal factor model.

Exchange rates

The data include five monthly exchange rates, the euro, Canadian dollar, Australian

dollar, New Zealand dollar, and New Taiwan dollar against the US dollar. Rather group

exchange rates, we analyze them as a whole.

Real estate

We focus our attention on domestic housing prices and rents. Moreover, because of their

different income characteristics, we regard them as two distinct groups. For house pricing

risks, we analyze quarterly house price indices, constructed by Cathay Real Estate, for new

and pre-sold houses including a Taiwan national composite index and five geographic

17



regional indices for Taipei City, Taipei County, Taoyuan-Hsinchu, Taichung, and

Tainan-Kaohsiung areas. For rent risk, taking data availability and reliability into account, we

only study the quarterly average rents for Grade-A office in Taipei City which is obtained

from REPro International Inc. again, since the rent risk group only contain one series, we

don’t perform the orthogonal factor model on it.

3.2 Descriptive Statistics

Table 2 provides some descriptive statistics for USD and CAD vyields and corresponding

changes at representative maturities, stock and exchange rate returns. For USD and CAD

yields, the long term (more than 10 years) means are higher than short-term means, implying

that both term structures of USD and CAD vyields are upward sloping; the standard deviations

are negatively related with maturities. The values of skewness and excess kurtosis show that

both USD and CAD vyield distributions tend to be near normal.

For changes in USD and CAD vyields, the sample averages are negative and the standard

deviations are also nearly positively proportional to maturities. The ADF test results show

that yields at most maturities exhibit nonstationary but changes in yields stationary. Therefore,

we examine changes in yields instead of yields for interest rate factors in the following

analysis.

For stock returns, TAIEX seems to have different characteristics from three US indices.

These three US stock returns of all roughly 6% are on average higher than the TAIEX return.
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The standard deviations, however, of USs are smaller than TAIEX return’s. This phenomenon
stands up for the partition of stock returns we consider. With negative skewness and positive
excess kurtosis, all four stock returns consistently tend to be left-skewed and have heavy tails.

For exchange rate returns, the sample means with relatively large standard deviations
seems near zero. The skewness and kurtosis measures show that exchange rate returns are
likely to be right-skewed and have heavy tails.

Whether the sample means of the risk factors considered are significantly different from
zero is relevant to the factor model specification as shown in eq. (1). If the sample means of a
group of risk factors are not significantly different from zero, we won’t consider the mean
vector p ineq. (1). Via hypothesis testing, we are convinced that all groups of risk factors
have means significantly different from zero except for the exchange rate returns.*
Therefore, we consider the mean vector p ineq. (1) for every risk factor groups except the
exchange rate returns when estimating the orthogonal factor model.

[Insert Table 2 here]

3.3 Factor Analysis Results

In what follows, we focus on the sample correlation matrix in our empirical analysis. To
conserve space, we only present the results of the US-CA yield change group and the FX

group.

16 We didn’t present the ¢ statistics of significant tests here.
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Table 3 gives the results of the eigenvalue analysis. First consider the US-CA group, a

case where the orthogonal factor model is performed in a multi-country setting. At first

glance, it seems reasonable that are three factors are adequate for the US-CA group since the

first three eigenvalues are only eigenvalues greater than unity. However, we set another

requirement for better simulation performance that the total (standardized) sample variance

explained needs to be higher than 95%. Therefore, we determine that the first four common

factors are needed, accounting for 96.13% of the total sample variance in the system of

US-CA yield changes.

Turning now to the FX group, only the first eigenvalue is greater than one and explains

just 67% of the total sample variance, which is far lower than the standard we set to have the

total sample variance explained. Obeying this rule, we decide that a four-factor model which

explains 97.5% of the total sample variance provides a better fit to the system of FX.

[Insert Table 3 here]

To figure out the interpretation of common factors extracted, we illustrate the rotated

estimated factor loadings of the US-CA and FX groups in Figure 1 and 2, respectively. For

the US-CA group, the first two factors might tend to be country-specific factors. Most

maturities of USD yield changes have large loadings on factor 1, and CAD yield changes on

factor 2. Factor 3 might be labeled as a short-term factor on which short-term maturities of

USD and CAD yield changes have higher loadings. Factor 4 is more meaningful for USD
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than for CAD, especially for USD short-term maturities below 2 or 3 years. Overall, factor 1

and 4, together, might explain the USD yield changes, and factor 2 and 3 represent the CADs.

For the FX group, it’s more obvious that four common factors extracted might be identified

as country factors. The AUD and NZD vyields load highly on factor 1, and CAD, TWD, and

EUR on factor 2, 3, and 4, respectively.

[Insert Figure 1 and 2 here]

3.4 Time-Series Models of Factors

Table 4 reports the estimation results of time-series models for factor scores obtained

from the US-CA and FX groups. For the US-CA group, factors 1 and 2 are shown to be serial

correlated and/or conditional heteroscedastic. Therefore, we model them with

AR(1)-ARCHY(1) and AR(4)-ARCH(6) models, respectively. Factor 3 is shown to be close to

white noise, so any time-series models are needed to model it. We model factor 4 with a

simple AR(2) model due to the evidence of some serial correlation. For the FX group, factor

2 and 4 are shown to be white noise as well. We employ an AR(3) model for factor 1 since it

presents slight serial correlation. In the presence of serial correlation conditional

heteroscedasticity, factor 3 is modeled by an AR(1)-ARCH(1) model.. With the evidence of,

factor 1 follows

[Insert Table 4 here]

3.5 Correlation Matrix across Factor Groups

21



We calculate the correlation matrix of the common factors across groups as the initial
values for simulation. The results are given in Table 5. For not losing any useful information,
we calculate the correlation of any pair of factors once at a time, not of all common factors at
the same time. As such, sample sizes of each correlation coefficient in the matrix are not the
same. Note that for groups with one series like the TAIEX group and the house rent group the
original time series are directly used to calculate the correlations.

[Insert Table 5 here]
4. SIMULATION RESULTS OF THE MODELS

With the estimated time-series parameters which capture each common factor’s dynamic
behaviors, the estimated factor loadings which represent the relationship between common
factors and risk factors, and the correlation matrix among common factors, we then use the
Monte Carlo simulation approach to simulate random movements in risk factor and generate
a range of scenarios for a long time.

4.1 Simulation Process

First of all, we generate random numbers of common factors and specific factors
respectively because of the orthogonality implied by the factor model used. The specific
factors follow €, ~(0,D). For common factors, we want them to keep the characteristics not
only of dynamics guarded by the estimated time-series models but also of the correlation

among each other.
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We first multiply a sequence of /ID N(0,1) random variables by a lower triangular matrix
which is obtained via the well-known Cholesky decomposition on the calculated correlation
matrix of factor scores. And it ensures that the draws from this process keep the correlation
we want. Then the estimated time-series model is applied to generate a sequence of random
variables over time as common factors.

Once the random variables of common and specific factors are produced, we can
generate the first differenced series of risk factors, and then the risk factor levels, with the
factor model equation. The initial values used are the last observations of each risk factor.
And we decide to generate 1000 scenarios over the next 30 years to see the long term risks
facing the insurance companies.

For interest rate risk factors, we further make some restrictions and adjustments to avoid
negative values of interest rate levels and unreasonable shapes of simulated yield curves. First,
we limit minimum and maximum values to be 0.1 % and 25%. Second, we use the first-order
autoregressive process, AR (1), in discrete time to capture the mean reversion of interest rate
levels, a fundamental property that short-term rates tend to revert to a long-term value:

n=ra i -r)te,
where 7, isthe short-term rate at time z, 7 isthe longtermmeanof 7,and ¢, isa

stochastic white noise component. The coefficient y is the rate of mean reversion which

measures the speed of adjustment, and we expect it to be negative in this model. With this
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process, when the rate in the previous period deviates positively (negatively) from its

long-term level, the change in interest rate in the next period should be negative (positive),

pushing the interest rate toward 7. For estimation, we first extend the interest rate sample

period as far as we can obtain, and then the shortest-maturity rates are modeled as 7 and are

t

also used to calculate the long term mean 7. Table 6 lists the sample information and the

estimation results. As expected, the estimated values of » for every yield are all negative.

< Insert Table 6 >

4.2 Simulation Results

For accuracy check of simulation results, we compare properties of simulated data to

their historical counterparts. To save space, we only present the results of the USD, CAD

yields and exchange rate returns.

The long-run mean and some percentiles of USD yields are shown in Table 7, and Table

8 is for CAD yields. As we can see, the long-run means of simulated USD and CAD vyields

both approximate to ones of their historical data, and so do percentiles. Extreme values,

however, tend to be divergent. The maximums of simulated USD yields, for example, have

more and more variation from historical values as their maturities become larger.

Adding some restrictions on extreme values of simulated interest rates when simulating

makes the results distorted. Since yield changes are our objects for interest rate analysis, we

also make a comparison of standard deviations for USD and CAD vyield changes in Table 9 to
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provide another way of examining simulation results. As shown, no matter what different
maturities of USD yield changes or CAD, the simulated values are very close to the historical
ones, proving the accuracy of simulation results.

In Table 10, the results of exchange rate returns are present. Unlike yields, it seems that
the means of simulated exchange rate returns are not close to the history data. The simulated
values tend to be smaller than the historical ones. However, the simulated standard deviations
are almost perfect. All of them are very close to their historical one. Overall, the properties of
the simulated exchange rate returns also appear to be similar with the historical data.
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Table 1 Definition of risk factors

Risk Sampled periods
Groups Variables
factors (obs.)
Interest EUR Include monthly zero coupon yields for the Euro (EUR) November 1991 -
rates with 30 maturities between 1 year and 30 years. September 2010
Changes in yield of EUR are modeled: (227)
DIR =IR,~ IR, ,.
US-CA  Include monthly zero coupon yields for the US dollar January 1995 -
(USD) and the Canadian dollar (CAD) with 30 September 2010
maturities between 1 year and 30 years. Changes in (189)
yield are modeled:
DIR = IR, ~IR ;.
AU-NZ  Include monthly zero coupon yields for the Australian January 1995 -
dollar (AUD) and the New Zealand dollar (NZD) with ~ September 2010
30 maturities between 1 year and 30 years. Changes in ~ (189)
yield are modeled:
DIR =IR,~IR,,.
TWD Include monthly zero coupon yields for the New March 1999 -
Taiwan dollar (TWD) with 30 maturities between 1 September 2010
year and 30 years. Changes in yield are modeled: (138)
DIR = IR, —IR, ,.
Stock us Include market indices of the Dow Jones, S&P 500, and November 1983 -
indices Nasdag using month-end closing price adjusted for September 2010
dividend, in terms of local currency. The monthly log (323)
returns are modeled:
RS, =In(S,)—-In(S, ;).
TW Include the Taiwan Stock Exchange Capitalization May 1989 -
Weighted Stock Index (TAIEX). The monthly log September 2010
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Risk Sampled periods
Groups Variables
factors (obs.)
returns are modeled: (257)
RS, =In(S,)—-In(S, ;).
Exchange  FX Include monthly USD spot prices with respect to EUR,  February 1999 -
rates CAD, AUD, NZD, and TWD. The monthly log returns  September 2010
are modeled: (140)
RFX, =In(FX,)-In(FX ;) .
Real estate  HP Include quarterly house price indices for new and 1993Q2 -
pre-sold houses including a Taiwan national composite  2010Q2Q (69)

RT

index and five geographic regional indices for Taipei
City, Taipei County, Taoyuan-Hsinchu, Taichung, and
Tainan-Kaohsiung areas. The quarterly log returns are
modeled:

RHP, =In(HR)-In(HP.,).
Include the quarterly average rents for Grade A office
in Taipei City. The quarterly log returns are modeled:

RRT =In(RT))-In(RT,) .

2002Q2 - 2010Q2

(33)
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Table 2 Descriptive statistics of selected risk factors

Standard Excess
Mean Deviation Min. Max. Skewness  Kurtosis ADF test
Panel A: USD yields
1y (Maturity) 3.699 2.04 7.327 0.244 -0.297 -1.351 1974 [2]
Sy 4524 1.505 8.012 1.299 -0.072 -0.891 -2.674 [0]
10y 5.03 1.127 7.988 2.316 0.218 -0.489 -3.993** [0]
15y 5.45 0.911 8.009 3.154 0.279 -0.269 -4.746%** [0]
20y 5.643 0.912 8.035 3.242 0.127 -0.504 -4.631*** [0]
25y 5.582 0.931 8.073 2.944 0.301 -0.222 -4.831*** [0]
30y 5.522 0.981 8.112 2.647 0.501 0.06 -4.386*** [0]
Panel B: CAD yields
1y (Maturity) 3.871 1.77 8.959 0.396 0.134 -0.001 -2.671 [0]
Sy 4.796 1.501 9.532 1.775 0.479 0.189 -4.114%** [0]
10y 5.317 1.401 9.622 2.986 0.854 0.334 -3.806** [0]
15y 5.633 1.39 9.626 3.56 0.981 0.206 -3.075 [0]
20y 5.766 1.43 9.641 3.613 0.988 0.366 -2.724 [0]
25y 5.629 1.436 9.634 3.502 1.007 0.32 -2.726 [3]
30y 5.493 1.453 9.628 3.391 1.033 0.304 -2.879 [0]
Panel C: Changes in USD yields
1y (Maturity) -0.037 0.256 0.66 -1.242 -1 2.973 -6.551%** [1]
Sy -0.036 0.311 0.893 -0.963 0.042 0.542 -12.356*** [0]
10y -0.028 0.293 0.979 -1.15 0.034 1.237 -11.511%** [1]
15y -0.025 0.297 1.07 -1.211 0.331 2.369 -12.51%** [1]
20y -0.023 0.279 1.205 -1.07 0.599 3.443 -12.107*** [1]
25y -0.022 0.255 0.986 -0.938 0.274 2.399 -11.797*** [1]
30y -0.021 0.245 1.004 -0.81 0.11 2.348 -13.955*** [0]
Panel D: Changes in CAD yields
1y (Maturity) -0.041 0.296 0.857 -1.183 -0.462 1.108 -12.631%** [0]
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5y

10y
15y
20y
25y

30y

Dow Jones
Nasdaq
S&P500

TAIEX

TWD
EUR
AUD
NzZD

CAD

-0.038

-0.034

-0.031

-0.031

-0.031

-0.032

0.674

0.667

0.602

0.015

-0.025

-0.129

-0.307

-0.224

-0.274

0.272 0.64 -1.171 -0.382
0.228 0.461 -0.716 -0.238
0.203 0.469 -0.693 -0.221
0.205 0.489 -0.595 -0.258
0.189 0.484 -0.631 -0.325
0.192 0.479 -0.674 -0.31

Panel E: Stock returns (%)

4.57 -26.42 12.95 -1.113
6.783 -31.79 19.87 -0.917
4.566 -24.54 12.38 -1.06
9.625 -43.53 33.24 -0.289

Panel F: Exchange rate returns (%)

1.348 -3.897 3.943 -0.082
3.161 -8.901 11.71 0.189
3.808 -8.682 19.61 1.144
3.981 -12.85 15.21 0.397
2.626 -7.873 15.44 1.317

0.967

0.178

0.42

0.417

0.376

0.495

4.189

2.756

3.472

2.623

0.595

1.243

4.483

1.846

8.18

-13.75%** [0]
-14.333%** [0]
-13.738*** [0]
-11.916%%* [1]

7.57%% 2]

-7.179%%% [2]

-17.023*** [0]
-16.769*** [0]
-16.41%** [0]

-14.748*** [0]

-8.992%** [0]
-10.492*** [0]
-10.453*** [0]

-10.98%** [0]

-11.375%** [0]

?Yields are in percentage.

® For yields, the test regression includes a trend and a constant term. For yield changes and return, the test regression includes a

constant term. The t statistics is presented. *, **, and *** indicate significant at the 10%, 5% and 1% levels respectively. The

numbers in the brackets [ ] are the optimal lags, chosen by the Bayesian information criterion.
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Table 3 Portion of variance explained by the chosen factors for the US-CA yield change group

and exchange rate returns

US-CA FX
No. of factors 2 3 4 1 2 3 4
Eigenvalues 7.08 4.29 0.88 3.35 0.69 0.51 0.33
% Variance 11.8 7.16 1.47 67 13.7 10.2 6.6
Cumulative (%) 87.5 94.65 96.13 67 80.7 91 97.5

31



0.8

0.6

Factor Loadings
o
>

0.2

-0.2

1.0

0.9

0.8

Factor Loadings
o o o
o [=2] ~

I
o~

0.3

0.2

0.1

0.0

ek kAATE A koA
-

® .o
®. o009 0000 ee

4A A A A A
FEFII LS FF ST FF S
Maturity (Years)

4 &

444
QQOY?OY?QY%,

—— Factorl
—-Factor2
--=-- Factor3
—e —Factor4

Figure 1 Rotated estimated factor loadings for the US-CA yield change group

\\\ . /
Y I\ /
\ / \ I/
; - /
\ 3 ’ /
\ / \
\ . /
‘ / \ / \ /
; ; ; 7
S N \ /
Y . \ /
! - /
\/' \
/0 \ /
R ‘\ /
2 - /
: \ \ /N /
/ \ e N /
E \ P N
/ \ B N 7
. \ // \ \\ / \
/ X N /
; \ // -l N /
7 y 7 N »
/ NI ANE b e \\ / '\.,\
: =7 % .
¢ - - R ~.
" T T -4
TWD EUR AUD NzZD CAD
Currency

Figure 2 Rotated estimated factor loadings for the exchange rate returns

32

—— Factorl
—>=-Factor2
---+-- Factor3

— e —Factor4




Table 4 Estimated GARCH models for factor scores of the US-CA yield changes' ®

p
F,=c+Y ¢F_ +e, &~N(0,07)

i=1

ol=ay+Y ael,+> Po’,, where 0>0,a,5>0.

j=1

US-CA yield changes b FX
Factor 1 Factor 2 Factor 4 Factor 1 Factor 3
Parameter AR(1)-ARCH(1)  AR(6)-ARCH(4)  AR(2) AR(3)  AR(1)-ARCH(1)
4 -0.158 — — — 0.316
(-2.002) (3.457)
é, — 0.203 — -
(2.767)
A 0.201 — 0.259 —
(2.277) (3.139)
A — 0.085 — — —
(1.241)
w 0.824 0.451 — — 0.746
(12.825) (5.71) (7.065)
o 0.142 0.181 — — 0.182
(1.834) (1.705) (1.378)
a, — 0.001 — — —
(0.018)
a 0.151 — — —
(1.514)
a, 0.166 — — _
(1.971)
ﬂ _ _ _ —
AIC 2.801 2.7 2.816 2.782 2.754
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BIC 2.853 2.822 2.851 2.803 2.817

& Each coefficient is reported with the associated #-statistic for the null hypothesis that the estimated value is equal to zero.
® Factor(s) not presented is(are) shown to be white noise via tests of serial correlation and conditional heteroscedasticity, so we

don’t model it(them) here with any AR-GARCH models.
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Table 5 Correlation matrix of factors

RS_TW RS_US_F1 RS_US_F2 RFEX_F1 RFEX_F2 RFX_F3 RFX_F4 DIR_TW_F1 DIR_TW_F2 DIR_TW_F3 DIR_TW_F4 DIR_EU Fl DIR_EUF2 DIR_EU_F3
RS_TW 1 0.294 0.238 -0.298 -0.256 -0.388 0.145 0.3 0.081 0.103 0.071 -0.033 0.19 -0.021
RS_US_F1 0.294 1 0 -0.311 -0.285 -0.133 0.002 0.101 -0.087 0.195 -0.136 -0.106 0.205 0.011
RS_US_F2 0.238 0 1 -0.161 -0.253 -0.245 0.113 0.212 0.054 0.025 -0.006 0.002 0.19 0.014
RFX_F1 -0.298 -0.311 -0.161 1 -0.004 0 0 -0.032 -0.094 -0.126 -0.024 0.11 -0.055 -0.191
RFX_F2 -0.256 -0.285 -0.253 -0.004 1 0.001 -0.001 -0.028 0.011 -0.105 0 0.038 -0.204 -0.132
RFX_F3 -0.388 -0.133 -0.245 0 0.001 1 0 -0.175 -0.062 -0.003 0.009 0.021 -0.12 0.013
RFX_F4 0.145 0.002 0.113 0 -0.001 0 1 0.259 0.033 0.014 -0.26 0.054 0.101 -0.058
DIR_TW_F1 0.3 0.101 0.212 -0.032 -0.028 -0.175 0.259 1 0 0 0 0.163 0.3 0.079
DIR_TW_F2 0.081 -0.087 0.054 -0.094 0.011 -0.062 0.033 0 1 0 0 -0.015 0.057 -0.048
DIR_TW_F3 0.103 0.195 0.025 -0.126 -0.105 -0.003 0.014 0 0 1 0 0.225 0.279 0.142
DIR_TW_F4 0.071 -0.136 -0.006 -0.024 0 0.009 -0.26 0 0 0 1 0.015 -0.091 -0.028
DIR_EU_F1 -0.033 -0.106 0.002 0.11 0.038 0.021 0.054 0.163 -0.015 0.225 0.015 1 0 0
DIR_EU_F2 0.19 0.205 0.19 -0.055 -0.204 -0.12 0.101 0.3 0.057 0.279 -0.091 0 1 0
DIR_EU_F3 -0.021 0.011 0.014 -0.191 -0.132 0.013 -0.058 0.079 -0.048 0.142 -0.028 0 0 1
DIR_USCA_F1 0.193 0.077 0.159 0.069 -0.06 -0.023 0.196 0.406 0.046 0.151 -0.094 0.527 0.271 0.42
DIR_USCA_F2 -0.096 -0.057 -0.153 0.159 0.023 -0.05 0.082 -0.005 0.032 0.142 -0.049 0.39 -0.04 0.241
DIR_USCA_F3 0.06 0.056 0.03 -0.025 -0.369 0.126 0.168 0.086 0.022 0.156 -0.022 0.015 0.427 0.041
DIR_USCA_F4 0.28 0.06 0.242 -0.087 0.041 -0.067 0.228 0.163 -0.005 0.098 -0.132 -0.076 0.39 -0.125
DIR_AUNZ_F1 0.088 -0.049 0.017 -0.143 0.027 -0.099 0.19 0.151 -0.05 0.108 -0.027 0.297 0.06 0.386
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DIR_AUNZ_F2
DIR_AUNZ_F3
DIR_AUNZ_F4
DIR_AUNZ_F5
RHP_F1
RHP_F2
RHP_F3
RHP_F4
RHP_F5

RRT

0.123

0.133

0.255

0.039

0.162

0.171

-0.08

-0.112

0.081

-0.003

-0.039

0.093

0.083

-0.036

0.339

-0.145

-0.102

0.001

-0.145

0.063

0.07

0.095

0.054

0.003

-0.036

-0.003

0.06

-0.048

0.212

0.007

0.1

-0.238

-0.299

0.155

-0.014

0.131

-0.052

-0.054

-0.006

0.283

-0.122

-0.373

0.101

0.167

-0.139

-0.273

-0.089

-0.096

0.06

0.035

0.008

-0.015

-0.014

-0.101

-0.211

0.092

0.082

0.069

-0.066

-0.11

0.222

0.123

0.167

0.104

0.209

-0.098

0.229

0.034

-0.219

-0.004

0.31

0.18

0.113

0.14

0.246

0.11

0.249

0.005

0.173

0.315

0.05

-0.004

0.039

0.001

0.245

0.023

-0.161

0.002

0.164

-0.287

0.088

0.202

0.375

-0.069

0.34

-0.203

0.141

0.096

-0.229

-0.073

-0.02

-0.029

-0.074

0.025

-0.148

0.158

-0.216

-0.089

0.207

0.112

0.265

0.13

-0.051

0.316

-0.201

0.129

0.237

-0.001

-0.085

0

0.159

0.357

0.319

-0.042

0.311

-0.072

0.145

-0.056

0.158

0.577

0.16

0.078

-0.031

0.144

0.053

0.066

0.008

-0.299

-0.045

-0.319

Note: We calculate the correlation of any pair of factors once at a time, not of all common factors at the same time. Relevant information about sample period of each group can refer

to Table 1. The original series of the TAIEX stock returns (RS_TW) and house rent returns (RRT) are directly used to calculate the correlations.
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Table 5 Correlation matrix of factor scores (cont.)

DIR_USCA DIR_USCA DIR_USCA DIR_USCA DIR_AUNZ DIR_AUNZ DIR_AUNZ DIR_AUNZ DIR_AUNZ
RHP_F1  RHP_F2 RHP_F3  RHP_F4  RHP_F5 RRT
_F1 _F2 _F3 _F4 _F1 _F2 _F3 _F4 _F5

RS TW 0.193 -0.096 0.06 0.28 0.088 0.123 0.133 0.255 0.039 0.162 0.171 -0.08 -0.112 0.081 -0.003
RS_US_F1 0.077 -0.057 0.056 0.06 -0.049 -0.039 0.093 0.083 -0.036 0.339 -0.145 -0.102 0.001 -0.145 0.063
RS_US_F2 0.159 -0.153 0.03 0.242 0.017 0.07 0.095 0.054 0.003 -0.036 -0.003 0.06 -0.048 0.212 0.007
RFX_F1 0.069 0.159 -0.025 -0.087 -0.143 0.1 -0.238 -0.299 0.155 -0.014 0.131 -0.052 -0.054 -0.006 0.283
RFX_F2 -0.06 0.023 -0.369 0.041 0.027 -0.122 -0.373 0.101 0.167 -0.139 -0.273 -0.089 -0.096 0.06 0.035
RFX_F3 -0.023 -0.05 0.126 -0.067 -0.099 0.008 -0.015 -0.014 -0.101 -0.211 0.092 0.082 0.069 -0.066 -0.11
RFX_F4 0.196 0.082 0.168 0.228 0.19 0.222 0.123 0.167 0.104 0.209 -0.098 0.229 0.034 -0.219 -0.004
DIR_TW_F1 0.406 -0.005 0.086 0.163 0.151 0.31 0.18 0.113 0.14 0.246 0.11 0.249 0.005 0.173 0.315
DIR_TW_F2 0.046 0.032 0.022 -0.005 -0.05 0.05 -0.004 0.039 0.001 0.245 0.023 -0.161 0.002 0.164 -0.287
DIR_TW_F3 0.151 0.142 0.156 0.098 0.108 0.088 0.202 0.375 -0.069 0.34 -0.203 0.141 0.096 -0.229 -0.073
DIR_TW_F4 -0.094 -0.049 -0.022 -0.132 -0.027 -0.02 -0.029 -0.074 0.025 -0.148 0.158 -0.216 -0.089 0.207 0.112
DIR_EU_F1 0.527 0.39 0.015 -0.076 0.297 0.265 0.13 -0.051 0.316 -0.201 0.129 0.237 -0.001 -0.085 0
DIR_EU_F2 0.271 -0.04 0.427 0.39 0.06 0.159 0.357 0.319 -0.042 0.311 -0.072 0.145 -0.056 0.158 0.577
DIR_EU_F3 0.42 0.241 0.041 -0.125 0.386 0.16 0.078 -0.031 0.144 0.053 0.066 0.008 -0.299 -0.045 -0.319
DIR_USCA_F1 1 0 0 0 0.137 0.301 0.177 0.013 0.301 -0.043 0.004 0.266 -0.244 0.036 0.179
DIR_USCA_F2 0 1 0 0 0.293 0.317 0.223 -0.066 0.251 -0.108 0.126 0.075 -0.158 -0.342 -0.081
DIR_USCA_F3 0 0 1 0 0.136 0.085 0.401 0.251 -0.199 0.225 -0.164 0.196 -0.057 0.089 0.292
DIR_USCA _F4 0 0 0 1 0.081 0.057 0.153 0.262 0.042 0.194 0.077 0.043 0.002 0.114 0.325
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DIR_AUNZ_F1
DIR_AUNZ_F2
DIR_AUNZ_F3
DIR_AUNZ_F4
DIR_AUNZ_F5
RHP_F1
RHP_F2
RHP_F3
RHP_F4
RHP_F5

RRT

0.137

0.301

0.177

0.013

0.301

-0.043

0.004

0.266

-0.244

0.036

0.179

0.293

0.317

0.223

-0.066

0.251

-0.108

0.126

0.075

-0.158

-0.342

-0.081

0.136

0.085

0.401

0.251

-0.199

0.225

-0.164

0.196

-0.057

0.089

0.292

0.081

0.057

0.153

0.262

0.042

0.194

0.077

0.043

0.002

0.114

0.325

-0.002

0.033

-0.03

-0.284

-0.01

0.008

-0.154

0.111

0.214

-0.242

-0.163

0.331

0.284

-0.089

0.208

0.174

0.288

0.18

0.197

-0.06

-0.16

0.103

-0.136

-0.23

0.046

0.166

-0.039

-0.017

-0.042

0.162

-0.002

-0.154

0.284

0.197

0.046

0.242

0.033

0.111

-0.089

-0.06

0.166

0.128

-0.03

0.214

0.208

-0.16

-0.039

0.37

-0.284

-0.242

0.174

0.103

-0.017

-0.087

-0.01

-0.163

0.288

-0.136

-0.042

0.272

0.008

0.331

0.18

-0.23

0.162

0.242

0.128

0.37

-0.087

0.272
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Table 6 Estimates of the mean reversion model for zero coupon yields
n=ra+y(n,—F)ve, <0
where 7, = the short term yield at time 7, # = the long term sample mean of r,,and &, is a stochastic white

noise component.

Shortest-term yield

Sample used I r (%)
available

EUR 1 year October 1991 — September 2010 -0.0179 3.7460
USD 1 year April 1989 — September 2010 -0.0126 4.2308
CAD 1 year December 1994 — September 2010 -0.0304 3.8707
AUD 1 year December 1994 — September 2010 -0.0592 5.5244
NZD 1 year December 1994 — September 2010 -0.0276 6.2838
TWD 1 year March 1999 — September 2010 -0.0129 2.1420
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Table 7 Descriptive statistics of historical and simulated results for USD yields

1 year 5 year 10 year 15 year 20 year 25 year

Panel A: Historical data

Long-run mean 4.231 5.208 5.727 6.061 6.240 6.259
Minimum 0.244 1.299 2.316 3.154 3.242 2.944
5th percentile 0.370 2.051 3.307 4.187 4.323 4.303
10th percentile 0.519 2471 3.680 4.432 4.620 4,572
50th percentile 4.423 4.562 4.806 5.329 5.616 5.488
90th percentile 5.959 6.527 6.601 6.746 6.888 6.927
Maximum 7.327 8.012 7.988 8.009 8.035 8.074

Panel B: Simulated data

Long-run mean 4.189 5.155 5.677 6.015 6.198 6.219
Minimum 0.100 0.100 0.100 0.100 0.100 0.100
5th percentile 0.801 1.449 2.291 2.685 3.052 3.293
10th percentile 1.412 2.000 2.789 3.197 3.544 3.752
50th percentile 3.478 4.359 4.983 5.368 5.598 5.665
90th percentile 5.014 6.488 7.227 7.663 7.788 7.714
Maximum 8.913 11.033 12.263 12.981 12.932 12.582
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Table 8 Descriptive statistics of historical and simulated results for CAD yields

1 year 5 year 10 year 15 year 20 year 25 year

Panel A: Historical data

Long-run mean 3.871 4.796 5.317 5.633 5.766 5.629
Minimum 0.396 1.775 2.986 3.560 3.613 3.502
5th percentile 0.584 2481 3.536 4.123 4.209 4.047
10th percentile 1.192 2.822 3.808 4.220 4.287 4.140
50th percentile 4.010 4572 5.161 5.478 5.695 5.562
90th percentile 5.941 6.813 7.547 8.103 8.223 8.283
Maximum 8.959 9.532 9.622 9.626 9.641 9.635

Panel B: Simulated data

Long-run mean 3.847 4.780 5.308 5.626 5.760 5.624
Minimum 0.100 0.100 0.100 0.421 0.265 0.391
5th percentile 1.542 2.385 3.213 3.743 3.769 3.703
10th percentile 2.002 2.863 3.621 4.104 4.152 4.076
50th percentile 3.631 4.541 5.098 5.437 5.561 5431
90th percentile 5.184 6.116 6.474 6.681 6.881 6.687
Maximum 9.187 10.265 11.971 12.238 13.437 12.890
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Table 9 Standard deviation of historical and simulated results for USD and CAD vyield changes

1 year 5 year 10 year 15 year 20 year 25 year

Panel A: Historical data
USD vyield changes 0.888 1.079 1.019 1.031 0.969 0.885
CAD yield changes 1.026 0.944 0.793 0.704 0.712 0.657
Panel B: Simulated data
USD vyield changes 0.568 0.876 0.944 0.989 0.949 0.880

CAD yield changes 0.963 0.923 0.763 0.664 0.673 0.640
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Table 10 Descriptive statistics of historical and simulated results for the exchange rate returns

TWD EUR AUD NzZD CAD

Panel A: Historical data
Mean -0.296 -1.545 -3.686 -2.690 -3.287
Standard deviation 4.687 10.985 13.236 13.842 9.128
Minimum -3.897 -8.897 -8.683 -12.853 -7.873
5th percentile -2.420 -5.820 -5.542 -5.864 -4.276
10th percentile -1.738 -3.918 -4.853 -4.732 -3.126
50th percentile -0.005 -0.010 -0.717 -0.665 -0.452
90th percentile 1.539 3.419 3.861 4.605 2.376
Maximum 3.943 11.704 19.616 15.213 15.444

Panel B: Simulated data
Mean -0.069 -0.070 -0.154 -0.176 -0.043
Standard deviation 4714 11.034 12.717 13.631 9.099
Minimum -8.804 -14.158 -16.286 -16.580 -12.161
5th percentile -2.228 -5.249 -6.044 -6.485 -4.312
10th percentile -1.725 -4.082 -4.710 -5.053 -3.369
50th percentile -0.008 -0.008 -0.017 -0.014 -0.007
90th percentile 1.711 4.080 4.692 5.031 3.366
Maximum 9.305 16.644 17.160 17.247 11.958
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Explaining the Rate Spreads on Life Settlements

ABSTRACT

Scholars have paid attention to the determinants of rate spreads on various investment
products, but not to those on life settlements yet.  This study investigates the spread
determinants of life settlements, which also extends the boundary of the literature on life
settlements. The data on life settlements are from Coventry. We estimate the expected rate
spread of a life settlement under certain death time and uncertain death time with or without
considering mortality improvements. The average return of life settlement is 13% if we
assume death time is certain. Considering uncertain death time would increase the average
return to 27%. Additional mortality improvement would decrease the average return by
2.5%. The regression results show that the expected spreads contain the default risk
premiums associated with the underlying insurers. The spreads also relate to the factors
affecting the surrender tendencies of the underlying policies.  All regression models product
adequate adjusted R? and consistent results. We further infer that there are significant,
positive premiums for bearing the non-systematic mortality risk of life settlements.

JEL Classification: G22

Keywords: Life Settlements, Risk Premiums, Rate Spreads
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1. Introduction

The determinants of rate spreads on various investment products attract the attentions of
scholars as well as practitioners. The renowned CAPM (Capital Asset Pricing Model;
Sharpe, 1964) showed that the rate spreads of stocks were determined by the market risk
premium and the betas of individual stocks reflecting the sensitivities of stock prices to
market movements. Ross (1976) developed the arbitrage pricing theory (APT) in which the
risk premiums of stocks were determined by some macroeconomic factors and the associated
betas. The market risk premium might be one of the factors. Fama and French (1996)
proposed a three-factor model to explain the risk premiums of stocks. The factors were size
and book-to-market ratio in addition to the market risk. Jegadeesh and Titman (2001) added
an additional factor: the momentum factor.

Many papers studied the determinants of yield spreads on corporate bonds, e.g., Fons
(1994), Longstaff and Schwartz (1995), Duffie and Singleton (1997), Duffee (1999), Elton et
al. (2001), Collin-Dufresne, Goldstein, and Martin (2001), Eom, Helwege, and Huang (2004),
Longstaff, Mithal, and Neis (2005), Chen, Lesmond, and Wei (2007), Alexander (2008), and
Nayak (2010). The spreads of corporate bond yields over government bond yields consist
of three (or more) components: expected default loss, tax premium, and the premiums for
non-default risks.  Bodie, Kane, and Marcus (1993), Fons (1994), Cumby and Evans
(1995), and other early papers assumed the spread is all default premium. Elton et al. (2001)
showed that expected default accounted for a small fraction of the spread only.  State taxes
explained a substantial portion of the spread, and the remaining portion was closely related to
the factors explaining the risk premiums of stocks. Using the credit default swap premium
as a direct measure of the default component in corporate bond spreads, Longstaff, Mithal,
and Neis (2005) found that the spread of a corporate bond was majorly due to its default risk.

The non-default component was time varying and strongly related to the measures of market
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and bond-specific illiquidity. Chen, Lesmond, and Wei (2007) further confirmed the
importance of liquidity in determining corporate bond spreads. Alexander (2008) identified
inflation uncertainty as another determinant to the yield spread.

The spread determinants of other fixed-income products were studied in the literature as
well. With regard to corporate loan spreads, early studies admitted the credit quality of
borrowers as one determinant but rejected loan maturity (Barclay and Clifford, 1995a, 1995b;
Stohs and Mauer, 1996; Amar et al., 1997; Ozkan, 2000; Steven, Nandy, and Sharpe, 2000).
Gottesman and Roberts (2002) found evidence that lenders were compensated for longer
maturity loans. Santos (2011) identified that losses occurred to banks also affected the
spreads of the loans that were made after the losses. Menz (2012) investigated the
correlation and causality between corporate governance and credit spreads. Regarding the
spreads of emerging market bonds, Min (1998), Alexopoulou, Bunda, and Ferrando (2009),
and Kuguk (2010) showed that macroeconomic fundamentals of individual countries were
significant determinants.

Bantwal and Kunreuther (2000) observed that catastrophe bond spreads were higher
than those of equivalent-rated corporate bonds and tried to explain this puzzle by behavior
economics (e.g., reluctance of investment managers to invest in cat bonds). Zanjani (2002)
suggested that the “extra” risk premiums might be due to the threats of catastrophes on risk
bearers’ solvencies. Dieckmann (2010) proposed a habit process to explain the extra
premiums in which catastrophes were rare economic shocks that could bring investors closer
to their subsistence level.

The determinants of the rate spreads that can be expected from investing in life
settlements have not yet been examined, albeit the importance of this product. Life
settlements are life insurance policies sold in a secondary market. The policyholder
involved in a life settlement transaction receives a payment exceeding the surrender value but

less than the death benefit. The investor in such a transaction assumes the role of paying
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premiums, and the investment return depends on the quality of the life expectancy estimates
provided by medical underwriters.  Life settlements are an increasingly popular asset class
because they seemed to render good returns and/or diversification benefits to widely held
assets (Gatzert, 2010; Braun, Gatzert, and Schmeiser, 20121). Life settlements may develop
to be a strong market with the potential exceeding $140 billion by 2016 (Conning &
Company, 2011).

This study intends to extend the scope of the literature on the spread determinants of
risky assets to life settlements.!  Identifying the determinants and understanding their
relative significance will help market participants assess the value and risk of life settlements.
Our results is therefore of interest to the buyers, sellers, originators, and other stakeholders of
life settlements, in addition to scholars.

In estimating the rate spreads of life settlements, we first regard the life expectancy of an
insured underlying the corresponding life settlement as the expected maturity of a corporate
bond. The former is subject to mortality risk while the latter default risk. Thus we may
calculate the internal rate of return (IRR) of a life settlement given the insured’s life
expectancy in the similar way as we calculate the yield to maturity (YTM) of a corporate
bond.

The assumption behind such calculations is that the underlying insureds live out the life
expectancies, which implies certain death time. We propose two methods to incorporate the
uncertainty about death time.  Within the first method, we insert into the above IRR
calculation the probabilities of paying premiums if the insureds are alive at the beginning of a

period and the probabilities of receiving death benefits if the insureds decease at the end of

! This study extends the boundary of the researches on life settlements as well. Many studies investigated
the economic impacts of life settlements on life insurance markets (e.g., Giacalone, 2001; Ingraham and Salani,
2004; Ziser, 2006 and 2007; Smith and Washington, 2006; Seitel, 2006 and 2007; Sherman, 2007; Leimberg et
al., 2008). Some focused on the actuarial modeling and valuation of life settlements (e.g., Russ, 2005; Perera
and Reeves, 2006; Milliman, 2008). Others cover issues such as securitization (Stone and Zissu, 2006; Ortiz,
Stone, and Zissu, 2008), life expectancy estimation risk (Perera and Reeves, 2006; Stone and Zissu, 2007), and
hedging benefits (Wang, Hsieh, and Tsai, 2011) of life settlements.
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the period. By the second method, we calculate the IRRs of dying at different ages and
then obtain a mortality-weighted IRR.  Both types of IRRs reflect the spreads for bearing
non-systematic mortality risk. We further estimate the spreads that consider potential
mortality improvements in the future.

Our data on life settlements are from Coventry, a leading market maker. The given
data contain the life expectancies estimated by one of Coventry’s major medical underwriters.
Note that the rate spreads investigated in this paper is ex ante, i.e., the expected spreads.’

The differences between the calculated IRRs and the risk-free rates at the inception of
life settlements represent the spreads expected by the investors who bear all sorts of the risks
associated with life settlements and/or want to seize the profitable opportunities associated
with the surrender behaviors of the underlying insureds. We use the spot rates of US
government bonds that have the maturities matching with the life expectancies of life
settlements as the risk-free rates. The tested independent variables include: mortality risk
premium, the premium for bearing the default risk of the underlying insurer, and some
variables determining the insureds’ motivations/tendencies to surrender their policies since
life settlements are substitutes for surrenders. Then we conduct three sets of regression
analyses that correspond to the three ways in estimating the expected IRRs to investigate the
determinants of the rate spreads on life settlements.

Observing that the IRRs considering the uncertainty about death time have a higher
mean than those obtained under the assumption of certain death time, we infer that there are
positive premiums for bearing non-systematic mortality risk. We also observe that
introducing uncertain mortality improvements increases expected IRRs.  This implies
positive premiums for bearing systematic mortality risk.>

The rate spreads of life settlements contain risk premiums associated with the default

> CAPM and APT proposed ex ante relations between risk and return. Most papers on fixed-income products
investigated the ex-ante relations as well.
® We also observe that mortality improvements reduce the expected IRRs with limited extents only.

49



risks of the underlying insurers, which is supported by the negative and significant coefficient
of the rating-ranked variable. The rest portions of the spreads mainly related to the
surrender tendencies of the underlying policies. The holders of older policies have less
motivation to surrender their policies, which in turn leads to worse terms for the investors
when contracting life settlements. Our regression results show negative and significant
coefficient of policy year with respect to IRR.

Our results also present positive coefficients for the insureds’ age and gender. This is
as expected since empirical statistics show that healthier people have less motivation to
surrender their policies. We further decompose the information conveyed by the life
expectancy estimated by medical underwriter into the information reflected by age and
gender and the information captured by medical underwriting. The regression results are
consistent with our expectations. Older people and males are unhealthier, ceteris paribus,
and thus have positive and significant coefficients. The underwriting information variable
reflecting “extra” healthiness also has negative and significant coefficients.

The remainder of this article is organized as follows. We delineate the life settlements
obtained from Coventry in Section 2.  In Section 3, we explain how to calculate IRRs in
different ways and compare the resulted IRR distributions. In Section 4 we speculate
possible sources of life settlement’ rate spreads and specify corresponding variables.

Section 5 contains regression results and analyses. We draw conclusions and outline

possible extensions in Section 6.

2. Life Settlement Samples

The data used in this study are from Coventry, one of the major originators and market
makers in the US life settlement market. The samples that Coventry provided for us were a
subset of the policies originated during the period from July 2009 to April 2011. They are

346 universal life insurance policies with descriptive statistics presented in Table 1.
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[Insert Table 1 about Here]

The insureds of the policies underlying the sampled life settlements were seniors, with a
mean age of 76 and the range from 63 to 87 at the times when the policies were acquired by
Coventry. At those times their life expectancies estimated by one of Coventry’s major
medical underwriters ranged from 6 years to 20 years with a mean of 13 years. Three
quarters of the insureds were male. The insurance policies were acquired by Coventry at
early stages. The average policy year when the policies were bought was about 3; the
youngest one was just one month old while the oldest was bought in its 24th policy year.
Most policies had large amounts of death benefits: the average is 4 million dollars and the
largest one reaches $20 million.  Their acquisition costs had a mean of $0.44 million and a
range of $20,000 - $6.8 million. Standard & Poor’s credit rating of insurance policies’
original carrier is also provided. The rating ranges from BBB- to AAA, with almost all
carriers above investment grade. We convert the credit ratings to a numerical scale 1 to 5 with

AA- and below equals to 1, AA equals to 2 and so forth.

3. Calculating Expected Returns and Risk Premiums

The first set of IRRs, IRR™, is obtained by solving the following equation:

LE Premium; NDB

t=1(1+1RR(1))t (1+IRR(1))LE’

AC=-7 (1)

in which 4C stands for the acquisition cost of a life settlement, PV denotes the operator of
calculating present value, Premium, indicates the premium expected to be paid in month ¢,
NDB r is the net death benefit to be paid at the expected death time. The unit of time used
in the present value operator is month since the premium schedules of life settlements are in
terms of months.  The monthly premium projection were provided by Coventry and used as
a basis of pricing calculation. The obtained monthly IRRs are then multiplied by 12 to

become annual rates.
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All IRRs were computed in two ways to make sure they are numerically stable. The
first algorithm is a built-in function called “irr” in MATLAB R2011b. To ensure of the
regularity/reasonableness of the obtained IRRs,* we also use the grid-search method on the
present value of each life settlement by varying the discount rate between -100% and 100%.
None of them have multiple rates. We detect 2 life settlements having negative IRRs.  After
inspecting the projected premium schedule, we found that it is the sums of expected premium
payments exceed the nominal death benefits caused negative IRRs. We drop all samples
with negative IRR for robustness. The distribution and the associated summary statistics are
presented in Figure 1.

[Insert Figure 1 about Here]

The mean IRR of the sampled life settlements is 8.62%. The standard deviation of the
IRR distribution is small: 1.21%. The distribution is right-skewed: the skewness is about
-0.91. The distribution is leptokurtic with kurtosis equals to 4.22.

We further calculated the expected IRRs of life settlements under uncertain death time.
To take into account the differences between the policyholders underlying life settlements
and the general public and to facilitate the comparisons between certain and uncertain death
time cases, we scaled the death probabilities (q.; the probability of the insured, age of x,
dying within one year) of 2008 Valuation Basic Table (VBT 2008) from the Society of
Actuaries (SOA) so that the life expectancy for each life settlement would be equal to that in
Coventry’s dataset. That is, let ex be a function that maps death probabilities ¢, to life
expectancy. We find the scaling parameter a so that

ex(aqy) = LEcoventry'

where LE qventry 1S the life expectancy estimate provided by the medical underwriter. And

adj
x

we use the adjusted probability of death g, = aq, to compute the expected cash flow and

solve for IRR.

4 Brealey, Myers, and Allen (2011) pointed out that an investment may have no or multiple IRRs.
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We solve the following equation to obtain the ex-ante IRR®:

adj Premiumg adj adj NDB
AC =—-Y¢ —z T —
t=1 tFx 1+IRR(2) t—1Px qx+t—1 1+IRR(2)

()

where @ indicates the ultimate age of the mortality table and t_lpf;df stands for the
probability that an insured with age of x survives to time ¢ with the adjustment to life
expectancy provided by Coventry. The ultimate age w is 110 years old for both US male
and female mortality tables in VBT 2008. We assumed uniform distribution of death (UDD)
for fractional years. The distribution of the IRRs obtained by Equation (2) is presented as
Figure 2.

[Insert Figure 2 about Here]

The IRRs calculated under uncertain death time has a higher mean of 11.25% than that
of the IRRs assuming the death of the underlying insured happens at exactly the moment life
expectancy predicts. Higher IRR on average may be justified by two
observations/speculations.  Firstly, the changes in IRRs are asymmetric between death is
happening earlier and later than expected. Because IRR is a convex function in death time,
the increases in IRRs due to earlier deaths are larger on average than the decreases in IRRs
because of later deaths. Take the policy that has 11.167 years (i.e., 134 months) of life
expectancy as an example. The IRR when life expectancies are 50 months, 134 months, and
218 months from the inception of the life settlement is 39.29%, 6.87%, and 6.71%,

respectively.”
Secondly, IRR® hasa higher mean than the first set because it incorporates the

uncertainty of death time. The difference between these two sets of IRR may be regarded as
the risk premium for the non-systematic mortality risk. The risk premium is high probably
because the IRR of a life settlement is quite sensitive to the death time of the underlying

insured and the diversification of non-systematic mortality risk is difficult for life settlement

> The associated probability is 0.37%, 0.46%, and 0.29% respectively.
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buyers to implement (possibly due to the underlying policy is usually large and the limited
availability of life settlements in each trade).

The IRRs calculated under uncertain death time has a higher standard deviation of
1.76% than that of the IRRs assuming the death of the underlying insured happens as life
expectancy predicts. This is reasonable due to the introduction of non-systematic mortality
risk. The IRR distribution becomes positively skewed under uncertain death time can be
explained by the asymmetry effect of changes in death time on IRRSs.

We also consider the effect of tax to life settlement. Internal Revenue Service (2009)
addresses the tax treatment to life settlement. The gain of life settlement investor should be
treated as ordinary income instead of capital gain. Since we do not have income data of
individual investors, we simply assume the income tax rate is 15% in the calculation
henceforth. Adding tax in fact lowered IRR for a considerable amount. In our calculation of
certain lifetime IRR, 15% capital tax lowered the rate to return by about 1%, to 7.73%. For
uncertain lifetime IRR, the tax effect lowered the rate of return by 2%. This is hardly
surprising because in the latter the expected tax payment is distributed throughout the whole
schedule instead of at expected death time.

The second way of incorporating uncertain death time is by estimating the distribution
of IRR. That is, we compute IRR for every possible death time and use the result as an
empirical distribution. These IRRs represent the actual rate of return the policyholder in every
state of the world. Then we weigh them via the probability distribution of death time K, to
get the expected IRR.

In this case the expected IRR of the policy is computed as follows:

1. Given that the insured is age x, for each possible deathtime t =x 4+ 1m,x +

2m,...,w — Im, w, we compute IRR; assumes that insured dies at time t.
2. If time of death is within first 12 months of funding date, then instead receive the

death benefit immediately, the insured will receive the death benefit at the end of
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that year.
3. Theexpected IRRis IRR® =¥ . P(K, = x + t)IRR,.

Figure 3 presents the distribution of expected IRR. The average expected IRR is 17.56% with
standard deviation 3.18%. It can be shown this approach will always yield higher expected

IRR than the previous approach from Jensen’s inequality.

4. Possible Determinants of the Spreads and Variable Specifications

The rate spreads of investing on life settlements have several sources including the
mortality risk premium, the premium for bearing the default risk of the underlying insurer,
the illiquidity premium, tax benefits of life insurance policies, and the profitability resulting
from insureds’ surrender behaviors. Life settlements can be regarded as substitutes for
surrenders.  Stronger motivations to surrender insurance policies imply more willingness to
enter life settlement transactions.  The terms of such transactions will be worse as a result,
which implies higher rate spreads of life settlements. The determinants of surrender rates
therefore will also be those of life settlements’ spreads.

There were few papers studying the determinants of surrender rates. Some of them
identified macroeconomic variables affecting the surrender rates such as Tsai, Kuo, and Chen
(2002), Kuo, Tsai, and Chen (2003), and Kim (2005); some (e.g., Transactions of Society of
Actuaries Reports; Taiwan Standard Ordinary Experience Mortality and Lapse Rate Reports;
Fier and Liebenberg, 2012) investigated individual/family variables affecting surrender
behaviors. These reports/studies found that policy year and healthiness are negatively
correlated with surrender rate.

Therefore, the independent variables used in this study include healthiness proxy
variables, policy year, and rating. We first use the life expectancy estimated from the VBT
2008 as the proxy for the health indicator of the underlying insured. Since Transactions of

Society of Actuaries Reports indicates that healthier people have smaller tendency to
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surrender their policies and thus are less willing to enter life settlement transaction, we expect
life expectancy to be negatively correlated with the rate spread.

For comparison’s sake we also decompose the healthiness variable to age, gender, and a
private information indicator. We expect age is negatively correlated with healthiness of the
insured. We also expect male is more risky than female. Other than that, we expect the life
expectancy estimated by medical underwriter contains proprietary information that may tell
us more than age and gender. We use the difference between life expectancy from Coventry
and VBT 2008 to represent he private information indicator.

We retrieve the private information contained in the life expectancy estimated by

Coventry as follows:

Underwriting information = LE¢oyentry — LEypr,

in which LE,g; indicates the life expectancy estimated from the 2008 SOA VBT mortality
tables. The difference between two life expectancy estimates may be regarded as proprietary
information provided by the medical underwriter. We expect that the person identified by
the Coventry’s medical underwriter to be healthier than usual (given the same age and gender)
will result in a lower spread of the life settlement.

Tsai, Kuo, and Chiang (2009) showed that policy year is negatively correlated with
surrender rate. We therefore expect policy year to be negatively correlated with the spread.

The rating of the underlying insurer reflects the default risk undertook by the life
settlement investor. The investor will require risk premiums.  Therefore, we expect that
the life settlement originated from a policy issued by a better-rated insurer will render a lower
spread.

With regard to the dependent variable, we calculate the ex-ante rate spread as the
difference between the expected IRR of a life settlement and a matching risk free rate close to
the funding date of that life settlement. We first collect the term structure of the zero rates

of US government bonds in the first trading day of the month in which the life settlement is
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funded and then specify the matching risk-free rate to be the spot rate with the same time to
maturity to the life expectancy of the life settlement.  Since the life expectancy of a life
settlement is expressed in terms of months, we interpolate linearly to match the maturity with
life expectancy. We have three sets of spreads corresponding to the IRRs calculated by

Equations (1) to (3) respectively.

5. Empirical Results

We conduct regression analyses to investigate the significant determinants of the spreads.
Since we have three sets of IRRs calculated under certain death time, uncertain death time,
and uncertain death time with mortality improvements, we report three sets of regression
results. The results are presented in Table 2.

[Insert Table 2 about Here]

The first set of regressions has high R, and the signs of all coefficients are consistent
with our expectation. Both age and gender have a positive and significant coefficient, which
is consistent with the conjecture that healthier persons have less motivation to surrender their
policies and thus lead to less favorable terms to life settlements’ investors.

Underwriting information reflect the evaluation from the third party medical underwriter,
indicating policyholder’s healthiness (or unhealthiness) beyond standard mortality tables. It
has a negative coefficient and is significant.

Policy year is expected to have a negative coefficient since older policies exhibit lower
surrender rates and lead to lower IRRs of life settlements eventually.  Our regression results
are consistent with this expectation.  This expectation is valid for alternative healthiness
proxies.

The rating of the insurer that issues life insurance policies underlying life settlements
should be negatively correlated with the expected IRR of life settlements since higher rating

means lower default risk (premium). However, the coefficient result is not significant,
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though negative, in the regression.

We add one more control variables to the regression, which is the size of the policy at
the funding date. The policy size can be an indicator to policyholder’s net worth, from the
perspective of insurable interest. Rich people tend to be healthier because of the better living
condition, or, if sick, can afford better medical care. We use the logarithm of net death benefit
to control for policy size.

The results of the second set of regressions are similar to those of the first set. All
coefficients have the same signs.  The major differences are in the adjusted R? and the
significance levels of policy year and rating. The R? is lower (55%) when age and gender
are used as the healthiness proxy. The underwriting information is positively significant.
Policy year and rating are both significant in this case.  The results of the third set of
regressions are rather similar to those of the second set. ~ All coefficients have the same signs,

and most have the same significance levels.

6. Conclusions and Future Work

Scholars as well as practitioners have paid significant attention to the determinants of
rate spreads on various investment products including common stocks, corporate bonds,
sovereign bonds, corporate loans, and catastrophe bonds. The determinants of the rate
spreads on life settlements have not yet been examined, even though life settlements are an
increasingly popular asset class with growth potentials. This study extends the scope of the
literature on the spread determinants of risky assets to life settlements, in addition to
extending the boundary of the literature on life settlements.

We first estimate the IRR of a life settlement given the insured’s life expectancy as
people calculate the YTM of a corporate bond. Then we calculate the IRRs under uncertain
death time with and without considering mortality improvements. Our data on life

settlements are from Coventry, and the data contain attributes of the underlying policies and
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insured as well as the life expectancies estimated by a major medical underwriter. The
differences between the calculated IRRs and the spot rates of US government bonds that have
the maturities matching with the expected death time represent the rate spreads expected by
the investors. The tested independent variables include: mortality risk premium, the
premium for bearing the default risk of the underlying insurer, and some variables associated
with the insureds’ motivations to surrender their policies.

The regression results show that the rate spreads of life settlements contain the risk
premiums associated with the default risks of the underlying insurers.  The rate spreads also
relate to the factors affecting the surrender tendencies of the underlying policies including
policy year, the policy value normalized by death benefit, and the proxies for the healthiness
of the insureds.  All regression models have adequate adjusted R? and consistent results.

We further infer that there are significant, positive premiums for bearing non-systematic
mortality risk from the differences between the IRRs obtained under uncertain death time and
those under certain death time.

We plan to extend the current study in the near future in several aspects.  Firstly, we
would like to make our inference about the non-systematic mortality risk be more rigorous by
introducing risk-neutral valuations. Such valuations can also be applied to estimate the
premiums for bearing systematic mortality risk resulting from uncertain mortality
improvements. We plan to build an empirical CBD model (Cairns, Blake and Dowd, 2006),
in addition to the current Lee-Carter model, to simulate future mortality rates since the CBD
model is better suited for senior people. We also plan to estimate the spreads resulting from
the tax benefits of life insurance.
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Table 1: Summary Statistics on the Samples of Life Settlements

Mean Median Standard Deviation Minimum  Maximum

Insured’s Age 75.63 75.38 4.60 63.42 86.75
Life Expectancy 1298 13.13 2.78 5.92 19.67
Gender (Male = 1) 0.75 1.00 0.43 0.00 1.00
Policy Year 282 233 3.22 0.08 23.67
Rating 257  3.00 0.99 1.00 5.00
Acquisition Cost

. 044  0.23 0.66 0.02 6.80
($million)
Death Benefit

. 409  3.00 3.77 0.23 20.00
($million)
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Table 2: Regression Results: Certain Death Time vs. Uncertain Death Time (with or without
Mortality Improvements)

8)) (2) 3)

sprd_ LE sprd LE sprd_ql sprd _ql sprd q2 sprd_q2
(Intercept) 1036 -306 1513 093 3564 2755

(L14)  (196)  (149) (295  (1.88)  (3.84)
LE_VBT 002 002 008

(0.00) (0.00) (0.01)
Underwriting Information 003 -0.03 002 -002  -007 007

(0.000  (001)  (0.01)  (0.01)  (0.01)  (0.01)
Policy Year 012 -011 014  -014 013 011

(0.02)  (003)  (0.04)  (0.04)  (0.04)  (0.05)
Rating 005  -005 001 001 026 0.25

(0.08)  (008)  (0.11)  (0.11)  (0.16)  (0.16)
logAcqCost 021 -019  -034 033  -080  -073

0.09)  (009)  (0.41)  (0.11)  (0.14)  (0.15)
Insured Age 0,13*** 0.16*** 0.63***

(0.02) (0.03) (0.05)
Insured Gender 0.38** 0.04 1,74***
(0.18) (0.26) (0.32)

R’ 0.21 0.20 0.15 0.15 0.54 0.53
Adj. R’ 0.20 0.18 0.14 0.14 0.54 0.52
Num. obs. 343 343 341 341 343 343

Life settlement spread Life settlement Life settlement

(certain death time) spread spread

(uncertain death (uncertain death
time) time, certain
mortality

improvement)

The asterisks ***,

Note: Heteroskedasticity-consistent standard errors are reported in parentheses.
** and * indicate significance level of 1%, 5%, and 10% respectively.
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Table 3: Correlation

Underwriting

IRRLE spread Age Gender Policy Year Rating
information
IRRLE spread
Age 0.17*%**
Gender 0.11%* -0.28***
Policy Year -0.16%** 0.03 0
Underwriting
information -0.17*** 0.48%** -0.24%*x* -0.17***
Rating -0.03 0.14** -0.09 0 0.06
Log policy size -0.05 0.18*** -0.06 -0.12** -0.01 0.09*

Note: The asterisks ***, ** and * indicate significance level of 1%, 5%, and 10% respectively.
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Empirical Tests on a Relational Model of Mortality Rates
with Applications to Internal Hedging

ABSTRACT

Modeling and forecasting mortality rates are crucial to life insurers, social benefits
programs, and the society. There is a vast mass of literature on the methods to model and/or
forecast mortality rates. Relational modeling (Brass, 1971; Tsai and Jiang, 2010) has merits,
but its performance had not yet been compared with other types of models. To fill this gap,
we use empirical data to test how a linear hazard transform (LHT) model compares with the
renowned Lee-Carter and CBD models in terms of in-sample fitting and out-of-sample
forecasting. We find that the LHT model produces the smallest errors on the data of US and
UK that cover both genders from 1951-2007 for the people 25 years old or more.

Moreover, the proposed LHT model provides better ways of establishing mortality
immunization strategies than Wang et al. (2010). It is more general and may give explicit
formulas for mortality durations. The generality of our model further reveals the deficiency
of internal hedging that has not yet been identified in the literature. This finding provides
support for the development of mortality-linked assets.

Keywords: mortality rates, fitting, forecasting, hedging, duration
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INTRODUCTION

Modeling the changes/dynamics of mortality rates is critical to the solvency of life
insurers, social benefits programs, and the society as a whole. Mortality rates are one of the
key factors in determining the premiums and reserves of life insurance and annuity products.
Ignoring possible mortality rate changes can lead to significant under-pricing and
under-reserving that may impair the profitability and solvency of a life insurer. Retirement
programs and long-term care systems need to consider the dynamics of mortality rates as well
since incomes and benefit outgoes depend on mortality rates. Under-estimating
improvements in mortality rates can jeopardize the programs’ solvency and continuity.
Mortality rates are also a significant factor in shaping the population structure of a country
that in turn affects the growth prospects of many industries. Therefore, modeling the
dynamics of mortality rates is important.

Many scholars recognized the importance of mortality rate dynamics and developed
various models to understand and/or forecast mortality rates. Demographers and
sociologists developed explanatory models to understand which factors affected the mortality
rates of certain populations with respect to age, gender, region, race, period, etc. (see Stallard
(2006) and the references therein). Lee and Carter (1992) established a fitting and
forecasting model in which one common factor drove mortality rate dynamics of all ages and
a pair of age-indexed parameters differentiated the changes of age-specific mortality rates.
Later extensions such as Renshaw and Haberman (2003) and Hyndman and Ullah (2007)
identified more common factors.  Another stream of literature has assumed specific
functional forms for the mortality rate curve and established time-series models for the
function parameters to project mortality rates (e.g., McNown and Rogers, 1989; Cairns, Blake,
and Dowd, 2006a; Plat, 2009; Blackburn and Sherris, 2011). The aforementioned
common-factor models and curve-fitting models could take the cohort effect into account
(e.g., Renshaw and Haberman, 2006). A more recently developed stream of literature is
continuous-time models. Some applied the idea of the term structure modeling on interest
rates to the age structure of mortality rates (Dahl, 2004; Dahl and Mgller, 2005; Biffis, 2005;
Cairns, Blake, and Dowd, 2006b).  Others, such as Biffis (2005) and Luciano and Vigna
(2005), borrowed from credit risk modeling.

Another distinct method is called relational modeling. It hypothesizes the existence
of a relation between two mortality rate tables/curves.!  The relations might emerge across
genders, sub-groups of populations, geographic areas, and time.  For instance, Brass (1971)

! The term “mortality rates” in this paper is used in a broad way to convey the general concept of mortality and
survival.  Similarly, the term “mortality rate curves” encompasses survival probability curves.
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assumed that two mortality rate tables could be related to each other linearly in terms of their
survival probabilities. Later extensions added more parameters to allow for the bends in
survival functions (e.g., Zaba, 1979; Ewbank, De Leon and Stoto, 1983) or inserted
age-specific terms to capture deviations from linearity (Murray et al., 2003). The above
papers analyzed mainly the relations of mortality tables across regions. Tsai and Jiang
(2010) focused on the relations across time, on the other hand. They assumed that the forces
of mortality of two mortality sequences could be modeled by a linear relation. Then they
tried fitting and forecasting on the 1980 and 2001 CSO tables.

Relational modeling has its merits. It starts from a mortality rate curve that contains
information on how the mortality rates of different ages relate to each other. These relations
may result from biological reasons (e.g., new-born babies have higher mortality rates;
mortality rates increase with ages for adults) or social reasons (e.g., the speed driving by
young adults leads to higher mortality rates). Common-factor models did not fully capture
such information. The second step of relational modeling specifies a relation between two
curves. For instance, mortality rates on the curve of a later year can be regarded as a
transformation of those on the curve of an earlier year. The justification for such
specifications is that mortality rate curves move slowly with small changes and shift stably in
terms of shape. Small and stable changes might result from biological constraints and/or the
rigidity of social changes (e.g., health care systems, living habits, medical technology
improvements, and medicine inventions).

We are the first to empirically assess the fitting and forecasting capabilities of a
relational model relative to other types of models. More specifically, we assume that there
exists a linear relation, called linear hazard transform (LHT), between the forces of mortality
(hazard rates) of two curves. Then we estimate the parameters of the LHT using the
empirical data of US and UK that cover both genders from 1950 to 2007. To evaluate the
performance of LHT model, we choose the well-known Lee-Carter model (Lee and Carter,
1992) and CBD model (Cairns, Blake and Dowd, 2006a) as benchmarks and conduct
in-sample fitting and out-of-sample forecasting comparisons. Both models are good
representatives of their types and have been compared extensively in extant research (e.g.,
Lee and Miller, 2001; Brouhns, Denuit and Vermunt, 2002; Czado, Delwarde and Denuit,
2005; Booth, Tickle and Smith, 2005; Cairns et al., 2009). We find no papers that reported
empirical comparison of relational modeling with other types of models.

The second contribution of this paper is applying our LHT model to constructing the
insurance portfolios that are to be immunized from mortality rate risk. Our LHT model
requires merely two parameters to depict the dynamics of the entire mortality rate curve.
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This feature enables us to use the durations with respect to these two parameters to construct
a portfolio immunized from sophisticated changes of mortality rate curves. Our LHT model
is more general than that of Wang et al. (2010) which assumed that the force of mortality is
constant within each age interval and changes proportionally. Their method is indeed a
special case of ours: setting one of the two parameters of our LHT model to zero. Another
advantage of our method is that it may render explicit formulas for mortality durations, which
makes risk management easier and more accurate.

Statistical comparisons show that LHT produces the smallest fitting and forecasting
errors. In fitting tests, it yields 71.79% and 70.49% lower RMSEs (root of mean square
error) and MAEs (mean absolute error) on average than the Lee-Carter model on the US data
and 55.42% and 58.38% lower errors on the UK data. Our mean fitting errors are 87.22%
and 86.65% lower than those of CBD in US and 85.54% and 84.95% lower in UK. The
median, standard deviation, minimum and maximum of our fitting errors across the sampling
periods are smaller than those of the two benchmark models (ranging from 42.22% to 94.69%)
as well.

In forecasting tests, the average errors of LHT during the forecasting period are
12.80% (RMSE) and 14.91% (MAE) of Lee-Carter’s on the US data and 33.15% (RMSE)
and 31.36% (MAE) in UK. LHT’s mean forecasting errors are lower than those of CBD by
93.00% (RMSE) and 92.48% (MAE) in US and 84.64% (RMSE) and 83.83% (MAE) in UK.
All other statistics of LHT’s forecasting errors are also smaller than those of the benchmark
models. The good performance of LHT is robust across genders, periods, and the
sub-groups of ages larger than 45.

We then derive and calculate the dollar durations of the reserves at inception with
respect to the two parameters of the LHT model for ten life insurance and annuity products to
quantify their mortality rate risks. We find that the reserves of these products are more
sensitive to the shocks from the parallel shifts of force-of-mortality curves than to the
proportional changes. This fact highlights the importance of our extension to Wang et al.
(2010) since their immunization strategies were based on the assumptions that the force of
mortality is constant within each age interval and shifts proportionally. We further construct
some portfolios that are immunized from the risks of both types of shifts in mortality rate
curves. We find that natural/internal hedging might be infeasible due to the close relations
among premiums/reserves of insurance and annuity products. This finding is new to the
literature and appeals for the development of mortality-linked assets.

The remainder of this paper is organized as follows. Section 2 specifies the relations
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between two mortality rate curves. Section 3 delineates how we conduct statistical tests to
compare the LHT model with the two benchmarks. Section 4 illustrates how our model can
generate mortality immunization strategies and reveal the deficiency of internal hedging.
Section 5 summarizes and concludes the paper.

RELATIONS BETWEEN TWO MORTALITY RATE CURVES

We regard the changes of mortality rates across time as transformations from one
curve to another. More specifically, we assume that there is a linear relation (plus an error
term) between the forces of mortality (i.e., hazard rates) of two mortality rate curves for years
Aand B=A+a,where aeN. The mathematical form is:

HonO) =t ?) <l () + B +07 (1), 1€[0,n], 1)

where ﬂf,n and ﬂf,,, denote the forces of mortality for years 4 and B respectively, x

indicates the starting age of the mortality rate curve to be studied, n=w-x, ® represents

the end age of the studied rate curve, o’ and 8:"” are constants to be estimated, and &7 is

the error term.  Year 4 is called the base year in the following while year B is called the
target year.

Casual observations seem to support the linear assumption. Figure 1 plots the

relations between ¢, (f) and  g65, (1) with A = 1950 and 2000 for the females of UK

and US, respectively.? It renders preliminary support for the reasonableness of the linear
assumption.
[Insert Figure 1 Here]

Since the k-year survival probability , p. = ¢ *““** | Equation (1) implies the
following relation between , p? and  p”:

! a0 e—(lmf,;f*)xj: i e[} g [ et (yar et 5 gl e—jfs;é;f*mdt L ©

kpf = :[kp;:1

Taking the natural logarithm on both sides yields:

(-In, p?) = (U a2)x (=In pf) + f2 x4 [ X5 (1) 3)

2 g, (t) s derived by g6, () = —In(l-gq,s,,), t €[0,64].
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Then we may estimate the parameter pair (o’ ﬁff) using regular regression analysis that

x,n !

o . n k 2
minimizes the sum of squares of integrated errors Z[ IO e’ (t)dt} on the data set
k=1

{(-=In p!,~In, p?)k=1,2,...,n}

We can grasp the economic meaning of the transformation as well as the meanings of
a and 8 from Equation (1).®  The transformation decomposes the changes in the forces of

mortality from the curve of an earlier year to the curve of a later year into two components: a
proportional change reflected by « and a parallel shift determined by . Assuming g =0

implies that the curve shifts proportionally. In this case, higher forces of mortality have
larger improvements or deteriorations (depending on whether « is negative or positive).
This type of curve changing behavior is also called the proportional hazard transform.
Assuming « =0 corresponds to the case of a parallel shift of the force-of-mortality curve.

STATISTICAL TESTS

Data, Benchmarks, and Measures

We draw historical mortality rates ¢, from the Human Mortality Database (HMD).*

The drawn data cover both genders of US and UK, the countries that have probably been
studied the most. The sampling period is from 1950 to 2007, a few years after the World
War 11 to the most recent year for which data are available.”

Since the majority of the persons purchasing life insurance and annuities are young
adults and older people, we focus on the mortality rates of ages 25 and above. More
specifically, we test the LHT model on the 25+ section of mortality rate curves.® We further
set =109 to avoid abnormal disruptions on the curves between ages 109 and 110 caused

by setting p,,, to be 0 in the original US and UK mortality tables.

We choose two well-known models as the benchmarks to be compared with the LHT

¥ We omit the superscripts and/or subscripts of the parameters whenever the omission causes no confusions.
* Many researches such as Steinsaltz and Wachter (2006), Bhaskaran et al. (2008), Wang et al. (2010), and
Vaupel (2010) obtained morality rate data from the HMD as well.
> As of March of 2012, the most recent mortality rates available for US are those of 2007 while the data of UK
are updated to 2009. We preferred the same length of history for both countries.
® We also test two other sections, 35+ and 45+.  The results are consistent with those from the 25+ section,
which may also be inferred from Tables 4 and 8. We do not present these results for the sake of brevity.
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model: the Lee-Carter model and the CBD model. The Lee-Carter model is a one-factor,
linear model assuming that:

logg, ,=a +bK, +¢ ,, 4)
where ¢, denotes the one-year death rate of age x inyear 4, a  and b, are

age-specific parameters, K, represents the time-varying factor of mortality rates, and ¢_,

indicates the fitting error associated with age x inyear4.” We follow Lee and Carter
(1992) to estimate and forecast the parameters.

The other benchmark that we choose is the CBD model that became popular recently.
The model specification is:

logitq, , = KP +KP(x—x)+e,,, (5)

where logitg, ,=g¢, ,/(1—q,,),andbothK§ and K are modeled as random walks

with drifts (Cairns et al., 2009).

We adopt two accuracy measures, RMSE and MAE. Their definitions are:

1 4+T 1 o-1 ~
ruse- L § J— Y S —a. ) and

T A=4+1 2((0 - x[) se{m, [} x=x,

1 A+T

w-1 ~
MAE=mAZ > Z‘qs,x,A—qs,x,A

=4 +1se{m, [} x=x;

where ¢, ., indicates the observed one-year death rate for gender s (m and f'denote male

and female, respectively) and age x inyear 4, c}sm represents the fitted/forecasted value,

and x, is the starting age of the section on mortality rate curves. These two measures have

been used in the literature (e.g., Carter, 1996; Gakidou and King, 2006).

In-Sample Fitting

" The original model in Lee and Carter (1992) is logm, , =a_+b.K ,, Where m_, isthe central death rate of

age x inyear 4. We substitute the one-year death rate for the central death rate to ensure that the LHT and

Lee-Carter models use the same raw data and avoid the disturbances from the differences between m_ and ¢, .
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In-sample fitting is done by fitting Equation (3) using two mortality rate curves. We

first draw the ¢, of two different years from our dataset, and calculate two sets of

corresponding , p.: p., and ,p .. Taking the natural log of these , p, and then

running the regular regression analysis on Equation (3) yields a and 25' Combining the
estimated & and £ with the input Do Gives usk;axyB=[kpx,A]l+‘;xe‘3x". We compute

the corresponding &LB =1- ;)x’B and then RMSE and MAE to measure the fitting errors.

Repeating the steps for 4 = 1950-2006 with a =1, we obtain the following table.?
[Insert Table 1 here]

Table 1 shows that LHT produces the smallest errors in in-sample tests. In both US
and UK, LHT generates smaller mean, median, standard deviation, minimum, and maximum
of fitting errors than the two benchmark models do. For instance, Table 1a exhibits that
LHT’s RMSE averaged across ages, sampled years, and genders is 28.21% of Lee-Carter’s
and 12.78% of CBD’s in US and 44.58% and 14.46% of theirs in UK. The improvements of
LHT upon the benchmark models with respect to the median RMSE of fitting errors are
similar to those in the mean errors. In addition, the standard deviations of LHT’s RMSEs
are 22.38% and 22.39% of Lee-Carter’s and CBD’s in US and 30.95% and 17.61% in UK.
LHT also performs well on both ends of error distributions.  For example, the minimum
RMSEs of LHT are 52.11% and 5.31% of Lee-Carter’s and CBD’s in US and 103.89% and
9.20% in UK. LHT’s maximum RMSEs are 29.40% and 35.43% of Lee-Carter’s and
19.52% and 21.48% of CBD’s for US and UK data, respectively. Table 1b further
demonstrates that LHT outperforms the benchmarks to a similar extent when MAE is used as
the fitness measure.

Table 2 indicates that LHT renders better fitting than the two benchmark models for
both genders among US and UK adults. The LHT model produces mean RMSEs that are
30.11% and 25.89% of those by the Lee-Carter model for US males and females, respectively.
The mean fitting errors in UK are also smaller: 42.41% for males and 48.52% for females.
Compared with the CBD model, LHT’s RMSEs are 15.01%, 10.55%, 14.41%, and 14.53%
of CBD’s for US males, US females, UK males and UK females respectively. Table 2b
displays that the LHT model outperforms the benchmark models to a similar extent when we

® The sample size 7 in estimating the LHT model is thus equal to 2006-1950+1 = 57.  On the other hand, the
sample size used to estimate the Lee-Carter and CBD models is 58 since the estimation is done upon single-year
data rather than the data of two-year differences.
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switch the fitness measure to MAE.
[Insert Table 2 Here]

Table 3 shows that the LHT model renders better fitting than both benchmark models
in all sub-periods of the sampling period in US and UK with respect to the two accuracy
measures. The fitting errors averaged over genders and ages during each decade of the
sampling period produced by LTH are smaller than those by Lee-Carter and CBD. For
instance, its mean RMSEs for US males during the decades of 50s, 60s, 70s, 80s, 90s, and
00s are 57.88%, 50.60%, 31.04%, 18.53%, 24.40%, and 15.42% respectively of the
Lee-Carter’s. The ratios are 40.23%, 38.92%, 37.64%, 40.21%, 39.37%, and 34.47% for
UK females in terms of MAE when compared with the CBD model.

[Insert Table 3 Here]

The better performance of LHT than the benchmark models can be attributed to the
better fitting upon the populations of 45 years old or more. Table 4 demonstrates that LHT’s
fitting errors are smaller than Lee-Carter’s and CBD’s for the age groups of 45-64, 65-74,
75-84, and 85-109 with respect to genders, countries, and accuracy measures.®  For instance,
the ratios of LHT’s fitting errors to Lee-Carter’s for US males in terms of RMSE for these
age groups are 88.70%, 73.17%, 81.13%, and 25.88% respectively. The ratios to CBD are
61.82%, 55.57%, 62.15%, and 32.98% for UK females in terms of MAE. On the other hand,
both Lee-Carter and CBD models outperform LHT for the age groups of 24-34 and 35-44.
Since LHT provide better fitting for most age groups (45-109) than the benchmark models do,
its overall performance is better as shown by previous tables.

[Insert Table 4 Here]

Table 4 implies that LHT will perform better than Lee-Carter and CBD in the
sub-sections of mortality rate curves with ages greater than 25.  This is confirmed by
replicating Tables 1-3 using the data of age groups 35+ and 45+.2°  The superiority of LHT
in the 35+ and 45+ sections of the mortality rate curve is as good as, if not better than, that in
the 25+ section.

Out-of-Sample Forecasting

For simplicity as well as following Lee-Carter (1992), Nelson and Siegel (1987), and
Cairns et al. (2009), we assume that the dynamics of the two parameters in Equation (3)
follow the random walk with a drift individually. More specifically, we assume that:

° There is one exception: the 45-64 age group of UK males when measured by MAE. LHT’s MAE is 103.1%
of the Lee-Carter’s.
19 We do not present the replicated tables for the sake of brevity.
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A,4+1 A-1,4

}/x,n - }/x,n = Aj/:l,n = A}/x,n + gi/,n’

where Ay, denote the long-term mean change (i.e., drift) of y A

X,hn

,y=oao0rf, and
g, ~N(0,07,). This set of assumptions are validated by the Dickey-Fuller tests in which

we found no unit roots in the time series of & and ,B

We estimate the drifts using the F-year periods of data prior to the *“current” year A
upon which the projection would be made.  For instance, when we have mortality data up to
1989 (i.e., 4=1989) and want to make projections for 1990, we will use the period from
(1989 F') to 1989 to estimate the drifts. Our estimators for the drifts are simply the
averages of changes in parameter values over the corresponding F-year period:

—=A-LF

1 A-1 ni
A - Ay 6
Voo =FT > Ay, (6)

T Li=A-F+1

where Ayl =pi™t— ™ andthe pairs (72,7,"*") are estimated in in-sample fitting.

We set F' = 40 for out-of-sample forecasting tests after taking into account the tradeoff
between sufficiency of the in-sample size and the number of out-of-sample tests.

The projected parameter 7;;”1 is assumed to satisfy:
Al ndtd | A 11
7/):,;1 = 7/):,/1 Tt A7,v,r1 ' (7)

Plugging the projected parameters into Equation (3) to the mortality rates of year 4 would
yield the projected mortality rates of the person aged x in year A+1 (i.e., k;f”). Then we

calculate RMSE and MAE in the same way as in the in-sample fitting section to measure the
forecasting errors. Repeating the above procedures for 4=1990—-2007 produces the
following table.

[Insert Tables 5 Here]

Table 5 displays that the out-of-sample forecasting errors of LHT are smaller than
those of the Lee-Carter and CBD models in both cases of US and UK. For instance, the
mean RMSEs of LHT as shown in Table 5a are 12.80% (US) and 33.15% (UK) of
Lee-Carter’s and 7.00% (US) and 15.36% (UK) of the CBD’s. LHT has lower error
variations as well.  For example, Table 5b indicates that the standard deviations of MAEs

1 We use the top script " toindicate a projected value, " to denote an estimated value,and  foran
averaged value.
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associated with LHT are 0.000239 and 0.000385 for US and UK respectively. They are
11.11% and 20.57% of Lee-Carter’s and 15.88% and 23.96% of CBD’s.  Other statistics in
Table 5 also support the superiority of LHT to the benchmark models. One example is the
smaller maximum RMSE produced by LHT, 0.001872, compared to 0.015735 by Lee-Carter
and 0.020640 by CBD for US.

We further find that the superiority of LHT is more significant in forecasting than in
in-sample fitting. The error ratios of LHT to Lee-Carter with respect to almost all statistics
in terms of both accuracy measures are smaller in forecasting tests. This can be seen by
comparing 12.80%, 33.15%, 7.00% and 15.36% (the ratios of LHT’s RMSESs to benchmark
models’ as presented in the previous paragraph) with the corresponding 28.21%, 44.58%,
12.78% and 14.46% mentioned in the paragraph after Table 1. That the advantage of LHT
over the benchmark models is more significant in forecasting has material practical
implications.

For each gender in US and UK, LHT’s forecasting errors are the smallest. Table 6a
exhibits that the ratios of LHT’s mean RMSEs to Lee-Carter’s are 13.97%, 11.26%, 31.60%
and 35.99% for US males, US females, UK males, and UK females, respectively. The
corresponding ratios with respect to CBD are 9.01%, 5.14%, 17.43% and 12.90%. The
better performance of LHT than Lee-Carter and CBD models remains intact when the
accuracy measure changes to MAE. The mean MAEs generated by LHT are lower than
those by Lee-Carter and CBD as Table 6b displays.

[Insert Tables 6 Here]

Table 7 shows that the good forecasting performance of LHT is robust across the
decades of 1990s and 2000s.  For instance, the ratios of LHT’s mean forecasting RMSEs to
Lee-Carter’s for females are 11.00% (US) and 24.54% (UK) in 1990s and 8.81% and 48.84%
in 2000s. When compared with CBD in terms of mean MAE, the ratios for males are
10.62% (US) and 17.18% (UK) in 1990s and 8.25% and 20.04% in 2000s.

[Insert Table 7 Here]

Table 8 tells a story similar to Table 4. LHT performs well for ages 45+ while
Lee-Carter and CBD perform better for ages 25-44. For instance, the ratios of LHT’s
mean RMSEs to Lee-Carter’s for the age group of 85-109 are 11.69% (US males), 8.84% (US
females), 24.41% (UK males), and 26.81% (UK females). On the other hand, the
corresponding ratios for the age group of 25-34 are 128.57%, 347.92%, 367.21%, and
560.42% respectively. The mean MAEs of LHT are smaller than those of CBD for US
and UK adults aged 45 years old or more, but the relative performance reverses for the age
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groups of 25-34 and 35-44. LHT’s overall forecasting performance is better than the

benchmark models, as we have seen from Table 5, due to its better performance for more age

groups. The relative advantage of LHT in the age groups of 45 and above has practical

implications since the people in these age groups are the major customers of life insurers.
[Insert Table 8 Here]

RISK MANAGEMENT

One of the major usages of mortality modeling/projection for life insurers is to
manage mortality rate risk. Such management might involve constructing
internally/naturally hedged portfolios of life insurance and annuity products so that reserves
will not deviate from the expected to a significant extent.’> We illustrate in this section how
our LHT modeling has advantages over the models proposed in the existing literature to
establish hedged portfolios.

Mortality Durations

We may regard the LHT model as a two-parameter model of mortality improvement
or deterioration. Mortality risks can thus be measured and managed by the “durations” with
respect to parameters « and g.* More specifically, the sensitivity of a policy’s reserves

R. based on the adjusted force of mortality x.(¢)=(1+a)xu (t)+ £ (see Tsai and Jiang,

2011)toachangein « or B can be defined as

DD, (R.) =~ a@’; : (8)

where DD denotes dollar durationand y =« or g.** DD measures the change of the
reserves caused by the change of a mortality parameter. It can also be deemed as the slope
of the reserve-to-mortality-parameter curve with the opposite sign. Most models presented
in the literature have many more parameters. Life insurers hence cannot use these models
for mortality duration management since there will be many durations to match, which

12 The conventional way to manage mortality rate risk is reinsurance. ~Alternative ways involve asset-side
products/derivatives linked to mortalities. Few products are currently available though.

3 The idea is the same as the duration management for interest rate risk. Many financial institutions,
especially banks and life insurers, calculate the interest rate durations for individual assets and liabilities to
measure their exposures to interest rate risk. The use of interest rate duration in financial markets is extensive
(Bierwag and Fooladi, 2006). We borrow the idea of duration management but substitute interest rate for
mortality rate as the underlying risk factor.

4" Another popular risk measure is modified duration (AD ) defined as: MD,(R.) = —Z—]:/*x% = DD;_;R*) .
The economic meaning of MD is the percent change of reserves caused by the change of a mortality
parameter. DD is more suitable for life insurance since it avoids irregularities caused by small or zero
reserves (Tsai, 2009).
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demonstrates one advantage of our LHT modeling.

Under the LHT model, mortality durations may have explicit formulas that facilitate
risk management. Mortality rates of a future year are a function of the current-year
mortality rates with parameters of o and . Since appropriate reserves determined today

should take into account the expected changes in mortalities, reserves are functions of «
and paswell. The partial derivatives of reserves with respectto « and A may have

explicit formulas so that we can derive closed-form solutions for mortality durations.

In the following we define and derive mortality durations of the premiums and
reserves at inception for several products including n-year temporary life annuities-due,
endowment, and term life insurance as illustrations. Denote the net single premium of an
m-year deferred, n-year temporary life annuity-due issued to an individual aged x by:

m+n-1
: (9)

ml a‘cm =m| (.'.lx:m(yx-ﬁ—()‘) = Z kvak =
k=m k=m

where v=1/1+i) and §=In(1+i). Notethat m=0 (the case of n-year temporary life

annuity-due), n=1 (the case of m-year pure endowment) and »=w - x—-m (the case of

m-year deferred whole life annuity-due) are three commonly seen products. When the force

m+n-1 K -
e—jo L (1) 0Tt

of mortality _ changes proportionally to (1+ ), , the underlying curve becomes

(I+a)xu, +0 and the associated net single premium is:

m+n—1 e_J':[(1+a)Xﬂ,¥(t)+a‘]dt. (10)

m | axim((l-v—a)x,uvﬁé‘) =

k=m
We can then define the dollar duration of the net single premium for an m-year
deferred, n-year temporary life annuity-due with respectto « by:

- - éx:m((l-#a)x,ux+6) = éx:m(,ux-ﬁ-(?) et ‘ 11
DDa(m|ax:m):_Ia|I;rg a = Z (_Inkpx)xkpxxv . ( )
k=m

Similarly, we define the dollar duration with respectto g by:

m+n—1

| @il +p+0) = | Al +) = kx , p xv. (12)
,8 kpx
k=m

Assume that the death benefit is payable at the end of the death year. Denote the net
single premium of an n-year endowment policy as:

DDﬂ(nzl Clx:ﬂ) = _,IBILT(])

n=1
Axim - ;(kpx - k+lpx) Xvk+l + npx Xvn :1_d deﬂ ! (13)

where d=1-v. Thisimplies DDy(Axﬂ):—deDy(c”zx;m), y=a Or B. Setting
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n=w-x Yyields DD (4,)= —deDy(sz) that represents the relation between the dollar

durations of whole life insurance and whole life annuity-due. For the n-year term life

insurance, we have DDy(Aim) = —deDy(éx;m)—DDy(n | sz:ﬂ) since its net single premium

is Ai-m =4 -l a.d. The above durations of premiums can help life insurers to assess the

sensitivity of premiums to mortality rate variations.

For the level 4-payment, m-year deferred (m > h >1), and n-year temporary life
annuity-due, the dollar duration of its reserves at time O is

DD, (,R(, P(,| @x))) = DD, (,,| i) =, P(,| axai) x DD, (axi) (14)
where hP(mlc”zx;ﬂ)=,,1|éx:ﬂ/éx;m. Note that for the case of #=1 (single premium),

DD, (a.i)=0 and Equation (14) reduces to (11) and (12). Similarly, the dollar durations of

the reserves at time 0 for the level #-payment, n-year endowment and term life insurance
(n>h >1) can be derived respectively as:

DD, (,R(,P(A ) =DD,(4 )~ ,P(4 )% DD, (axi), (15)

and

DD, (,R(,P(4'))) = DD, (4'.)~ ,P(4")x DD, (a), (16)
where ,P(4_)=A4_/am and ,P(4' )= A la..
We give some numerical illustrations in the following. Assume that i=3%, x=45,
and  p (k=12,---,n=20) represent the out-of-sample forecasting mortality rates when

using the LHT model with 4=2007 and F=40. We calculate DD, and DD, ofthe

reserves at time O for 10 products. The results are as shown in Table 9.
[Insert Table 9 Here]

We find that annuity products and pure endowment have positive mortality durations,

implying exposures to longevity risk.  For instance, the (DD, , DD, ) of the reserves at time
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0 for the single-payment, 20-year deferred whole life annuity-due and the 20-payment,
20-year pure endowment are (3.16, 183.86) and (0.06, 5.48) respectively. The whole life
insurance, on the other hand, has negative mortality durations that implies exposures to

mortality deterioration risk.*> For example, the DD, and DD, of the reserves at time 0 for

the 20-payment whole life insurance are -0.13 and -12.11 respectively.

The DD,s of the reserves for the life insurance and annuity products have much

larger magnitudes than DD, s, which means that the reserves are more sensitive to

shocks/changes of g (parallel shift of force-of-mortality curves) than to those of «
(proportional shift). This fact highlights the importance of our extension to Wang et al.
(2010) since their immunization strategies are based on the assumption that the force of

mortality is constant within each age interval and moves proportionally and thus utilize DD,

only.

The reserves of the whole-life annuities have the largest mortality duration figures,
(3.16, 183.86) for single-payment and (2.84, 131.43) for 20-payment.  This implies that
whole-life annuities have the largest mortality rate risk. The term life insurance has the
second largest sensitivity to the parallel shifts of the forces of mortality

(DD, =-12.86 and -13.76 for single-payment and 20-payment, respectively), while the

whole life insurance has the second largest sensitivity to the proportional shifts

(DD, =-0.11and -0.13). The endowment is the least sensitive to the proportional shifts

(DD, =-0.02 and -0.05).

Internal Hedging

After calculating the mortality durations of reserves for several life insurance and
annuity products, we can now measure the mortality rate risk of the portfolios consisting of
these products and construct the portfolios with minimal mortality rate risks. The reserve
duration of a portfolio with respect to a model parameter is simply the weighted average of

> Following Wang et al. (2010), we define that a product is subject to longevity risk if mortality improvements
would increase the reserves of that product. A product is subject to mortality deterioration risk if increases in
mortality rates would raise the product’s reserves. The term “mortality rate risk” is used as a general term
referring to the risks of reserves subject to changes in mortality rates.
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the mortality durations of individual products’ reserves. By combining products in different
ways, we may find a portfolio with zero mortality durations. This means that the portfolio is
“immunized” from mortality rate risk. Managing mortality rate risk by carefully
constructing product portfolios is called the natural hedging strategy in the literature (e.g.,
Cox and Lin, 2007; Wang et al., 2010).

For the purpose of demonstration, we construct some portfolios that have minimal
exposure to mortality rate risk with regard to the reserves at time 0, i.e., the portfolios having

zero DD, and DD,. Such portfolios are composed of at least three products since we

have three equations as constraints to be solved:

3
ZWi xDD,' =0,
i=1
23: ,
w,xDD /' =0,
o s @17
3
> w, =1, and
i=1
w>0,i=1 2, 3.
The solutions to equation system (17) are:
DD DD DD DD} DD DD}
w, = , 3/D,W2: . 1/D,w3= ) 2/D’ (18)
DD,* DD, DD’ DD, DD, DD,
DD DD} |DD,)} DD} |DD}' DD}
where D = 2 5|t 3 | T 1 2|”
DD,? DD| |DD,* DD\ |DD,' DD,

When generating an optimal portfolio, the key difference between the LHT model and
Wang et al. (2010) lies in the calculations of mortality durations. Our method involves
calculating two mortality durations while Wang et al. (2010) compute only one with an
implicit assumption of how the mortality rate curve changes. They assumed that the force
of mortality within each age interval (x,x+1) is constant and is changed by a certain

percentage (e.g., -10%). The resulting changes in reserves are then used to calculate the

mortality duration (see Equation (11) with Iirrg removed). Therefore, the numerical value

of their mortality duration depends on the size and sign of the designated percentage change.
Furthermore, the assumption of constant force of mortality is inconsistent with the empirical
mortality data. Neither is the equal percentage change for all forces of mortality consistent
with observed behaviors of mortality rate curves. Their assumption of a uniform -10%
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change is indeed equivalentto «=-0.1 (if DD, would have been calculated with the

method of finite differences) and ignores the parallel shifts of mortality rate curves under the
LHT model. Therefore, our method is more general than theirs with the extra benefit of
having explicit formulas for durations.

Immunization Illustrations

We formulate three portfolios with both DD, and DD, equal to 0 as displayed in

Table 10. The weights are calculated using Equation (18). Portfolio 1 consists of life
insurance products: whole life, term life, and pure endowment (all 20-payment). The pure
endowment accounts for 69.51% while whole life insurance makes up 23.25%. The term
life insurance accounts for only 7.24% of the portfolio. Portfolios 2 (all single-premium)
and 3 (a mix of 20-payment and single-premium) are examples of natural hedging between
life insurance and annuity products. The mortality deterioration risk of whole life insurance
is hedged by the longevity risks of annuities and pure endowment. The whole life insurance
accounts for about two thirds of Portfolios 2 and 3 (66.61% and 60.32% respectively), and
pure endowment makes up thirty some percent (31.79% and 38.34%). The weights of
annuities are low due to their large mortality durations. These compositions show the
substitution effect between annuities and pure endowment in hedging mortality rate risk.
[Insert Table 10 Here]

Equation (17) might have no solutions, however. It can be proved that w;, w,, and

w, fall within the interval (0,1) if and only if the three determinants in D are either all

positive or all negative. The determinants might not have the same signs because of the
close relations among the net single premiums of insurance and annuity products (e.g.,
Equation (13)) and the resulting linkages among mortality durations. We present two
portfolios that have negative weights in Table 11. Portfolio 4 is formed by replacing the
20-payment, 20-year pure endowment of Portfolio 1 with the 20-payment, 20-year deferred
whole life annuity-due. Portfolio 5 is constructed by substituting the single-premium,
20-year term life insurance for the single-premium whole life insurance in Portfolio 2.  One
would probably expect natural hedging to be feasible. However, the close relation

A= Aiﬂ +Aml —dx |a. (where Aml is the net single premium of the n-year pure

endowment) among the net single premiums of these three underlying products prevents all
weights from being positive. The insurer has to “buy” rather than “sell” the product that has
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a negative weight in order to hedge mortality rate risk.

These examples did not show up in Wang et al. (2010) since they calculated one
mortality duration only. In their settings, two products are enough to hedge the sole
duration, and the weights of the products will be positive as long as the reserve durations of
these two products have different signs. When the mortality rate curve changes in more
complex ways and demands more than one parameter to model its dynamics, it takes at least
three products for mortality immunization.  All weights will be positive only when mortality
durations meet the aforementioned necessary and sufficient conditions. Therefore, life
insurers may not be able to internally hedge mortality rate risk to the full extent.

[Insert Table 11 Here]

External hedging arrangements are needed therefore. The negative weights shown
up in the above examples mean that a life insurer may have to buy life insurance products
from other issuers to reduce its exposure to mortality rate risk to a desired level. Life
settlements seem to fit this demand. Other mortality securities like mortality bonds and
derivatives may also help life insurers hedge mortality rate risk externally and complement
internal hedging. The incompleteness of internal hedging found in this paper is new to the
literature.

CONCLUSIONS AND REMARKS

Modeling and projecting mortality rates are vital to life insurers, social benefits
programs, and the society. Extant literature contains extensive studies on mortality rates.
Demographers and sociologists developed cross-sectional, explanatory models. Lee and
Carter (1992) developed a one-factor model and stimulated later papers on factor models.
Cairns, Blake and Dowd (2006a) represented another type of modeling that presumed a
function for age-specific mortality rates. Some scholars applied interest rate and credit risk
modeling methods developed in the finance field to mortality rates.

Relational modeling distinguishes itself from the above models in that it is based on
an existing mortality rate curve with assumptions on how another curve is related to the
existing one. Brass (1971) and the extensions employed this method to analyze the curves
across regions while Tsai and Jiang (2010) applied it to the curves across time.  One merit of
relational modeling is that it takes full account of the information on how the mortality rates
for different ages relate to each other by taking an existing curve as given. When applied to
a sequence of curves, this methodology might be suitable because mortality rate curves
change in small and stable ways due to biological factors and/or the rigidity of changes in
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social systems.

We do not come across any empirical assessment in the literature of how relational
modeling performs relative to other types of models, despite its reasonableness and potential.
To fill this gap, we assume that the force of mortality on the curve for a later year is a linear
transformation of that on the curve for an earlier year and employ empirical data to compare
the performance of our model with those of the well-known Lee-Carter and CBD models.
We conduct both in-sample fitting and out-of-sample forecasting tests using the data of US
and UK that covered both genders from 1950 to 2007. The test results show that LHT
produces the smallest errors in both types of tests.

We then apply our model to construct the portfolios immunized from mortality rate
risk.  Since our model is parsimonious with parameters, we need to calculate only two
durations (with respect to these two parameters) to construct an immunized portfolio
consisting of three life insurance and/or annuity products. Our model is more general than
Wang et al. (2010) that assumed the force of mortality within each age interval is constant
and shifts proportionally. Furthermore, our model exposes the deficiency of internal
hedging in achieving immunization. This finding is new to the literature and has significant
implications to the mortality rate risk management of life insurers. It also supports the
development of mortality-linked assets for life insurers to manage mortality rate risk.
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Table 1: Summary Statistics of In-Sample Fitting Errors

la: RMSE
Mean Median Std. Deviation Min Max
Country LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD
us 0.001510 0.005351 0.011811 | 0.001354 0.004765 0.010690 | 0.000677 0.003026  0.003025 | 0.000402 0.000772  0.007571 0.003777 0.012847 0.019355
(28.21%)  (12.78%) (28.41%) (12.66%) (22.38%)  (22.39%) (52.11%) (5.31%) (29.40%) (19.52%)
UK 0.002419  0.005426  0.016732 | 0.002218 0.005061 0.014347 | 0.000946 0.003056 0.005370 | 0.000830  0.000798  0.009021 0.005739 0.016198 0.026723
(44.58%) (14.46%) (43.82%)  (15.46%) (30.95%) (17.61%) (103.89%)  (9.20%) (35.43%) (21.48%)
1b: MAE
Mean Median Std. Deviation Min Max
Country LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD
us 0.000869 0.002946 0.006509 | 0.000824 0.002742 0.005876 | 0.000349 0.001531 0.001791 | 0.000285 0.000493 0.004313 0.001985 0.006744 0.011020
(29.51%)  (13.35%) (30.06%)  (14.03%) (22.80%)  (19.49%) (57.78%)  (6.60%) (29.44%) (18.02%)
UK 0.001301 0.003125 0.008642 | 0.001212 0.002966 0.007844 | 0.000505 0.001698 0.002614 | 0.000499  0.000478 0.004404 0.003004 0.009558 0.013632
(41.62%)  (15.05%) (40.85%)  (15.45%) (29.76%)  (19.33%) (104.36%)  (11.33%) (32.05%) (22.47%)
Notes:
. . . - 1 o ~
1. The mean, median, standard deviation, min, and max of RMSE and MAE are the statistics of \/ > (Gys =)’ |[A=1951,---,2007

and
se{m, f}x=25

2. Boldface denotes the smallest number in each comparison among LHT, Lee-Carter, and CBD.
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2 2

qx,x,A _qx,x,A

|4=1951--, 2007} respectively.

3. The numbers in parenthesis are the ratios of LHT’s errors to those of Lee-Carter and CBD.
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Table 2: Fitting Errors by Genders

2a: RMSE 2b: MAE
Male Female Male Female

Country LHT Lee-carter CBD LHT Lee-carter CBD LHT Lee-carter CBD LHT Lee-carter CBD
us 0.001776 0.005897 0.011834 0.001244 0.004806 0.011788 0.001037 0.003310 0.006322 0.000702 0.002581 0.006697

(30.11%) (15.01%) (25.89%) (10.55%) (31.32%) (16.40%) (27.19%) (10.48%)
UK 0.002968 0.006997 0.020591 0.001870 0.003855 0.012872 0.001594 0.004029 0.010523 0.001008 0.002221 0.006761

(42.41%) (14.41%) (48.529%) (14.53%) (39.55%) (15.14%) (45.37%) (14.90%)
Note:

1. The cells in Tables 2a and 2b represent the mean RMSEs and MAEs of LHT, Lee-Carter, and CBD for a specific gender.

2007
MAEs for males are obtained by 1 Z \/
57 A=1951

1

(109-25+1)

Z (qm,x,A _qm,x,A)z and

1

2. Boldface denotes the smallest number in each comparison among LHT, Lee-Carter, and CBD.

3. The numbers in parenthesis are the ratios of LHT’s errors to those of Lee-Carter and CBD.
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Table 3: Fitting Errors by Periods

3a: RMSE
1950¢ 19A0s 1970 1980¢ 1000s 2000<
Country-Gender LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD
US-Male 0.002688 0.004643 0.011780|0.005156 0.010190 0.016223|0.002256 0.007267 0.009761|0.001384 0.007471 0.008925[0.001343 0.005502 0.012576(0.001322 0.008573 0.017859
(57.88%) (22.81%) (50.60%) (31.78%) (31.04%) (23.11%) (18.53%) (15.51%) (24.40%) (10.68%) (15.42%)  (7.40%)
US-Female 0.002120 0.004203 0.009872|0.004432 0.009610 0.015228(0.001430 0.004908 0.009759|0.000947 0.005557 0.009717{0.000814 0.005003 0.013761|0.000843 0.007688 0.018449
(50.43%) (21.47%) (46.12%) (29.11%) (29.14%) (14.66%) (17.04%)  (9.74%) (16.27%) (5.91%) (10.97%) (4.57%)
UK-Male 0.004430 0.010749 0.021331(0.006795 0.011092 0.028912(0.003065 0.007309 0.025373{0.002404 0.007732 0.023962(0.002400 0.006736 0.015202|0.002779 0.005454 0.012663
(41.21%) (20.77%) (61.26%) (23.50%) (41.93%) (12.08%) (31.10%) (10.03%) (35.63%) (15.79%) (50.96%) (21.95%)
UK-Female 0.002888 0.005136 0.015381|0.005206 0.009787 0.019422|0.001796 0.003347 0.013053|0.001673 0.003286 0.011287(0.001365 0.004282 0.010235(0.001796 0.003408 0.013250
(56.23%) (18.78%) (53.19%) (26.80%) (53.66%) (13.76%) (50.92%) (14.82%) (31.88%) (13.34%) (52.70%) (13.55%)
3b: MAE
1950 1960s 1970s 1980s 1990s 2000<
Country-Gender LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD
US-Male 0.001414 0.002489 0.005563(0.001126 0.003165 0.005507(0.001156 0.003499 0.004875{0.000881 0.003737 0.004957(0.000855 0.002767 0.007385|0.000773 0.004325 0.010381
(56.81%) (25.42%) (35.57%) (20.44%) (33.05%) (23.72%) (23.57%) (17.77%) (30.90%) (11.58%) (17.87%) (7.45%)
US-Female 0.001000 0.002325 0.005628|0.000824 0.002989 0.006317(0.000861 0.002189 0.005714(0.000541 0.002440 0.005417(0.000483 0.002211 0.007577(0.000490 0.003488 0.010101
(43.01%) (17.77%) (27.57%) (13.04%) (39.35%) (15.07%) (22.17%)  (9.99%) (21.83%) (6.37%) (14.05%) (4.85%)
UK-Male 0.047245 0.075536 0.103539(0.041173 0.060915 0.108856(0.038435 0.062413 0.112838]0.037068 0.064822 0.109658(0.038381 0.059598 0.089734(0.036308 0.055589 0.084210
(62.55%) (45.63%) (67.59%) (37.82%) (61.58%) (34.06%) (57.18%) (33.80%) (64.40%) (42.77%) (65.31%) (43.12%)
UK-Female 0.037712 0.054652 0.093737(0.033973 0.055565 0.087297(0.030650 0.040871 0.081432(0.029702 0.041873 0.073875(0.028565 0.045652 0.072561|0.028985 0.041497 0.084083
(69.00%) (40.23%) (61.14%) (38.92%) (74.99%) (37.64%) (70.93%) (40.21%) (62.57%) (39.37%) (69.85%) (34.47%)
Note:
1. The cells in Tables 3a and 3b represent the mean RMSEs and MAEs of LHT, Lee-Carter, and CBD during different periods. For instance, the mean RMSEs

2.

and MAEs for males during 1950s are obtained by % z \/
A=1951

1959
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1
(109—25+1)

x=25

z (qm,x,A - qm,x,A)z and

Boldface denotes the smallest number in each comparison among LHT, Lee-Carter, and CBD.

3. The numbers in parenthesis are the ratios of LHT’s errors to those of Lee-Carter and CBD.
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Table 4: Fitting Errors by Ages

4a: RMSE
25-34 35-44 A5-64 RR-74 75-84 85-109
Country-Gender LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD
US-Male ~ 0.000371 0.000173 0.000389 [0.000358 0.000212 0.000496 (0.000424 0.000478 0.001374|0.001072 0.001465 0.003182|0.002017 0.002486 0.004863(0.003162 0.012218 0.022106
(214.45%) (95.37%) (168.87%) (72.18%) (88.70%) (30.86%) (73.17%) (33.69%) (81.13%) (41.48%) (25.88%) (14.30%)
US-Female  0.000226 0.000042 0.000129 [0.000209 0.000088 0.000093 |0.000292 0.000333 0.001047|0.000705 0.000842 0.003811(0.001398 0.001860 0.005437(0.002279 0.010120 0.022100
(538.10%) (175.19%) (237.50%) (224.73%) (87.69%) (27.89%) (83.73%) (18.50%) (75.16%) (25.71%) (22.52%) (10.31%)
UK-Male  0.000528 0.000129 0.000223 |0.000514 0.000157 0.000503 |0.000604 0.000605 0.001869(0.001619 0.002303 0.006466(0.003192 0.003784 0.011095(0.005202 0.013855 0.038131
(409.30%) (236.77%) (327.39%) (102.19%) (99.83%) (32.32%) (70.30%) (25.04%) (84.36%) (28.77%) (37.55%) (13.64%)
UK-Female  0.000279 0.000076 0.000101 |0.000263 0.000091 0.000106 |0.000351 0.000491 0.000973(0.000868 0.001108 0.002269|0.002164 0.002243 0.005652(0.003294 0.007803 0.023691
(367.11%) (276.24%) (289.019%) (248.11%) (71.49%) (36.07%) (78.34%) (38.25%) (96.48%) (38.29%) (42.21%) (13.90%)
4b: MAE
25-34 35-44 45-64 (R-74 75-84 85-109
Country-Gender LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD
US-Male ~ 0.000312 0.000138 0.000335 [0.000301 0.000164 0.000431 (0.000295 0.000357 0.001091|0.000753 0.001142 0.002495|0.001557 0.001988 0.003932(0.002120 0.009596 0.017745
(226.09%) (93.13%) (183.54%) (69.84%) (82.63%) (27.04%) (65.94%) (30.18%) (78.32%) (39.60%) (22.09%) (11.95%)
US-Female  0.000175 0.000033 0.000117 [0.000165 0.000071 0.000075 |0.000190 0.000243 0.000750|0.000472 0.000670 0.003585(0.001036 0.001351 0.004763(0.001495 0.007731 0.018753
(530.30%) (149.57%) (232.39%) (220.00%) (78.19%) (25.33%) (70.45%) (13.17%) (76.68%) (21.75%) (19.34%) (7.97%)
UK-Male  0.020213 0.009934 0.013829 |0.019920 0.011316 0.021390 |0.020668 0.020037 0.037010(0.033942 0.042684 0.074840(0.047765 0.056018 0.099856(0.058144 0.106319 0.167909
(203.47%) (146.16%) (176.03%) (93.13%) (103.15%) (55.84%) (79.52%) (45.35%) (85.27%) (47.83%) (54.69%) (34.63%)
UK-Female 0.015156 0.007407 0.008619 |0.014559 0.008344 0.008687 [0.016017 0.018944 0.025911(0.024832 0.029499 0.044682|0.039515 0.040400 0.063578|0.046615 0.078832 0.141334
(204.629%) (175.84%) (174.48%) (167.60%) (84.55%) (61.82%) (84.18%) (55.57%) (97.81%) (62.15%) (59.13%) (32.98%)
Note:
1. The cells in Tables 4a and 4b represent the mean RMSEs and MAEs of LHT, Lee-Carter, and CBD for different age groups.  For instance, the mean RMSEs
d MAES for males with ages 25-34 are obtained by — 3" L3 2. ) and 1 S . tivel
an s for males with ages 25-34 are obtained by —7A:Zm:51 \/m;s(qmm—qmm) an m/{;ﬂ; Gpxa—Dmx.a| respectively.
2. Boldface denotes the smallest number in each comparison among LHT, Lee-Carter, and CBD.

3. The numbers in parenthesis are the ratios of LHT’s errors to those of Lee-Carter and CBD.
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Table 5: Summary Statistics of Our-of-Sample Forecasting Errors

5a: RMSE
Mean Median Std. Deviation Min Max
Country LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD
us 0.001067 0.008338 0.015240 | 0.001034 0.008389 0.015738 | 0.000336  0.004345 0.002972 | 0.000399 0.001077  0.008428 0.001872 0.015735 0.020640
(12.80%)  (7.00%) (12.32%)  (6.57%) (7.73%)  (11.30%) (37.05%) (4.73%) (11.90%) (9.07%)
UK 0.002050 0.006185 0.013344 | 0.001959 0.004565 0.012770 | 0.000664 0.003635 0.003253 | 0.000908 0.001498  0.008600 0.003603 0.016084 0.023546
(33.15%)  (15.36%) (42.90%) (15.34%) (18.27%)  (20.41%) (60.63%)  (10.56%) (22.40%) (15.30%)
5b: MAE
Mean Median Std. Deviation Min Max
Country LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD
us 0.000655 0.004393 0.008708 | 0.000616 0.004707 0.009068 | 0.000239 0.002152 0.001506 | 0.000275 0.000668 0.005222 0.001252 0.008083 0.011335
(14.91%)  (7.52%) (13.08%)  (6.79%) (11.11%)  (15.88%) (41.08%)  (5.26%) (15.49%) (11.05%)
UK 0.001124 0.003583  0.006950 | 0.001036 0.003016 0.007019 | 0.000385 0.001873 0.001608 | 0.000520 0.001002 0.004166 0.002215 0.008369 0.010343
(31.36%)  (16.17%) (34.33%)  (14.75%) (20.57%)  (23.96%) (51.85%)  (12.48%) (26.46%) (21.41%)
Note:
. - . .. 1 10 ~
1. The mean, median, standard deviation, min, and max of RMSE and MAE are the statistics of \/ z Z (4,04 —,.0.0)° | A=1990,-,2007

and { >
se{m, [} x=25

2. Boldface denotes the smallest number in each comparison among LHT, Lee-Carter, and CBD.
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q.s‘,x,A - qs,x,A

|4=1990,---, 2007} respectively.

3. The numbers in parenthesis are the ratios of LHT’s errors to those of Lee-Carter and CBD.
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Table 6: Forecasting Errors by Genders

6a: RMSE 6b: MAE
Male Female Male Female
Country LHT Lee-carter CBD LHT Lee-carter CBD LHT Lee-carter CBD LHT Lee-carter CBD
us 0.001320 0.009447 0.014650 0.000814 0.007230 0.015831 0.000823 0.005104 0.008694 0.000486 0.003682 0.008722
(13.97%) (9.01%) (11.26%) (5.14%) (16.13%) (9.47%) (13.21%) (5.58%)
UK 0.002533 0.008015 0.014532 0.001567 0.004355 0.012155 0.001404 0.004654 0.007682 0.000843 0.002511 0.006218
(31.60%) (17.43%) (35.99%) (12.90%) (30.17%) (18.28%) (33.58%) (13.56%)

Note:

1. The cells in Tables 6a and 6b represent the mean RMSEs and MAEs of LHT, Lee-Carter, and CBD for a specific gender.

1 2007 1
MAEs for males are obtained by — Z
18 A=1990

2. Boldface denotes the smallest number in each comparison among LHT, Lee-Carter, and CBD.

(109-25+1)

z (qm,x,A _qm,x,A)z and

1

3. The numbers in parenthesis are the ratios of LHT’s errors to those of Lee-Carter and CBD.
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Table 7: Forecasting Errors by Periods

7a: RMSE 7b: MAE

1990s 2000s 1990s 2000s
Country-Gender LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD
US-Male 0.001346 0.010225 0.013945 | 0.001345 0.010223 0.016010 | 0.000858 0.005115 0.008082 | 0.000780 0.005092 0.009458

(13.16%) (9.65%) (13.16%) (8.40%) (16.78%)  (10.62%) (15.32%) (8.25%)
US-Female 0.000812 0.007379 0.015309 | 0.000856 0.009724 0.017105 | 0.000481 0.003102 0.008127 | 0.000493 0.004409 0.009466

(11.00%) (5.30%) (8.81%) (5.01%) (15.52%) (5.92%) (11.18%) (5.21%)
UK-Male 0.002398 0.009952 0.016858 | 0.002807 0.007241 0.012138 | 0.001465 0.005153 0.008528 | 0.001328 0.004030 0.006624

(24.10%)  (14.23%) (38.76%)  (23.13%) (28.43%)  (17.18%) (32.95%)  (20.04%)
UK-Female 0.001411 0.005750 0.012013 | 0.001828 0.003743 0.012880 | 0.000839 0.002904 0.005770 | 0.000849 0.002021 0.006777

(24.54%)  (11.74%) (48.84%)  (14.20%) (28.89%)  (14.54%) (42.00%)  (12.52%)
Note:

1. The cells in Tables 7a and 7b represent the mean RMSEs and MAEs of LHT, Lee-Carter, and CBD during different periods.

1999
and MAEs for males during 1990s are obtained by 1 z \/

10 A=1990

1

109

100 _9E ) ~g,..)° and
(109 _ 25 + 1) \22:5 (qm,x,A qm,X,A)

2. Boldface denotes the smallest number in each comparison among LHT, Lee-Carter, and CBD.

3. The numbers in parenthesis are the ratios of LHT’s errors to those of Lee-Carter and CBD.
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Table 8: Forecasting Errors by Ages

8a: RMSE
25-34 35-44 A5-64 RR-74 75-84 85-109
Country-Gender LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD
US-Male  0.000315 0.000245 0.000430 |0.000319 0.000305 0.000286 |0.000343 0.000502 0.0019440.000564 0.001718 0.004979(0.001632 0.003361 0.007137|0.002184 0.018690 0.026839
(128.57%) (73.26%) (104.59%) (111.54%) (68.33%) (17.64%) (32.83%) (11.33%) (48.56%) (22.87%) (11.69%) (8.14%)
US-Female  0.000167 0.000048 0.000136 |0.000168 0.000110 0.000109 [0.000196 0.000387 0.000853|0.000355 0.000759 0.003574(0.000907 0.001407 0.007264(0.001383 0.015639 0.029278
(347.92%) (122.79%) (152.73%) (154.13%) (50.65%) (22.98%) (46.77%) (9.93%) (64.46%) (12.49%) (8.84%)  (4.72%)
UK-Male  0.000448 0.000122 0.000262 |0.000445 0.000158 0.000346 0.000402 0.000736 0.001296|0.001300 0.002491 0.003087|0.004063 0.005487 0.006525(0.003868 0.015847 0.027148
(367.21%) (170.99%) (281.65%) (128.61%) (54.62%) (31.02%) (52.19%) (42.11%) (74.05%) (62.27%) (24.41%) (14.25%)
UK-Female 0.000269 0.000048 0.000073 [0.000245 0.000076 0.000060 |0.000273 0.000603 0.000768(0.000826 0.001419 0.002631|0.002534 0.002262 0.0036350.002405 0.008972 0.022684
(560.42%) (368.49%) (322.37%) (408.33%) (45.27%) (35.55%) (58.21%) (31.39%) (112.02%) (69.71%) (26.81%) (10.60%)
8b: MAE
25-34 35-44 45-64 (R-74 75-84 85-109
Country-Gender LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD
US-Male  0.000261 0.000205 0.000389 |0.000263 0.000252 0.000200 |0.000261 0.000412 0.001632(0.000448 0.001463 0.004951(0.001193 0.002722 0.006538(0.001696 0.015150 0.023427
(127.32%) (67.10%) (104.37%) (131.50%) (63.35%) (15.99%) (30.62%) (9.05%) (43.83%) (18.25%) (11.19%) (7.24%)
US-Female  0.000138 0.000037 0.000131 |0.000140 0.000092 0.000093 [0.000151 0.000300 0.000618|0.000286 0.000601 0.003599(0.000613 0.001031 0.007170[0.001031 0.011548 0.024774
(372.97%) (105.34%) (152.17%) (150.54%) (50.33%) (24.43%) (47.59%) (7.95%) (59.46%) (8.55%) (8.93%) (4.16%)
UK-Male  0.000366 0.000104 0.000234 |0.000366 0.000136 0.000289 [0.000322 0.000500 0.001125|0.000944 0.002280 0.002721|0.002619 0.004778 0.004726(0.002753 0.012462 0.021861
(351.92%) (156.41%) (269.12%) (126.64%) (64.40%) (28.62%) (41.40%) (34.69%) (54.81%) (55.42%) (22.09%) (12.59%)
UK-Female  0.000217 0.000039 0.000063 [0.000194 0.000060 0.000044 |0.000204 0.000427 0.000504(0.000610 0.001167 0.002302|0.001571 0.001677 0.0032090.001635 0.006978 0.018494
(556.41%) (344.44%) (323.33%) (440.91%) (47.78%) (40.48%) (52.27%) (26.50%) (93.68%) (48.96%) (23.43%) (8.84%)
Note:
1. The cells in Tables 8a and 8b represent the mean RMSEs and MAEs of LHT, Lee-Carter, and CBD for different age groups.  For instance, the mean RMSEs
and MAEs for males with ages 25-34 are obtained b S Zozo‘j \/;i( —g )? and 1 Zozof i —g respectivel
’ Y 18 A5ty S M) T e as) g gl ] TEPEERE
2. Boldface denotes the smallest number in each comparison among LHT, Lee-Carter, and CBD.

3. The numbers in parenthesis are the ratios of LHT’s errors to those of Lee-Carter and CBD.
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Table 9: Dollar Durations of the Reserves at time 0 (x =45,n=20,and i=3%)

Products DD, DD,
Single-payment, n-year deferred whole life annuity-due 3.16 183.86
n-payment, n-year deferred whole life annuity-due 2.84 131.43
Single-payment whole life insurance -0.11 -8.87
n-payment whole life insurance -0.13 -12.11
Single-payment, n-year endowment -0.02 -3.51
n-payment, n-year endowment -0.05 -8.28
Single-payment, n-year term life insurance -0.10 -12.86
n-payment, n-year term life insurance -0.11 -13.76
Single-payment, n-year pure endowment 0.08 9.35
n-payment, n-year pure endowment 0.06 5.48
Table 10: Immunized Portfolios with the Constraint of Positive Weights (x =45,n=20,and i=3%)
Portfolios DD DD, Weight
Portfolio 1
n-payment, n-year term life insurance -0.11 -13.76 7.24%
n-payment whole life insurance -0.13 -12.11 23.25%
n-payment, n-year pure endowment 0.06 5.48 69.51%
Portfolio 2
Single-payment, n-year deferred whole life annuity-due 183.86 1.59%
Single-payment whole life insurance -0.11 -8.87 66.61%
Single-payment, n-year pure endowment 0.08 9.35 31.79%
Portfolio 3
n-payment, n-year deferred whole life annuity-due 131.43 1.34%
Single-payment whole life insurance -0.11 -8.87 60.32%
Single-payment, n-year pure endowment 0.08 9.35 38.34%
Table 11: Immunized Portfolios Allowing Negative Weights (x =45,n=20,and i=3%)
Portfolios DD DD, Weight
Portfolio 4
n-payment, n-year term life insurance -0.11 -13.76 -191.48%
n-payment whole life insurance -0.13 -12.11 285.26%
n-payment, n-year deferred whole life annuity-due 2.84 131.43 6.23%
Portfolio 5
Single-payment, n-year deferred whole life annuity-due 3.16 183.86 -0.21%
Single-payment, n-year term life insurance -0.10 -12.86 40.45%
Single-payment, n-year pure endowment 0.08 9.35 59.76%
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Figure 1: Sample Relations between the Forces of Mortality
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ABSTRACT

Modeling and forecasting mortality rates are crucial to life insurers, social benefits
programs, and the society as a whole. The vast literature developed four methods to model
and/or forecast mortality rates. We propose a new way in this paper by modeling the
dynamics of mortality rates as the transformation from one mortality curve to another. Such
a proposal is reasonable since mortality rates changed gradually due to biological reasons and
the rigidity of the social system.

We use empirical data to test the relative performance of this new modeling to the
renowned Lee-Carter model. The tests cover both in-sample fitting and out-of-sample
forecasting on the US and UK mortality rates from 1951-2007. We find that the linear
hazard transform dominates the Lee-Carter model.

The new model further provides better ways in generating immunization strategies
than Wang et al. (2010) did. Our model is more general and can produce explicit formulas
for mortality durations.  The potential of this new thought is thus confirmed and deserve
further pursuit.

Keywords: mortality rates, transform, fitting, forecasting, hedging, duration



INTRODUCTION

Modeling the changes/dynamics of mortality rates is critical to the solvency of life

insurers and social retirement programs.  Mortality rates are one of the key factors in pricing

and reserving for life and annuity products. Taking no account of possible mortality rate

changes in the pricing and reserving might lead to significant under-pricing and

under-reserving that would impair the profitability and solvency of a life insurer. The

retirement programs sponsored by governments need to understand the dynamics of mortality

rates as well since the incomes and benefit outgoes depend on mortalities. Under-estimating

the improvements of mortality rates could jeopardize the solvency and continuity of the

programs. Mortality rates are also important to the long-term care systems and the

population structure of a country that in turn will affect the growths or declines of many

industries. Therefore, mortality rate modeling is important.

The literature recognized the importance of the mortality rate modeling and tackled

the problem in four different ways. Demographers and sociologists developed explanatory

models to understand which factors affected the mortality rates of some populations with

respect to ages, genders, regions, races, periods, etc. (please see Stallard, 2006 and the

references therein.)These models helped us understand the determinants of mortality rates but

lacked of forecasting capabilities.



The earliest and still the most popular model that could be used to forecast mortality

rates was established by Lee and Carter (1992). Their model was a two-component model

in which one parameter is used to indicate the improvement rate for each age and a single

random process drives all the dynamics. Later extensions focused on how to better estimate

parameters (e.g., Delwarde et al., 2007) and the incorporation of the cohort effect (e.g.,

Renshaw and Haberman, 2006). Some developed multifactor age-period models such as

Renshaw and Haberman (2003), Carins, Blake, and Dowd (2006b), and Cairns et al. (2007).

The third way was to fit mortality rate curves to certain functions (e.g., Currie et al.,

2004) and then established time-series models for the function parameters to perform

forecasting. The underlying rationale is that the mortality rate curves themselves held the

information on how the mortality rates of different ages relate to each other. These relations

might result from biological reasons (e.g., new-born babies have higher mortality rates;

mortality rates increase with ages for matured people) or social reasons (e.g., speed driving of

young adults). The Lee-Carter line of papers did not capture such information.

The fourth approach developed mortality rate models using the framework of

financial valuation models for the term structure of interest rates (e.g., Dahl, 2004; Dahl and

Magller, 2005; Biffis, 2005; Cairns, Blake, and Dowd, 2006a). They usually specified the

dynamics of one or few mortality rates and then imposed certain relations on the mortality

rates across ages so that the model could depict the changes of the entire curve. For more



detailed literature review, please refer to Cairns, Blake, and Dowd(2008) and the references
therein.

We propose a new way to model the dynamics of mortality rates in this paper.

Instead of modeling the curve first and then modeling the dynamics of the curve factors, we
model the relations between two curves. More specifically, the mortality rates on a later
curve are regarded as a transformation of those on an earlier curve. The justification for our
new way is that mortality rate curves shifted slowly with small changes and shifted stably in
terms of the shape. The small and stable changes might result from biological constraints
and/or the rigidity of social changes (e.g., health care systems, living habits, improvements of
medical technologies and public health, and inventions of medicines). We therefore may be
able to model the changes in mortality rates between two curves as transformations from the
earlier age-specific mortality rates to the later corresponding ones.

To investigate the potential of our initiative, we conducted in-sample fitting and
out-of-sample forecasting tests. We first assume that there exists a linear relation, called
linear hazard transform (LHT), between the forces of mortality (hazard rates) of two curves.?
Then we derived the corresponding relations between the survival probabilities of two curves
so that we might estimate the parameters of the LHT using the empirical data of US and UK

from 1950 to 2007 that cover both genders. To evaluate the performance the LHT, we

2Jiang and Tsai (2011) were indeed the first to apply LHT to mortality fitting and forecasting. However, their
paper focuses on the techniques of applying LHT in alternative ways and did not use empirical data to test the
performance of the method relative to that of an existing model.
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chose the 1992 Lee-Carter model as the benchmark and performed in-sample fitting and

out-of-sample forecasting comparisons. The Lee-Carter model has been popular since

published and was used as comparison benchmark in papers like Brouhns, Denuit, and

Vermunt (2002) as well as Czado, Delwarde, and Denuit (2005).

The statistical comparisons show that our LHT model dominates the Lee-Carter

model. In the fitting tests our model produces lower RMSE (root of mean square error) and

MAE (mean absolute error) than the Lee-Carter model does by 71.8% and 70.5% on average

for the US and by 55.4% and 58.4% on average for the UK.  Our model outperforms the

Lee-Carter model by 87.2% and 85.9% for the US and by 66.9% and 68.6% for the UK in the

forecasting tests.

We further illustrate one advantage of our LHT method in constructing the insurance

portfolios immunized from the mortality rate risk.  Since our LHT requires merely two

parameters to depict the dynamics of the entire mortality rate curves, we can utilize the

durations with respect to these two parameters to construct the immunized portfolio using

three types of life insurance / annuity products. Our method is more general than that of

Wang et al. (2010) in which they calculated the optimal life insurance—annuity product mix

ratio by assuming the force of mortality shifted proportionally. Indeed, their method is a

special case of ours that one of the parameters in our model is set to zero. Another

advantage of our method is that we could have the explicit formulas for the mortality



durations, which makes the risk management more easily and accurately.

This paper contributes to the literature in several aspects. It proposes a new method

in modeling the dynamics of mortality rate curves, and demonstrates the potential idea of

transformation using empirical data. The merits of our method include: easy to understand

and implement, fewer parameters to be estimated, good accuracies in both fitting and

forecasting, and easy to generate hedging strategies. We seem to find a new avenue to

model and manage the mortality/longevity risk.

The remainder of this paper is organized as follows. Section 2 specifies the assumed

relations between two mortality rate curves used in this paper. It explains the economic

meanings of the parameters and how we can estimate parameters using empirical data.

Section 3 delineates how we conduct statistical tests in comparing our model with a

benchmark model. It describes the data, the benchmark model, the two accuracy measures,

and how the in-sample fitting and out-of-sample forecasting are done. Section 4 applies our

model to risk management. It demonstrates how our method can generate the immunization

strategies using the durations with respect to the parameters to hedge the mortality/longevity

risk. In Section 5 the paper is summarized and conclusions are drawn.

RELATIONS BETWEEN TWO MORTALITY CURVES

We propose in this paper to model the dynamics of mortality rates across time as the



transformations from one curve to another. More specifically, we assume that there is a
linear relation plus an error term between the forces of mortality (hazard rates) of two
mortality rate curves in years Aand B = A+a,whereae Z is the difference of two years A
and B. The mathematical form is:

Hon®) = @+ 7)< g, (O + B+’ (), tel0,n], (1)
where X denotes age, ¢ indicates the error,n=w—X, and o represents the ultimate age of the
mortality table. Year A is called the base year in the following while year B=A+a is
called the target year.

Since ,p, = efj"”x(s)ds, equation (1) implies the following relation between the

corresponding survival probabilities of curves B and A:

e—j: dEast _ ~ral? [} o [ phPan [ e yct

B _
k px - - (2)
_ (k pA)1+thB Xe_ﬁxA‘I"BXk Xe_JO gen (t)dt
Taking the natural logarithm on both sides yields:
I, p% = @+ a®)x (I, pl) - B8 xk [ el Bt 3)

Then we would like to minimize the sum of squared errors across the ages from xto

o by choosing the parameter pair (o>, B2°):

x,n 1/~7x,n

SSE éZ[ J'okg(t)dtT
_ kzn:{(m ) pXB)_[(1+a:vnB)><(ln P =B Xk}}z |

=1

(4)

AB
x,n !

The solutions of (& ,Bx’ff )can be obtained by the regular regression analysis. More

specifically, take the derivatives of equation (2.4) with respectto «,, and B°:
10



—SZSAE = 2) fIn, pix[(In, p.2) - @+a’)x(in, p)+ B2 k] =0 and  (5)
x,n k=1

OSSE 4

OB 22{ [(In PE)—A+art)x(In pp)+ By xk]} =0. (6)

~AB ~AB R .
Solving for the axn and A, , that make the two equations above equal to O gives:

N {Z(In PN, b }[Zk} [ik(lnkpx’*)}{ik(lnkpf)}

k=1

ax,vn = kL k:l2 -1 and (7)

S| [gsm )
{Z(In 0 (n, p?’ MZ k(i p,* } {Z(m ) pXA)Z}LZ—; k(In, pf)} e

|:Z(In k pr)2:||:zk2:|_|:Zk(ln k pr)j|

We may grab the economic meaning of the transformation as well as the meanings of

~AB
Bn =

a and B from equation (3).° The transformation decomposes the changes of the
mortality rates (in their logarithm forms) from an earlier curve to a later curve into two
components: a proportional change reflected by « and a parallel shift determined by
B.*Assuming =0 and S =0means no changes in mortality rates across time.
Assuming B =0implies that the force-of-mortality curve shifts proportionally to the
mortality rates. Higher forces of mortality will have larger improvements or deteriorations,

depending on whether a is negative or positive. This type of curve changing behavior is

also called proportional hazard transform. Assuming o« =0 but g =0 corresponds to the

cases of parallel shifts of the force-of-mortality curves.

® We omit superscript and/or subscript whenever the omission causes no confusions for the easiness of reading.
* If the regressions are run on, p_, the shifts will be the product of B and k. In other words, the shift

increases with the number of the surviving years.
1



STATISTICAL TESTS

To investigate whether our initiative works, we conduct two types of statistical tests:

in-sample fitting and out-of-sample forecasting. We first estimate the parameters of the

transformation function (equation (3)) year by year. Applying the estimated parameters to

the base-year mortality rate curve would give us the estimated / fitted target-year curve.

Then we compare the fitting errors of our LHT to those of a benchmark model.

With regard to the forecasting tests, we first assume that the parameters of the LHT

followed random walks with drifts. Then we add the drifts estimated using a moving

window of 40 years to the “current “estimated parameters to obtain a pair of forecasted

parameters. Applying this pair of forecasted parameters to that “current” mortality rate

curve would give us a forecasted curve. The performance of our LHT models could then be

assessed by comparing our forecasting errors with those of the benchmark model.

Data, Benchmark, and Measures

We draw historical mortality rates from the Human Mortality Database. The drawn

data cover both genders of US and UK, the countries that were studied the most probably.

The sampling period is from 1950 to 2007, a few years after the World War Il to the most

recent ones available.®

Since the majority of the persons purchasing life insurance and annuities are young

* As of July of 2011, the most recent mortality rates of US are those of 2007 while the data of UK are updated
to 2009. We preferred the same length of history for both countries and thus ended up with the sampling
period of 1951-2007.

12



adults and older, we focus on the mortality rates of ages 25 and above. More specifically,
we test our method on the section of the mortality rate curves: 25+.° The ultimate age of the
US and UK mortality tables during the sampling period is 110. p,,,is thus set as 0, which
causes abnormal shapes of the curves between ages 109 and 110. Therefore, the sections of
the mortality rate curves that are tested in this paper are those between ages 25-109. This
corresponds to the case of @ =109.

We choose the well-known Lee-Carter model as the benchmark to be compared with
our LHT. The Lee-Carter model has been studied extensively in the literature and served as
a benchmark model in many papers as well (e.g., Booth et al., 2005; Lee and Miller, 2001).
The Lee-Carter model is in essence a relational model assuming that:

logq, » =a, +b,K,+&,4, 9)
where g, ,denotes the one-year death rate of age Xinyear A, a,and b are age-specific
constants, K , represents the time-varying levels of mortality rates, and &, , indicates the error

associated with the age xin year A.’

To estimate the parameters of equation (9), we first estimate a, by

A+T-1
a, = T Y. logaq,, inwhich A denotes the first sample year and T indicates the number of
A=A

® We also test two other sections: 35+ and 45+.  The results are consistent with those from the 25+ section,
which can also be glimpsed from Table 2.  We decide not to present these results for the sake of the paper
length.

"In Lee and Carter (1992), the model is in essence a relational model assuming Inm, , =a, +b,K, where
m, , is the central death rate of age x inyear A. To make our analysis be compared with Lee-Carter

model, we substitute the one-year death rate for the central death rate in their approach.
13



sample years (T € N). Then we apply singular value decomposition (SVD) technique to

obtain an OLS estimate for b, and K, with the constraints of be =1 and

Z K, =0,as Lee and Carter (1992) did. They further assumed that K, followed the
A

process of the random walk with a drift when forecasting mortality rates.

We adopt two accuracy measures: RMSE and MAE. Their definitions are:

l A+T -1 “ )
RMSE = |—/——— z Z(qx,A_qx,A) and

T (60— X ) A=A +1 X=X,

Al +T  w-1

1 -
MAE = T(a)——x,)Az Z ‘qx,A — Oy

=A+1 x=X,

inwhich g, , indicates the observed one-year death rate of age X inyear A, Elx, A

represents the fitted/forecasted value, x, is the starting age of the mortality rate curve.

These two measures are used in many papers (e.g., Gakidou and King, 2006).
In-Sample Fitting

The in-sample fitting is done by fitting equation (3) using two mortality rate curves.

We first draw the g, of two different years from our dataset and calculate the corresponding

P p” and, p,®.  Taking the natural log of these , p, and then running the regular

. . ~Aza ~Aa, . . .
regression analysis would render the « and g in equation (3).Plugging the estimated

~Aa

~Aa . . . . . ~ B
a and B intoequation (3) with | p *as input could give us , p, and
~ B ~ B

~ B
Pes =Py 1vaP, s k=1 2, 3,---.Then we calculate RMSE and MAE to measure the

fitting errors.  Repeating the steps for A = 1951-2006 with a =1, we generate the following

14



tables.®
[Insert Tables 1-3 Here]

As we can see from the rows titled “Overall-25” in Table 1, the fitting errors of our
LHT relative to the Lee-Carter model averaged across ages, sampled years, and genders, in
terms of RMSE, are28.2% (=0.00150984/0.00535141)and 44.6% for the US and UK data
respectively.® In terms of MAE, our fitting errors are 29.5% and 41.6% of the Lee-Carter’s.
In addition to the significant improvements in the average of fitting errors, our method has
lower standard deviation of fitting errors across the sampled years under both fitting
measures. For instance, our standard deviations are 20.9% (= 0.00061883/0.00296784) and
29.7% for US and UK data, respectively, in terms of RMSE. The minimum, medium, and
maximum of fitting errors during the sampling period of our method are also smaller than
those of the Lee-Carter model in both countries using these two accuracy measures. The
improvements of our method to the Lee-Carter model are significant and extensive.

The other rows of Table 1 further show our model performs better than the Lee-Carter
model in fitting the data of both genders. Our LHT model produces mean fitting errors with
respect to the data of US males and US females that were30.1% (= 0.00177571/0.00589731)

and 25.9% of those by the Lee-Carter model, respectively, measured by RMSE. The fitting

® The sample size T in estimating the LHT is thus equal to 2006-1951+1 = 56.  On the other hand, the
sample size sued to estimate the Lee-Carter model is 57 since the estimation can be done using a single-year
data. The LHT uses the two-year data at a time instead.
°Also, we can see from the rows titled “Overall-45” in Table 1, the fitting errors of our LHT relative to the
Lee-Carter model averaged across ages, sampled years, and genders, in terms of RMSE, are 27.4% (=
0.00167276/0.00609781) and 41.9% for the US and UK data respectively.
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errors to UK data are also smaller: 42.4% and 48.5%. The variations of our fitting errors

across years are 21.6% (=0.00068953/0.00318861), 20.0%, 28.6%, and 31.4% of the

Lee-Carter’s for US males, US females, UK males, and UK females, respectively. The

maximum errors produced by our model during the sampling period are also fractions of the

errors by the Lee-Carter model: 29.4% (=0.00377734/0.01284675), 29.5%, 35.4%, and

56.8%. The superiorities of LHT model to the Lee-Carter model remain at the equivalent

levels even when we switch the accuracy measure to MAE. The better performance of our

model relative to the Lee-Carter model is robust across genders.

Our LHT model performs better than the Lee-Carter model in all the sub-periods of

the sampling period in both US and UK, as Table 2 shows. The mean and standard

deviation of the fitting errors during each decade of the sampling period produced by our

LTH are all smaller than those by the Lee-Carter model. For instance, our mean fitting

errors to US males in terms of RMSE for the decades of 50s, 60s, 70s, 80s, and 90s are 57.9%

(= 0.00268754/0.00464334), 50.6%, 31.0%, 18.5%, and 24.4% of the Lee-Carter’s,

respectively. The variations within each of these decades of our method are also smaller:

34.3% (=0.00064566/0.00188334), 15.5%, 21.4%, 8.8%, and 11.5% relative to those of the

Lee-Carter model, respectively. The dominance of our model over the Lee-Carter model in

terms of the sub-period performance is robust across genders, countries, and accuracy

measures.
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The advantages of our model over the Lee-Carter model indeed lie in the better fitting
to the populations 45 years older. Table 3 shows that our fitting errors are smaller than the
Lee-Carter’s for the age groups of 45-64, 65-74, 75-84, and 85-109 to both genders, countries,
and accuracy measures.’®  For instance, the ratios of our fitting errors relative to the
Lee-Carter’s with respect to US male in terms of RMSE for these age groups are: 88.7%
(=0.00042377/0.0004779), 73.2%, 81.1%, and 25.9%respectively. The Lee-Carter model
outperforms our model for the age groups of 24-34 and 35-44, and this out-performance is
consistent across genders, countries, and accuracy measures.  Since we provide better fitting
to most ages (45-109) than the Lee-Carter model, our overall performance in fitting the
mortality rate curves of ages 25-109 is better (see Tables 1 and 2).

Table 3 implies that the performance of our model would be better than that of the
Lee-Carter model on the sections of the mortality rate curves with ages greater than 25.

This speculation is confirmed by replicating Tables 1-3 using the data on the age sections of
35+ and 45+.** Since the major customers of life insurance and annuity products are
25-years older with the annuity buyers concentrating on even older age groups, the better
performance of our method relative to the Lee-Carter model as illustrated above is
meaningful and has practical implications to life insurers.

Out-of-Sample Forecasting

%These is one exception: the 45-64 age group of UK male when measured by MAE.  Our MAE is 103.2% of
the Lee-Carter’s.
We do not present the replicated tables for the sake of paper length.

17



For simplicity and following Lee-Carter (1992) and Nelson and Siegel (1987), we
assume that the dynamics of the two parameters follow the random walk with a drift
individually. In formulas,a” —a** =Aa* =a+¢, and g*— g =AB" = B+ &y,
wherea and Bindicate the long-term means of « and g respectively, e, ~N(@0,0,),
g5~ N(0,0,).

We estimate the drifts using the F-year periods of data prior to the “current” year
upon which the projection would be made.'®  For instance, if we have the mortality data up
to 1989(i.e., A = 1989) and head for making projections for 1990, we will use the period of
(1989-F+1) t01989 to estimate the drifts. Our estimators for the drifts are simply the

averages of the changes in the parameter values over the corresponding F-year period:

A-1 A-1

=FL > ra and p - L2 A (10)

—F+

A—l

inwhich Aa' and ApB' are calculated using the o' and p'"'estimated in the in-sample

fitting. We set F = 40 for the out-of-sample forecasting tests.
The projected parameters are equal to:
~A ~A-1 ~Al ~A ~A-1 —~A1 13
a =a +a and B =8 +p5 . (11)

Using equation (3) to apply the projected parameters to the mortality rates of year Awould

render the projected mortality rates for a person aged x at the beginning of year A (i.e.,

12 Using Dickey-Fuller test, we confirm that there is no unit root in the time-series of o' and g'*,
i=A-—F+1---,A-1.
B\We use the top script " toindicate a projected value, " to denote an estimated value, and  for an

averaged value.
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BXM). Then we calculate RMSE and MAE to measure the forecasting errors. We repeat

the procedures above for A=1990-2007 and produce the following tables.
[Insert Tables 4-6 Here]

The rows titled “Overall-25” in Table 4 shows that the out-of-sample forecasting
errors of our method are smaller than those of the Lee-Carter model in both US and UK.
For instance, the mean RMSE of our model are 0.00106694 and 0.00205025 while those of
the Lee-Carter model are 0.00833841 and 0.00618506. Our model also produces smaller
error variations. The standard deviations of MAE produced by our model are 0.00021660
and 0.00044835 in US and UK respectively, and they are smaller than 0.00419124 and
0.00306349 resulting from the Lee-Carter model.  Other statistics of Table 4 also support the
superiority of our method to the Lee-Carter model. An example is the much smaller
maximum RMSE produced by our model: 0.00147155 vs. 0.01534837 in US and 0.00301468
vs. 0.01291569 in UK.

To each gender of US and UK, our forecasting errors are smaller as well.  The ratios
of our mean RMSE to Lee-Carter’s mean RMSE are 14.0% (= 0.00131977/0.00944712),
11.3%, 31.6%, and 36.0% to US males, US females, UK males, and UK females respectively.
The ratios with respect to median RMSE show similarly smaller errors: 12.5%, 12.3%, 28.4%,

and 37.8% respectively. The standard deviations and the ranges of our forecasting errors are

YWe calculate the forecasting errors using the same formulas to those used in calculating the in-sample fitting
errors.
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also smaller than those of Lee-Carter’s. For instance, the ranges of our MAE to males are

0.000742 (US) and 0.001268 (UK). They are much smaller than the corresponding errors

produced by the Lee-Carter model: 0.006534 and 0.006272.

We further find that the superiority of our model to the Lee-Carter model is even more

significant in the forecasting than in the in-sample fitting. The error ratios of our method to

Lee-Carter’s with respect to all statistics in terms of both accuracy measures are consistently

smaller in forecasting tests.  This can be illustrated by comparing 14.0%, 11.3%, 31.6% and

36.0% (the ratios of our mean RMSE to Lee-Carter’s mean RMSE presented in the previous

paragraph) with the corresponding 30.1%, 25.9%, 42.4% and 48.5% presented in the previous

section.

The superior forecasting performance of our LHT model to the Lee-Carter model is

robust in both decades of 1990s and 2000s, as Table 5 shows. For instance, the ratios of our

mean forecasting RMSE to Lee-Carter’s for females are 11.0% (US) and 24.5% (UK) in

1990s and 8.8% and 48.8% in 2000s.*® The ratios in terms of the standard deviations of

MAE for males are 13.4% (US) and 22.4% (UK) in 1990s and 7.8% and 12.7% in 2000s.

Comparing Table 5 with Table 2, we also observe that the superiority of our model to

the Lee-Carter model is more significant in forecasting than in in-sample fitting.  All but

two ratios of our errors to Lee-Carter’s are smaller in forecasting than in fitting. For

1511.0% is obtained by 0.00081182/0.00737924.
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instance, the mean RMSE ratio of ours to Lee-Carter’s in 1990s is 13.2% (=
0.00134595/0.01022495) from Table 5, and the corresponding ratio in Table 2 is 24.4% (=
0.00134275/0.00550242).

Table 6 tells similar stories to Table 3: our model performs well to the ages 45+ while
the Lee-Carter model is better to ages 25-44.  For instance, the ratios of mean forecasting
errors between ours and Lee-Carter’s to the age group of 85-109 are 11.7% (US males), 8.8%
(US females), 24.4% (UK males), and 26.8% (UK females).*°On the other hand, the
corresponding ratios to the age group of 25-34 are 128.5%, 349.3%, 367.5% and 554.9%
respectively. The relative performance of the two models is consistent in in-sample fitting
and out-of-sample forecasting. In addition, the overall forecasting performance of our
model is better since the LHT is superior to the Lee-Carter model in many more ages, and the

people at these ages are the major customers of life insurers.

RISK MANAGEMENT

One major Usage of the mortality modeling/projection by life insurers is managing the
mortality rate risk. Such management might involve developing internal / natural hedging
portfolios of life insurance and annuity products so that reserves will not deviate from the

expected to a significant extent.*"We will illustrate in this section how our new method has

'°11.7% is calculated by 0.00218371/ 0.01869033.
"The conventional way to manage the mortality rate risk is by reinsurance. ~ Alternative ways are to use the
asset products / derivatives linked to mortalities, but only few products are available.
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advantages over the existing literature in developing the hedging portfolios.
Mortality Durations

We may regard the LHT as a two-factor model on mortality improvements. The
mortality improvement risks can thus be measured and managed by the “duration” with
respect to the factors « and A *®.More specifically, the sensitivities of a policy’s reserve
R. (based on the adjusted force of mortality (1+«)x u, + £, see Tsai and Jiang (2011))to
changesin « and pcan be defined as

DD, (R.) = —aai:/*, (12)
where DD denotes the dollar duration, and y =« or . DD measures the change of the
reserves caused by the change of a mortality factor. It can also be deemed as the slope of
the reserve-factor curve with the opposite sign.*®

Under the LHT, the mortality durations may have explicit formulas that can facilitate
the risk management. The mortality rates of a future year under the LHT are a function of

the current-year mortality rates with the parameters/factors of « and g. Since appropriate

reserving done today should take into account of the expected changes in mortalities, and

The idea is the same as the duration management for the interest rate risk. Many financial institutions,
especially banks and life insurers, calculate the interest rate durations of individual assets and liabilities to
measure their exposures to the interest rate risk. The use of the interest rate duration in finance markets is
extensive (Bierwag and Fooladi, 2006). We apply the same idea of duration management but substitute the
interest rate for the mortality rate as the underlying risk factor.

R 1 _DB(R)
oy R. R
The economic meaning of MD is the percentage change of reserves caused by the change of a mortality factor.

DD is more suitable for life insurance since it avoids the irregularities caused by small or zero reserves as Tsai
(2009) identified.

¥ Another popular risk measure is modified duration (MD ) defined as: MD, (R.) = -
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thus should be based on the projected mortality rates, reserves are functions ofa and £.
The partial derivatives of reserves with respectto « and S may have explicit formulas so
that we may derive closed-form formulas for mortality duration.

For the original and adjusted force of mortality ., , we will define and derive the
mortality durations for several products including n-year temporary life annuities-due,
endowment, and term life insurance. Denote the net single premiums of the m-year deferred
and n-year temporary life annuity-due issued to an individual aged x by:

awili =, | @xiligu o) = minjlk P,V =m+znjlefj°k (ot (13)
k=m k=m
where v=1/(1+i)and &=In(1+i). The symbol is associated with , + ¢ because it net
single premium is based on the curve (or function) gz, +d6. Notethat m=0 (n-year
temporary life annuity-due), n=1 (m-year pure endowment), and n=w—-X-m (m-year
deferred whole life annuity-due) are three common special cases.

When the force of mortality z, is changed proportionally to (1+ )y, , the

underlying curve becomes (1+a)x u, + 0, and the associated net single premium above is:

m+n-1

ol Axil i (e +6) =
k=m

eij: [+ ar)xa, (t)+8]dt

(14)
Then we can define the dollar duration of the single premium of the m-year deferred and

n-year temporary life annuity-due with respect to « , the proportional shift of ., , by:
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ol @xl i (@) +8) = | Bl (s, +0)

DDa(m|éx;mi)=—Iirr(1)

(04
M [ wsslar g elm g (15)
——Y ek [T
kem a—0 o
It is easy to see that
. m+n-1 v
DD, (,laxii)= > (=In, p,), pV". (16)
k=m

Similarly, we define the dollar duration with respectto g, the parallel (constant) shift of .,

by:

Nawa i, + B+3)— | axili(u, +0)

DDﬂ(m|ax;mi)=—LlLrg

B
k
m+n-1 ’J‘k[ﬂ (t)+5]dt e_.[o pt —1 M-l . (17)
=—) gh™ lim————=") k,pV*
k=m £-0 ﬁ I; o

Note the Equation (16) and (17) are also the duration of the reserve at time 0 with respect to
a and g, respectively, for the single premium of the m-year deferred and n-year temporary
life annuity-due. For the case of the level h-payment premium (m > h), the dollar duration
of the reserve at time 0 is
DD, (4R(, P(y @xil1))) = DD, (4l @xili) = Pyl axii) x DD, (@sil1),  (18)
where y=a, B, and | P(,|axli) =, axli/ axli.
For n-year endowment, we assume the death benefit is payable at the end of the year
of death. Denote its net single premium as
n-1
A =2 (P P)XV+ poxV=l-d xd (19)
k=0
where d =1-v, which impliesDD (A ;) =-d x DDy(éx;m i),y=a,B. Setting n=w-x
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yields DD (A,) =—d x DDy(éx) , a relation between the dollar durations of whole life

insurance and whole life annuity. For n-year term life insurance, since its net single premium

X

Al =A_ - laai, wehaveDD (A )=-dxDD (axi)-DD,(,la,;).

We give some examples for illustration in the following. Assume that i=3%,
x=45and , p,, k=12,---,n=20are the out-of-sample forecasting mortality rates using our
LHT with A=2007andF =40. We calculate the DD, and DD, of reserves attime 0
for 10 products, and the results are placed in Table 7.

[Insert Table 7 Here]

We find that annuity products and pure endowment have positive mortality durations,
implying exposures to the longevity risk.  For instance, (DD, , DD,) of the reserve at time 0
for single-payment 20-year deferred whole life annuity-due and 20-payment 20-year pure
endowment are (3.16, 183.86) and (0.06, 5.48) respectively. Whole life insurance, on the
other hand, has negative mortality durations that implies exposures to the mortality
deterioration risk.?  For example, the DD, and DD, of the reserve at time O for the
20-payment whole life insurance is -0.13 and -12.11, respectively.

The DD, s of reserves for life insurance and annuity products have much bigger

magnitudes than the DD, s, which means that reserves are more sensitive to shocks/changes

“Following Wang et al. (2010), we define that a product is subject to the longevity risk if mortality
improvements would increase the reserves of the product. A product is subject to the mortality deterioration
risk if increases in mortality rates would increase the product’s reserves. The term “mortality rate risk” is used
as a general term referring to the risks of reserve changes due to changes in mortality rates, and thus includes
both the longevity risk and the mortality deterioration risk.
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in 3 (parallel shift of the force-of-mortality curves) than in « (proportional shift). The fact
that DD, is larger than DD, further highlights the importance of our extension to Wang et
al. (2010). Their immunization strategies are based on the assumption that forces of
mortality change proportionally and thus use only DD, . Reserves of life insurance are
however more sensitive to the constant changes in forces of mortality.

Reserves of whole life annuities have the largest mortality duration figures, (3.16,
183.86) and (2.84, 131.43),thus fluctuate more with shocks to mortality rates than other

products and have larger mortality rate risk. Term life insurance has the second largest

sensitivity to parallel shifts of forces of mortality (DD, = -12.86 and -13.76 ) while whole life
insurance has the second largest sensitivity to the proportional shifts (DD, =-0.11 and -0.13).
The endowment is least sensitive to proportional shifts of forces of mortality
(DD, =-0.02 and -0.05).
Internal Hedging

After calculating the mortality durations of reserves for several life insurance products,
we can measure the mortality rate risk of the portfolios consisting of these products and
further construct the portfolios with minimal mortality risks. The duration of reserves of a
portfolio of life insurance and annuity products with respect to a mortality factor is simply the
weighted average of the mortality durations of reserves of individual products, with the
weights to be determined. By combining products in different ways, we may find a
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portfolio with zero mortality durations and is thus “immunized” from the mortality risk.
Managing the mortality rate risk by carefully constructing product portfolios is called the
natural hedging strategy in the literature (e.g., Cox and Lin, 2007; Wang et al., 2010).

We construct some portfolios that have the minimal exposure to the mortality rate risk

with regard to reserves at time 0. Ideally, we want to be able to construct a portfolio with

zero DD, and DD,. Thisrequires three products since we have three equations to solve

as follows:
3 .
> w,xDD,' =0,
i=1

3 .
Y. w,xDD, =0, (20)

i=1

3
> w =1,and w,>0,i=1 2, 3.
i=1

The solutions to Equation system (20) are:

DD,* DD} DD, ° DD ' DD,' DD, D 1)
W = ,W = ,W = 1]
" DD, DD ¢ |DD,SDD,| ' ° |DD,' DD,
DD’ DD,’| |DD,’DD,'| |DD,' DD,?
where D = , ks . |t . |
pD,’ DD,’| |DD,’ DD,| |[DD,' DD,

The key differences in generating an optimal portfolio between our method and the
method of Wang et al. (2010) are the calculations of the mortality durations. Our method
involves calculating two mortality durations while they computed only one under an implicit
assumption on how the mortality rate curve changes. They also assumed that the force of
mortality within each age interval (x, x+1) is constant, and is changed by a certain equal
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percentage (e.g., -10%); then the resulting changes in reserves are calculated to obtain the
mortality duration (see Equation (15) with Llﬂg removed). Thus, the numerical value of their
mortality duration depends on the size and sign of the equal percentage. The assumption of
constant force of mortality is inconsistent with the observable mortality data. Neither is the
equal percentage change for all forces of mortality consistent with the observed behaviors of
mortality rate curves. This assumption is indeed equivalentto «=-0.1 and g =0 under
our LHT. Therefore, our method is more general with an extra benefit of having explicit
formulas for the durations.

Illustrations

We form three portfolios with both weighted DD, and DD,equal to 0, as Table 8
shows. The weights are calculated using Equation (20). Portfolio P, consists of life
insurance products: whole life, term life, and pure endowment (all 20-payment). The pure
endowment accounts for 69.51% while whole life insurance makes up 23.25%. The term
life insurance contributes 7.24% only. Portfolios P, (all single-payment) and P, (a mixing
of 20-payment and single-payment) are examples of the natural hedging between life
insurance and annuity products. The mortality deterioration risk of whole life insurance is
hedged by the longevity risk of annuities and pure endowment. The whole life insurance
accounts for about two third of PortfoliosP, and P, (66.61% and 60.32%, respectively),
and pure endowment makes up thirty some percent (31.79% and 38.34%). The weights of
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annuities are low due to their large mortality durations. These compositions show the
substitution effect between annuities and pure endowment in the mortality rate risk, which is
important for the countries with small annuity markets.

[Insert Table 8 Here]

Equation (20) might have no solutions. It can be shown that all w, , w,, and w, fall
within the interval (0,1) if and only if the three determinants in D are either all positive or
all negative. The determinants might not have uniform signs because of close relations
among the reserves of insurance and annuity products and the resulting bondages among the
mortality durations. We present two portfolios that have negative weights in Table 9.
Portfolio P, is formed by replacing the 20-payment and 20-year pure endowment of Portfolio
P, with the 20-payment and 20-year deferred whole life annuity-due, and keeping the other
two products unchanged. Portfolio B, is constructed with only the single-payment and 20-year
term life insurance being substituted for the single-payment whole life insurance of Portfolio
P,.One would probably expect natural hedging to be feasible. However, the close relation
A = Ai;m + A&fm —d x| &, (where szlm is the net single premium of n-year pure endowment)
among the net single premiums of these three underlying products prevents all weights for
each of Portfolios P,and P,from being positive. The insurer has to “own” rather than “sell”
the product with negative weight to hedge the mortality rate risk. These examples did not
show up in the literature like Wang et al. (2010) since they calculated only one mortality
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duration; it needs only two products to hedge the sole duration, and the weights shall be

positive as long as the durations of the reserves for these two products have different signs.

When the mortality rate curve changes in more complex ways and thus demand more than

one factor to model its dynamics, it takes at least three products for the immunization. The

all-positive weights will appear only when the mortality durations meet the aforementioned

necessary and sufficient condition. Therefore, life insurers may not be able to internally

hedge the mortality rate risk to the full extent.

[Insert Table 9 Here]

External hedging arrangements are thus needed. The negative weights mean that a

life insurer may have to buy life insurance products from other issuers to achieve a better

hedge for the mortality rate risk.  Life settlements seem to fit this demand, in addition to

asset-side considerations (e.g., diversifications and/or high yields). Other mortality

securities like mortality bonds and derivatives may also render hedging benefits for life

insurers to hedge the mortality rate risk externally and complement internal hedging. The

possible incompleteness of internal hedging found in this paper is new to the literature.

CONCLUSIONS AND REMARKS

Modeling and projecting mortality rates are essential to life insurers, social benefits

programs, and the society as a whole.  Future mortality rates affect the pricing and reserving
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of insurance/annuity products that in turn have impacts on the solvency of the insurer.

Future mortality rates also affect the solvency and continuity of various social benefits

programs (e.g., retirement plans and health care programs), through affecting the cash

outflows as well as inflows. The population structure of a society has widespread impacts

on the demands and supplies of many industries, and it is shaped by mortality rates.

The literature thus studied mortality rates extensively. Early researches of

demographers and sociologists developed cross-sectional, explanatory models.  Starting

from the early 1990s, statisticians and actuarial scholars tried to model the dynamics of

mortality rates. Lee and Carter (1992) was the pioneer and stimulated many papers along

this line.  Another line developed later was to use curve fitting for mortality rate curves and

then built up time-series models of the function parameters to forecast mortality rates. The

latest line of the literature applied the interest rate modeling method developed in the finance

field to the modeling of mortality rates.

We propose a different method from the existing literature in this paper. Instead of

modeling the mortality rates themselves, we model the relation between two forces of

mortality. We assume that the force of mortality on a later curve is a linear transformation

of one on an earlier curve. Then we establish the time-series behaviors of the linear

transformation parameters to project mortality rates.  This methodology might work because

mortality rate curves changed in small and stable ways due to biological natures and/or the
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rigidity of the changes in social systems.

To investigate the potential of our new thought, we use empirical data to test the
performance of the linear hazard transformation relative to that of the well-known Lee-Carter
model. We conduct both in-sample fitting tests and out-of-sample forecasting tests using
the data of US and UK that cover both genders from 1950 to 2007. The empirical results
show that our LHT dominates the Lee-Carter model in both types of tests to significant
extents. The idea of regarding changes in mortality rates across time as transformation
seemed to work well and have good potential.

We further illustrate two advantages of our model in managing the mortality rate risk
using product portfolios in this paper. Since our model is parsimonious with two parameters,
we need to calculate only two durations with respect to these two parameters to construct an
immunized portfolio consisting of life insurance and annuity products. Our model is more
general than Wang et al. (2010) in which they had to assume constant forces of mortality
within each age interval and proportional shifts of force of mortality to calculate a sole
mortality duration. Their model is indeed more restricted than our model due to more
assumptions made. Another advantage of our model is that we may have explicit formulas
for the mortality durations, which facilitates the risk management.

This paper points out a new way to model and forecast mortality rates. The
empirical results show that our LHT model outperforms the classic Lee-Carter model. The
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risk management resulting from the new method is more general, more accurate, and easier to
implement than that proposed by Wang et al. (2010). The potential of the LHT model is
thus confirmed. Our findings about the incompleteness of internal hedging have
implications on the risk management strategies of life insurers and call for more active
second markets of mortality securities.

There is much to be explored along this line though. For instance, how will the
choices of a (the difference between the base year A and the target year B) and other
forms of transformation affect the performance? How can this method incorporate the

cohort effect?  This paper initiates a first attempt to attract more research in the future.
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TABLES

Table 1: Summary Statistics of In-Sample Fitting Errors

RMSE
LHT Lee-Carter

Country-Gender-Starting Age Mean Std. Deviation Median Min Max Mean Std. Deviation Median Min Max

US-Male-25 0.00177571  0.00068953  0.00155900 0.00082463 0.00377734 | 0.00589731  0.00318861  0.00495500 0.00097021 0.01284675
US-Fenmale-25 0.00124397  0.00054813  0.00109649 0.00040205 0.00317637 | 0.00480551  0.00274708  0.00453950 0.00077150 0.01077886
US-Overall-25 0.00150984  0.00061883  0.00132775 0.00061334 0.00347685 | 0.00535141  0.00296784  0.00474725 0.00087086 0.01181281
UK-Male-25 0.00296770  0.00089865 0.00277804 0.00163560 0.00573901 | 0.00699724  0.00314613  0.00625656 0.00229499 0.01619813
UK-Female-25 0.00187019  0.00061562  0.00176119 0.00082951 0.00462851 | 0.00385473  0.00196059  0.00339774 0.00079847 0.00814878
UK-Overall-25 0.00241895  0.00075714  0.00226962 0.00123256 0.00518376 | 0.00542598  0.00255336  0.00482715 0.00154673 0.01217346
US-Male-45 0.00195973  0.00078344  0.00171994 0.00091554 0.00426869 | 0.00672145 0.00363200  0.00552952 0.00142728 0.01471459
US-Fenmale-45 0.00138579  0.00061616 0.00118361 0.00044332 0.00362277 | 0.00547416  0.00323359  0.00482226 0.00090090 0.01299220
US-Overall-45 0.00167276  0.00069980 0.00145178 0.00067943 0.00394573 | 0.00609781  0.00343280  0.00517589 0.00116409 0.01385340
UK-Male-45 0.00333705  0.00102594  0.00313008 0.00186796 0.00643850 | 0.00835331  0.00405067  0.00730579 0.00284869 0.02179470
UK-Female-45 0.00210745  0.00069433  0.00197899 0.00092464 0.00508577 | 0.00463653  0.00244948  0.00457057 0.00099154 0.00991423
UK-Overall-45 0.00272225 0.00086014  0.00255454 0.00139630 0.00576213 | 0.00649492  0.00325008  0.00593818 0.00192011 0.01585447
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Table 1 Continued

MAE
LHT Lee-Carter

Country-Gender-Starting Age Mean Std. Deviation Median Min Max Mean Std. Deviation Median Min Max

US-Male-25 0.00103666  0.00033670  0.00101881 0.00052527 0.00198526 | 0.00331025 0.00162196  0.00297684 0.00071368 0.00674417
US-Fenmale-25 0.00070190  0.00027261  0.00065248 0.00028490 0.00144673 | 0.00258104  0.00133857  0.00255819 0.00049303 0.00527297
US-Overall-25 0.00086928  0.00030465  0.00083565 0.00040508 0.00171600 | 0.00294564  0.00148026  0.00276752 0.00060336 0.00600857
UK-Male-25 0.00159354  0.00047700  0.00149248 0.00089071 0.00306352 | 0.00402932  0.00173013  0.00377186 0.00132454 0.00955776
UK-Female-25 0.00100769  0.00033373  0.00096951 0.00049886 0.00261748 | 0.00222125 0.00106616  0.00195894 0.00047803 0.00467101
UK-Overall-25 0.00130061  0.00040537  0.00123099 0.00069479 0.00284050 | 0.00312529  0.00139814  0.00286540 0.00090128 0.00711439
US-Male-45 0.00123166  0.00039592  0.00122610 0.00066729 0.00243652 | 0.00422664  0.00209149  0.00373474 0.00096228 0.00866937
US-Fenmale-45 0.00085479  0.00032511  0.00081749 0.00032320 0.00165701 | 0.00331775 0.00181321  0.00313347 0.00061814 0.00725569
US-Overall-45 0.00104323  0.00036051  0.00102180 0.00049524 0.00204676 | 0.00377220  0.00195235  0.00343410 0.00079021 0.00796253
UK-Male-45 0.00194069  0.00056712  0.00181149 0.00112349 0.00394262 | 0.00536570  0.00248700  0.00487549 0.00181030 0.01415680
UK-Female-45 0.00124411  0.00042643  0.00115642 0.00058448 0.00335352 | 0.00299605 0.00154390  0.00301799 0.00073237 0.00630859
UK-Overall-45 0.00159240  0.00049677  0.00148396 0.00085399 0.00364807 | 0.00418088  0.00201545  0.00394674 0.00127134 0.01023270
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Table 2: Fitting Errors by Periods

RMSE
LHT
1950s 1960s 1970s 1980s 1990s 2000s
Country-Gender-Starting Age Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation
US-Male-25 0.00268754 0.00064566 0.00515583 0.00042748 0.00225550 0.00078059 0.00138438 0.00027115 0.00134275 0.00031779 0.00132201 0.00018418
US-Fenmale-25 0.00211962 0.00066297 0.00443231 0.00029799 0.00143025 0.00031388 0.00094679 0.00013096 0.00081379 0.00020780 0.00084312 0.00013173
UK-Male-25 0.00443013 0.00100552 0.00679529 0.00055079 0.00306463 0.00054677 0.00240436 0.00045389 0.00240003 0.00044426 0.00277908 0.00055154
UK-Female-25 0.00288823 0.00078172 0.00520569 0.00044678 0.00179600 0.00028044 0.00167294 0.00027971 0.00136491 0.00026368 0.00179609 0.00031272
US-Male-45 0.00300354 0.00073127 0.00619016 0.00047905 0.00250387 0.00089529 0.00148009 0.00025140 0.00142683 0.00030627 0.00146076 0.00019117
US-Fenmale-45 0.00238689 0.00075800 0.00534280 0.00033750 0.00155364 0.00029977 0.00104805 0.00012228 0.00089073 0.00021643 0.00093843 0.00014425
UK-Male-45 0.00499497 0.00112205 0.00813900 0.00062479 0.00347206 0.00064987 0.00267390 0.00052128 0.00264352 0.00045235 0.00315087 0.00063995
UK-Female-45 0.00324943 0.00084284 0.00624501 0.00053028 0.00202777 0.00032768 0.00188949 0.00031719 0.00151723 0.00029201 0.00203533 0.00035367
Lee-Carter
1950s 1960s 1970s 1980s 1990s 2000s
Country-Gender-Starting Age Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation
US-Male-25 0.00464334 0.00188334 0.01019004 0.00275932 0.00726749 0.00365147 0.00747126 0.00309644 0.00550242 0.00276870 0.00857318 0.00324581
US-Fenmale-25 0.00420302 0.00144294 0.00961021 0.00192137 0.00490843 0.00280018 0.00555747 0.00272298 0.00500266 0.00277740 0.00768820 0.00335832
UK-Male-25 0.01074944 0.00410495 0.01109237 0.00284157 0.00730927 0.00256439 0.00773218 0.00238643 0.00673635 0.00274530 0.00545388 0.00153993
UK-Female-25 0.00513624 0.00113610 0.00978740 0.00198389 0.00334688 0.00158207 0.00328574 0.00135122 0.00428204 0.00203200 0.00340820 0.00175523
US-Male-45 0.00520444 0.00216074 0.01196434 0.00315089 0.00832156 0.00423971 0.00852663 0.00347684 0.00627201 0.00299316 0.00987142 0.00365483
US-Fenmale-45 0.00435189 0.00159538 0.01154532 0.00207994 0.00560418 0.00329449 0.00687731 0.00325584 0.00560810 0.00316702 0.00878131 0.00403268
UK-Male-45 0.01375261 0.00533022 0.01315877 0.00313382 0.00871326 0.00299586 0.00968319 0.00341369 0.00769405 0.00303335 0.00600507 0.00182729
UK-Female-45 0.00611162 0.00307967 0.01137970 0.00218446 0.00402800 0.00149553 0.00490052 0.00212041 0.00516479 0.00239665 0.00448972 0.00246475
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Table 2 Continued

MAE
LHT
1950s 1960s 1970s 1980s 1990s 2000s
Country-Gender-Initial Age Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation
US-Male-25 0.00141422 0.00035433 0.00112557 0.00022536 0.00115627 0.00028635 0.00088070 0.00024106 0.00085518 0.00023842 0.00077308 0.00016624
US-Fenmale-25 0.00100000 0.00026364 0.00082404 0.00014996 0.00086127 0.00025504 0.00054099 0.00011617 0.00048268 0.00015650 0.00048985 0.00008143
UK-Male-25 0.04724530 0.00059162 0.04117325 0.00040339 0.03843510 0.00016149 0.03706781 0.00030059 0.03838141 0.00038810 0.03630768 0.00021781
UK-Female-25 0.03771190 0.00046925 0.03397307 0.00024119 0.03065037 0.00015729 0.02970170 0.00017057 0.02856451 0.00021783 0.02898509 0.00016386
US-Male-45 0.00169460 0.00045561 0.00138150 0.00025988 0.00136623 0.00030468 0.00101035 0.00023034 0.00098561 0.00024621 0.00093957 0.00016352
US-Fenmale-45 0.00123268 0.00030287 0.00103524 0.00017397 0.00103068 0.00026267 0.00065545 0.00012306 0.00056940 0.00016915 0.00059014 0.00009786
UK-Male-45 0.05250554 0.00073683 0.04549151 0.00041284 0.04249554 0.00021222 0.04057909 0.00028071 0.04183764 0.00039225 0.04044146 0.00028523
UK-Female-45 0.04230551 0.00062303 0.03769576 0.00028870 0.03388070 0.00017950 0.03322851 0.00020560 0.03130549 0.00024508 0.03216362 0.00021298
Lee-Carter
1950s 1960s 1970s 1980s 1990s 2000s
Country-Gender-Initial Age Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation
US-Male-25 0.00248920 0.00094400 0.00316467 0.00146667 0.00349875 0.00189441 0.00373726 0.00155548 0.00276734 0.00147658 0.00432513 0.00153663
US-Fenmale-25 0.00232526 0.00082070 0.00298914 0.00102999 0.00218867 0.00136300 0.00243990 0.00125657 0.00221144 0.00140743 0.00348757 0.00155525
UK-Male-25 0.07553601 0.00227123 0.06091544 0.00175765 0.06241321 0.00144086 0.06482175 0.00113642 0.05959783 0.00133341 0.05558933 0.00084601
UK-Female-25 0.05465173 0.00062246 0.05556498 0.00109078 0.04087144 0.00088888 0.04187274 0.00065759 0.04565214 0.00102129 0.04149722 0.00090610
US-Male-45 0.00310509 0.00122126 0.00394438 0.00185011 0.00451858 0.00252206 0.00478638 0.00194419 0.00349709 0.00180472 0.00568853 0.00191000
US-Fenmale-45 0.00264867 0.00104047 0.00391357 0.00123572 0.00276398 0.00186221 0.00351035 0.00177620 0.00277714 0.00181172 0.00445296 0.00221042
UK-Male-45 0.08993610 0.00334641 0.06937412 0.00217169 0.07259969 0.00191749 0.07448426 0.00184732 0.06832124 0.00168497 0.06129493 0.00109244
UK-Female-45 0.05759657 0.00211232 0.06167988 0.00132437 0.05007383 0.00093574 0.05412225 0.00136055 0.05405386 0.00140131 0.04910503 0.00152393
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Table 3: Fitting Errors by Ages

RMSE
LHT Lee-Carter
Country-Gender-Starting Age 25~ 34 35~44 45 ~ 64 65~ 74 75~84 85~ 109 25~34 35~44 45 ~ 64 65~ 74 75~84 85~ 109
US-Male-25 0.00037056 0.00035783 0.00042377 0.00107242 0.00201703 0.00316229| 0.00017284 0.00021223 0.00047790 0.00146537 0.00248598 0.01221766
US-Fenmale-25 0.00022627 0.00020923 0.00029243 0.00070518 0.00139784 0.00227947| 0.00004163 0.00008822 0.00033335 0.00084221 0.00186031 0.01011994
UK-Male-25 0.00052814 0.00051438 0.00060431 0.00161901 0.00319225 0.00520155| 0.00012918 0.00015740 0.00060470 0.00230320 0.00378444 0.01385506
UK-Female-25 0.00027876 0.00026287 0.00035121 0.00086801 0.00216387 0.00329375| 0.00007573 0.00009134 0.00049070 0.00110803 0.00224293 0.00780307
US-Male-45 X X 0.00061608 0.00099171 0.00193298 0.00306426 X X 0.00040381 0.00137475 0.00240726 0.01218835
US-Fenmale-45 X X 0.00040589 0.00066090 0.00134502 0.00222486 X X 0.00030581 0.00074458 0.00149008 0.01019382
UK-Male-45 X X 0.00087920 0.00143764 0.00309423 0.00513956 X X 0.00049261 0.00173463 0.00327833 0.01477789
UK-Female-45 X X 0.00049890 0.00080628 0.00211339 0.00324889 X X 0.00035550 0.00091194 0.00220263 0.00831377
MAE
LHT Lee-Carter
Country-Gender-Starting Age  25~34 35~44 45 ~ 64 65~ 74 75~ 84 85~ 109 25~34 35~44 45 ~ 64 65 ~ 74 75~84 85~ 109
US-Male-25 0.00031152 0.00030077 0.00029456 0.00075272 0.00155686 0.00212026| 0.00013807 0.00016446 0.00035741 0.00114212 0.00198834 0.00959571
US-Fenmale-25 0.00017501 0.00016529 0.00019008 0.00047158 0.00103575 0.00149536| 0.00003324 0.00007079 0.00024297 0.00067023 0.00135086 0.00773112
UK-Male-25 0.02021275 0.01992017 0.02066789 0.03394221 0.04776523 0.05814386| 0.00993424 0.01131561 0.02003653 0.04268431 0.05601814 0.10631947
UK-Female-25 0.01515646 0.01455873 0.01601711 0.02483213 0.03951501 0.04661543| 0.00740704 0.00834367 0.01894369 0.02949906 0.04039952 0.07883175
US-Male-45 X X 0.00048955 0.00067796 0.00147851 0.00194810 X X 0.00030283 0.00107183 0.00193951 0.00954246
US-Fenmale-45 X X 0.00029635 0.00044640 0.00098429 0.00141309 X X 0.00022736 0.00057867 0.00108416 0.00777914
UK-Male-45 X X 0.02571326 0.03161458 0.04656051 0.05700809 X X 0.01883131 0.03686940 0.05102390 0.10991818
UK-Female-45 X X 0.01958455 0.02378631 0.03877623 0.04582668 X X 0.01621381 0.02692415 0.04145904 0.08125223
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Table 4: Summary Statistics of Out-of-Sample Forecasting Errors

RMSE
LHT Lee-Carter

Country-Gender-Initial Age Mean Std. Deviation Median Min Max Mean Std. Deviation Median Min Max

US-Male-25 0.00131977  0.00026189  0.00130986 0.00086876 0.00187173 | 0.00944712  0.00390974  0.01049683 0.00262827 0.01573486
US-Fenmale-25 0.00081411  0.00017132  0.00079987 0.00039897 0.00107138 | 0.00722970  0.00447274  0.00651801 0.00107692 0.01496187
US-Overall-25 0.00106694  0.00021660  0.00105486 0.00063387 0.00147155 | 0.00833841  0.00419124  0.00850742 0.00185260 0.01534837
UK-Male-25 0.00253301  0.00053011  0.00235133 0.00181341 0.00360328 | 0.00801532  0.00375362  0.00827227 0.00324610 0.01608440
UK-Female-25 0.00156750  0.00036658  0.00149865 0.00090829 0.00242608 | 0.00435480  0.00237336  0.00396455 0.00149803 0.00974699
UK-Overall-25 0.00205025  0.00044835  0.00192499 0.00136085 0.00301468 | 0.00618506  0.00306349  0.00611841 0.00237207 0.01291569
US-Male-45 0.00143534  0.00025542  0.00147314 0.00099023 0.00193454 | 0.01101811  0.00418484  0.01247884 0.00343653 0.01754075
US-Fenmale-45 0.00090639  0.00018944  0.00089841 0.00044615 0.00119418 | 0.00844427  0.00528367  0.00863630 0.00092319 0.01724894
US-Overall-45 0.00117086  0.00022243  0.00118578 0.00071819 0.00156436 | 0.00973119  0.00473426  0.01055757 0.00217986 0.01739485
UK-Male-45 0.00283971  0.00060005  0.00265904 0.00203238 0.00409812 | 0.00976611  0.00474127  0.00984962 0.00323957 0.02061898
UK-Female-45 0.00177054  0.00041910  0.00169096 0.00105753 0.00275328 | 0.00546563  0.00361579  0.00486669 0.00179560 0.01284077
UK-Overall-45 0.00230513  0.00050958  0.00217500 0.00154496 0.00342570 | 0.00761587  0.00417853  0.00735815 0.00251758 0.01672987
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Table 4 Continued

MAE
LHT Lee-Carter

Country-Gender-Initial Age Mean Std. Deviation Median Min Max Mean Std. Deviation Median Min Max

US-Male-25 0.00082338  0.00020915  0.00077637 0.00050997 0.00125242 | 0.00510444  0.00189275  0.00557389 0.00154932 0.00808325
US-Fenmale-25 0.00048637  0.00011784  0.00045770 0.00027456 0.00072229 | 0.00368249  0.00216130  0.00316540 0.00066841 0.00767814
US-Overall-25 0.00065488  0.00016350  0.00061704 0.00039226 0.00098735 | 0.00439347  0.00202703  0.00436964 0.00110886 0.00788069
UK-Male-25 0.00140392  0.00032258  0.00135094 0.00094716 0.00221483 | 0.00465403  0.00183162  0.00504375 0.00209264 0.00836900
UK-Female-25 0.00084325  0.00018866  0.00083480 0.00051974 0.00129117 | 0.00251143  0.00116782  0.00228284 0.00100242 0.00504963
UK-Overall-25 0.00112359  0.00025562  0.00109287 0.00073345 0.00175300 | 0.00358273  0.00149972  0.00366330 0.00154753 0.00670931
US-Male-45 0.01432286  0.01466846  0.00901199 0.00064385 0.04392397 | 0.02181066  0.01616575  0.01724764 0.00233446 0.04414928
US-Fenmale-45 0.01161907  0.01291383  0.00636685 0.00050780 0.03763328 | 0.01986005  0.01722995  0.01354592 0.00060508 0.05716010
US-Overall-45 0.01297097  0.01379115  0.00768942 0.00057583 0.04077863 | 0.02083536  0.01669785  0.01539678 0.00146977 0.05065469
UK-Male-45 0.00170481  0.00034429  0.00165091 0.00113107 0.00253036 | 0.00621366  0.00269946  0.00645344 0.00234979 0.01235919
UK-Female-45 0.00103446  0.00022622  0.00098369 0.00066065 0.00151584 | 0.00358369  0.00222159  0.00324162 0.00127869 0.00836609
UK-Overall-45 0.00136964  0.00028525  0.00131730 0.00089586 0.00202310 | 0.00489867  0.00246053  0.00484753 0.00181424 0.01036264
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Table 5: Forecasting Errors by Periods

RMSE
LHT Lee-Carter
1990s 2000s 1990s 2000s
Country-Gender-Initial Age Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation
US-Male-25 0.00134595 0.00031484 0.00134494 0.00017338 0.01022495 0.00367282 0.01022326 0.00418403
US-Fenmale-25 0.00081182 0.00019942 0.00085644 0.00011938 0.00737924 0.00411397 0.00972368 0.00452000
UK-Male-25 0.00239812 0.00042241 0.00280711 0.00057069 0.00995249 0.00369596 0.00724146 0.00322537
UK-Female-25 0.00141083 0.00028202 0.00182829 0.00032640 0.00575024 0.00245177 0.00374325 0.00177323
US-Male-45 0.00143406 0.00029776 0.00148713 0.00018163 0.01184287 0.00382832 0.01171471 0.00458078
US-Fenmale-45 0.00089960 0.00021589 0.00095792 0.00013932 0.00894143 0.00497786 0.01110474 0.00537895
UK-Male-45 0.00265535 0.00043627 0.00318440 0.00065996 0.01265157 0.00437059 0.00806841 0.00377105
UK-Female-45 0.00158400 0.00031923 0.00207659 0.00036451 0.00781925 0.00398794 0.00449500 0.00225171
MAE
LHT Lee-Carter
1990s 2000s 1990s 2000s
Country-Gender-Initial Age Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation
US-Male-25 0.00085813 0.00023554 0.00077995 0.00016025 0.00511454 0.00175431 0.00509183 0.00205265
US-Fenmale-25 0.00048127 0.00014443 0.00049274 0.00007139 0.00310153 0.00206093 0.00440871 0.00206196
UK-Male-25 0.00146485 0.00036627 0.00132776 0.00023663 0.00515323 0.00163770 0.00403004 0.00186948
UK-Female-25 0.00083891 0.00020270 0.00084869 0.00016933 0.00290413 0.00118665 0.00202056 0.00093525
US-Male-45 0.02502240 0.01138836 0.00094842 0.00015554 0.03385726 0.01177892 0.00675242 0.00253291
US-Fenmale-45 0.02043930 0.01118628 0.00059379 0.00008621 0.03124624 0.01535930 0.00562732 0.00290657
UK-Male-45 0.00173940 0.00036430 0.00166157 0.00031215 0.00718523 0.00246287 0.00499921 0.00248173
UK-Female-45 0.00101986 0.00022788 0.00105272 0.00022279 0.00432476 0.00247138 0.00265734 0.00138764
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Table 6: Forecasting Errors by Ages

RMSE
LHT Lee-Carter
Country-Gender-Initial Age 25~ 34 35~44 45 ~ 64 65~ 74 75~84 85~ 109 25~34 35~44 45 ~ 64 65~ 74 75~84 85~ 109
US-Male-25 0.00031461 0.00031906 0.00034294 0.00056355 0.00163195 0.00218371|0.00024474 0.00030468 0.00050198 0.00171827 0.00336070 0.01869033
US-Fenmale-25 0.00016673 0.00016764 0.00019556 0.00035520 0.00090657 0.00138349|0.00004773 0.00011021 0.00038728 0.00075875 0.00140693 0.01563917
UK-Male-25 0.00044812 0.00044528 0.00040161 0.00129973 0.00406337 0.00386848|0.00012195 0.00015781 0.00073625 0.00249124 0.00548657 0.01584671
UK-Female-25 0.00026870 0.00024465 0.00027270 0.00082585 0.00253423 0.00240452|0.00004842 0.00007553 0.00060348 0.00141923 0.00226151 0.00897249
US-Male-45 X X 0.00055118 0.00050218 0.00153429 0.00205927 X X 0.00040536 0.001621946 0.003377216 0.018852706
US-Fenmale-45 X X 0.00028538 0.00032312 0.00085439 0.00135292 X X 0.00032893 0.000689609 0.001372364 0.016029648
UK-Male-45 X X 0.00072377 0.00139578 0.00399422 0.00378452 X X 0.00048011 0.001995892 0.004532016 0.017217237
UK-Female-45 X X 0.00041873 0.00087162 0.00249283 0.00238273 X X 0.000460395 0.001273194 0.002491079 0.010409714
MAE
LHT Lee-Carter
Country-Gender-Initial Age 25~ 34 35~44 45 ~ 64 65~ 74 75~ 84 85~ 109 25~34 35~44 45 ~ 64 65 ~ 74 75~ 84 85~ 109
US-Male-25 0.00026117 0.00026281 0.00026141 0.00044836 0.00119329 0.00169612|0.00020534 0.00025161 0.00041244 0.00146271 0.00272219 0.01515009
US-Fenmale-25 0.00013791 0.00013953 0.00015137 0.00028572 0.00061268 0.00103138|0.00003713 0.00009172 0.00029987 0.00060088 0.00103075 0.01154782
UK-Male-25 0.00036627 0.00036617 0.00032164 0.00094374 0.00261908 0.00275347|0.00010386 0.00013600 0.00049979 0.00228007 0.00477788 0.01246228
UK-Female-25 0.00021680 0.00019426 0.00020397 0.00061040 0.00157054 0.00163514|0.00003873 0.00006016 0.00042655 0.00116745 0.00167690 0.00697776
US-Male-45 X X 0.03499706 0.00665531 0.00940330 0.00384197 X X 0.01474379 0.01808440 0.01435094 0.03235439
US-Fenmale-45 X X 0.02762891 0.00741204 0.00734359 0.00303191 X X 0.01805985 0.01216922 0.01377453 0.02716240
UK-Male-45 X X 0.00059343 0.00087172 0.00260868 0.00260558 X X 0.00033732 0.00176465 0.00377325 0.01369635
UK-Female-45 X X 0.00033675 0.00058544 0.00156598 0.00158354 X X 0.00032118 0.00108722 0.00178873 0.00790184
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Table 7: Dollar Durations of Reserves at time 0

Products

DD,

DD

f;
single-payment and n-year deferred whole life annuity-due 3.16 183.86
single-payment whole life insurance -0.11 -8.87
single-payment and n-year endowment -0.02 -3.51
single-payment and n-year term life insurance -0.10 -12.86
single-payment and n-year pure endowment 0.08 9.35
n-payment and n-year deferred whole life annuity-due 2.84 131.43
n-payment whole life insurance -0.13 -12.11
n-payment and n-year endowment -0.05 -8.28
n-payment and n-year term life insurance -0.11 -13.76
n-payment and n-year pure endowment 0.06 5.48
Table 8: Immunized Portfolios with All Weights Positive, x=45, n=20 and i=3%

Portfolio DD, DD, Weight
Portfolio B,

n-payment whole life insurance -0.13 -12.11 23.25%
n-payment and n-year term life insurance -0.11 -13.76 7.24%
n-payment and n-year pure endowment 0.06 5.48 69.51%
Portfolio P,

single-payment and n-year deferred whole life annuity-due 3.16 183.86 1.59%
single-payment whole life insurance -0.11 -8.87 66.61%
single-payment and n-year pure endowment 0.08 9.35 31.79%
Portfolio P,

n-payment and n-year deferred whole life annuity-due 2.84 131.43 1.34%
single-payment whole life insurance -0.11 -8.87 60.32%
single-payment and n-year pure endowment 0.08 9.35 38.34%

47



Table 9:Immunized Portfolios with Negative Weights, x=45, n=20 and i=3%

Portfolio DD, DD, Weight
Portfolio P,

n-payment whole life insurance -0.13 -12.11 285.26%
n-payment and n-year term life insurance -0.11 -13.76 -191.48%
n-payment and n-year deferred whole life annuity-due 2.84 131.43 6.23%
Portfolio P,

single-payment and n-year deferred whole life annuity-due 3.16 183.86 -0.21%
single-payment and n-year term life insurance -0.10 -12.86 40.45%
single-payment and n-year pure endowment 0.08 9.35 59.76%
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Visitor Schedule at Ludwig-Maximilians-Universitdt Munich

Prepared by LMU

Professor Chenghsien Tsai, PhD

National Chengchi University, Taipei, Taiwan

Department of Risk Management and Insurance

Period: July 14 — July 27

ctsai@nccu.edu.tw
Itinerary
Arrival: Saturday, July 14, 09:50 a.m., flight No: EZY 5381
Departure: Friday, July 27, 04:00 p.m., flight No: HG 8389
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mailto:ctsai@nccu.edu.tw

Accommodation: Pension Carolin, Kaulbachstr. 42, 80539 Miinchen

Activities at the MRIC:

July 27, M&M seminar: “Relational Modeling on Mortality

09:00 — 10:30 a.m. Rates: International Tests and Hedging”

Research talks with team members

July 16, 12:00 p.m. Lunch with Richard Peter

July 16, 03:00 p.m. Coffee with Winnie Sun

July 17, 09:00 a.m. Breakfast with Johannes Jaspersen
July 17, 12:00 p.m. Lunch with Aihua Zhang

July 17, 03:00 p.m. Coffee with Stefan Neul3

July 19, 03:00 p.m. Coffee with Gunther Kraut

July 20, 02:00 p.m. Coffee with Christian Knoller

July 24, 12:00 p.m. Lunch with Christoph Lex

July 24, 03:00 p.m. Coffee with Vijay Aseervatham

Further agenda items

July 19 Lunch with Andreas Richter
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Relational Modeling on Mortality Rates:
International Tests and Hedging

ABSTRACT

Modeling the changes/dynamics of mortality rates is important, and scholars have
developed several types of methods/models to understand and/or forecast mortality rates.
One of them is called relational model. The virtues of relational modeling include that it
takes full account of the information on the relations among the mortality rates of different
ages and can be applied to cross-sectional fitting/forecasting in addition to time-series
modeling.

The contributions of this paper are twofold. We are the first to conduct global tests
on the fitting and forecasting capabilities of a relational model relative to two well-known,
different types of models. Our second contribution is investigating the efficacy of
international mortality hedging using the LHT modeling. Our empirical tests show that
LHT possesses excellent fitting capabilities and outstanding forecasting accuracies. Then
we built several country-region LHT models to establish relevant hedging strategies. We
found that the longevity bond linked to a regional mortality index were able to complement
internal hedging for non-international insurers and make complete hedging of mortality rate
risk possible.

Keywords: mortality rates, fitting, forecasting, hedging, duration
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INTRODUCTION

Modeling the changes/dynamics of mortality rates is important. Mortality rates are a
significant factor in determining the premiums and reserves of life insurance and annuity
products, in determining the incomes and benefit outgoes of retirement programs and health
care systems, and in shaping the population structure of a country. Ignoring possible
mortality rate changes may impair the profitability and solvency of a life insurer, jeopardize
social benefit programs’ solvency and continuity, and produce wrong outlooks for many
industries. Therefore, modeling the dynamics of mortality rates is critical to life insurers,
social benefit programs, and the society as a whole.

Scholars recognized the importance of mortality rate dynamics and developed several
types of methods/models to understand and/or forecast mortality rates. The major ones
include: explanatory models by demographers and sociologists (please see Stallard (2006)
and the references therein), factor models started by Lee and Carter (1992) and extended by
Renshaw and Haberman (2003) , Renshaw and Haberman (2006), Hyndman and Ullah
(2007), and many others, curve/function fitting models (e.g., McNown and Rogers, 1989;
Cairns, Blake and Dowd, 2006a; Plat, 2009; Blackburn and Sherris, 2011), financial-risk types
of models (interest rates: Dahl, 2004; Dahl and Mgller, 2005; Biffis, 2005; Cairns, Blake and
Dowd, 2006b; credit risk: Biffis, 2005; Luciano and Vigna, 2005), and relational modeling
such as Brass (1971), Zaba (1979), Ewbank, De Leon, and Stoto (1983), Murray et al. (2003),
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Tsai and Jiang (2011), and Chan, Tsai, and Tsai (2011).

Relational modeling has its virtues.  Firstly, it takes full account of the information
on the relations among the mortality rates of different ages.!  These relations may result
from biological reasons (e.g., older adults have higher mortality rates) or social reasons (e.g.,
the spiked mortality rates of young adults caused by speed driving). Common-factor models
did not incorporate such information on the other hand. Secondly, relational modeling can
be applied to cross-sectional fitting/forecasting in addition to time-series modeling. For
instance, mortality rates on the curve of a later year can be regarded as a transformation of
those on the curve of an earlier year. Two mortality rate curves from different regions could
also be related to each other in terms of their survival probabilities.  This virtue can be
useful for an insurer to hedge its mortality rate risk using the assets linked to foreign
mortality.

The contributions of this paper are twofold. We are the first to conduct global tests
on the fitting and forecasting capabilities of a relational model relative to two well-known,
different types of models. More specifically, we compare the linear hazard transform (LHT)
model with the Lee-Carter (LC) and CBD (Cairns, Blake and Dowd, 2006a) models in regard
to their fitting and forecasting accuracies using the empirical data of 22 countries of female

and male populations from 1950 to 2007.> These countries spread over Europe, North

! The term “mortality rates” in this paper is used loosely to convey the general concept of mortality and survival.
Similarly, the term “mortality rate curves” may encompass survival probability curves.
2 The exact sampling periods may vary across countries. We choose not to trim the sampling periods across
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America, and Asia-Pacific with various economic status and mortality characteristics. This

paper hence greatly expands the scope of Chan, Tsai, and Tsai (2011) in which the samples

are US and UK only and provides a conclusive assessment on the performance of the LHT

modeling.

Our second contribution is investigating the efficacy of international mortality

hedging using the LHT modeling. Current undertakers of mortality risk count on the

so-called internal/natural hedging (Cox and Lin, 2007; Wang et al., 2010), but Chan, Tsai, and

Tsai (2011) illustrated the deficiency of internal hedging. Mortality-linked assets are thus

needed.  Such assets are linked to several countries to date and expose hedgers to basis risk.

The literature however has not yet provided guidance on how to construct the hedging

strategies and quantify the associated basis risk. Applying the LHT modeling to

cross-country mortality rate curves, in addition to the aforementioned time-series applications

to individual countries/regions, enables us to quantify the sensitivity of oversea

mortality-linked assets to the changes of domestic mortality rates. The hedging strategies

can be established accordingly. The statistics obtained from estimating the cross-country

LHT models can further help us to assess the basis risk. This paper may encourage the

demands for mortality-linked assets from broader regions, therefore, and facilitate mortality

risk management.

countries since the trimming involves deleting some country-year samples.
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Our empirical tests show that LHT possesses outstanding fitting capabilities. It

renders the best fitting results in XX out of XX gender-countries. When fitted to regional

mortality indexes of Europe, North America, and Asia-Pacific, the results from LHT are even

better. LHT’s fitting errors are the smallest in all regions. LHT is also best fitted to the

global indexes that are population-weighted indexes of XX countries.

The forecasting capabilities of LHT are equivalent to those of LC and CBD at the

country-gender level. LHT, LC, and CBD produce the smallest forecasting errors in XX,

XX, and XX gender-countries respectively. At the regional and global level that is more

relevant to mortality-linked assets, LHT renders excellent forecasting results. Its average

errors over the 10-year forecasting period are the smallest in XX regions. Its forecasting

errors are also the smallest with respect to the global index. We therefore may conclude that

relational modeling performs well globally and deserve more attentions from academia and

mortality risk stakeholders.

We built several country-region LHT models to establish relevant hedging strategies.

The hedging strategies are established using the two mortality durations of a longevity bond

with respect to the parameters of the country-region LHT models. We found that the

longevity bond did complement internal hedging and make complete hedging of mortality

rate risk possible. The associated basis risk seems to be moderate since the error terms of

the country-region LHT models have small variances.
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LINEAR HAZARD TRANSFORM

Chan, Tsai, and Tsai (2011) applied the concept of linear hazard transform to the
changes of mortality rates across time and confirmed the success of the application to US and
UK data. More specifically, they assumed that there is a linear relation (plus an error term)
between the forces of mortality (i.e., hazard rates) of two mortality rate curves from years A
and B=A+a,where aeN. Onemathematical representation of such a relation is:

Hon®) = At a0y ) < gy O + Bl + 0 (), te[O,n], (1)
W) = (1+ap?) xuf(@® + B + 5l (©
where g denotes the forces of mortality, x b indicates the starting age of the mortality rate
curve to be studied, | = w- b, o represents the ending age of the studied curve section, «
and g are constants to be estimated, and ¢ is the error term. Parameter « reflects the
proportional change of the forces of mortality across time while £ represents the parallel
shift.
Equation (1) implies the following relation between |, p* and , p°:

k
S CAOL

k k k k
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where px denotes the probability that a person with age of x remains alive for k periods of

time. Taking the natural logarithm on both sides of Equation (2) yields:

(-1, pP) = (L+al®) x (I p) + B8 xk + [ el (bt 3)

AB
x,n !

Then the parameter pair (« ,Bx’f'nB) can be estimated by minimizing the sum of squared
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integrated errors anllU: ept (t)dt}2 on the time-series sample set {(=In, p*,-In, p2):
k=12,---,n}.
GLOBAL TIME-SERIES TESTS
Data, Benchmarks, and Measures

We draw historical one-year death rates g, from the Human Mortality Database
(HMD). The drawn data cover both genders of 23 countries® for the age section from 45 to

90.* The sampling period starts from 1950 with slightly varying ending periods due to data

availability. The sampled countries with corresponding sampling periods are listed in Table

[Insert Table 1 Here]

We choose two well-known models as the benchmarks to be compared with the LHT
model: the Lee-Carter model and the CBD model. The Lee-Carter model is probably the
most popular model. It is essentially a one-factor, linear model assuming that:

logq, ,=a, +b,K, +&,,, 4)
where a and b are age-specific parameters, xis the factor used to capture the time-varying
component of mortality rates, and ¢is the error term.>  We follow Lee and Carter (1992) to

estimate and forecast the age-specific parameters.

® Iceland was excluded from this study because it contained too many zero mortality rates.
* Choosing this section of the mortality rate curve is consistent with CBD (2006a), and this section covers the
underlying populations’ ages of most mortality-linked assets (e.g., the longevity bonds issued by Swiss
Reinsurance Company).
® The original Lee-Carter model was on the central death rate. We substitute the one-year death rate for the
central death rate to ensure that the LHT, Lee-Carter, and CBD models use the same raw data.
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The other benchmark that we choose is the CBD model that is a good, popular
representation of curve/function fitting models. The model specification is:
logit g, , = K& + K@ (X=X) + &, (5)
where logit d, , =0, ,/ (1-d,,), and both parameters K’ and K are assumed to
follow random walks with drifts (Cairns et al., 2009).

We adopt two accuracy measures, RMSE and MAE, with definitions as follows:

se-1 % 1 S, -a. @
RMSE == Oy qX 4
T A2 A+ (0-X) X, g g
and
A+T -1 ‘
MAE - qx qx (5)
T (CO - X)) AZA1:+1 % A A

where § represents the fitted/forecasted value, B, denotes the first tested target year, and T

stands for the length of the tested period.
In-Sample Fitting

In-sample fitting is done by fitting Equation (3) onto the mortality rate curves of years
Aand B. We first draw two series of ¢, from our dataset and calculate corresponding

P} and |, p?. Taking the natural log of these , p, and then running the regular

regression analysis on Equation (3) yields a and ﬁ’ Combining the estimated a and

B with , p? produces , P, =[Pl xe?*. Since q,,=1-p,,, weare ableto
compute RMSE and MAE to measure fitting errors. Repeating the steps for B from B, to

61



B,+T with a = 1, we obtain the following table.®
[Insert Table 2 here]

Table 2 shows that the LHT model produces better global fits than both benchmark
models. From Table 2a we count that LHT renders the smallest RMSE on females’
mortality rates in 14 out of 23 countries, followed by Lee-Carte’s 9 countries. The gap is
smaller in terms of MAE: 13 by LHT vs. 10 by Lee-Carter. The LHT model performs
similarly well on males’ mortality rates as we can see from Table 2b. It generates the
smallest RMSE and MAE in 14 and 12 countries respectively, with Lee-Carter wining in 6
and 7 and CBD’s 3 and 4.

In terms of the global average fitting errors, LHT’s improvements over Lee-Carter and
CBD with regard to RMSE are 11.21% and 54.82% on females’ data.” The improvement
ratios in regard of MAE are 5.43% and 52.00% respectively. On males’ data, LHT’s fitting
errors on the basis of global average are smaller than those of Lee-Carter and CBD by
14.49% and 19.84% when measured by RMSE and 9.53% and 15.28% in terms of MAE.

The improvements are robust across regions.  All regional average improvement
ratios of LHT over the benchmark models are positive on both genders with regard to both

fitting error measures.  For instance, the improvement ratios of the LHT model relative to

® For instance, Japan’s sampling period is from 1950 to 2008. When a = 1, B, equals to 1950+a=1951 and T =
2008-1951+1=58.
" The improvement percentage/ratio is defined as -(the error produced by LHT — that by a benchmark) / the
error by the benchmark. Therefore, a positive/negative improvement ratio implies that LHT produces a
smaller/larger fitting error.
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Lee-Carter in terms of RMSE on females’ data are 5.59%, 26.78%, and 32.62% in Europe,
North America, and Asia-Pacific regions respectively. The improvements of LHT relative to
CBD on males’ data with regard to MAE are 13.58% in Europe, 27.36% in North America,
and 12.91% in Asia-Pacific regions.

At the country level, the LHT model performs particularly well (with improvement
ratios of 25% and above by both fitness measures) on females’ mortality rates relative to the
benchmark models in France, Spain, UK, US, and Japan. Its performance is relatively bad
(with negative improvement ratios of 10% and worse by both measures) to Lee-Carter in
Czech Republic and Slovakia. On males’ mortality rates, the LHT model performs
particularly well in four countries: Netherlands, UK, US, and Japan. The improvement
ratios of LHT to the benchmark models are negative to some extent in terms of both fitness
measures in Finland and New Zealand.

Out-of-Sample Forecasting

Following the practices of many papers including Lee-Carter (1992), Nelson and
Siegel (1987), and Cairns et al. (2009), we model the dynamics of the two parameters in
Equation (3) as random walks with drifts. More specifically, we assume that:

en =V = Ay = AVt €1 (6)
where m denote the long-term mean change (i.e., drift) of , y = a or 8, and

e, ~N(0,0},). We estimate the drifts using the F-year data prior to a given year A with
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the estimators being the average changes of parameter values during this F-year period:

A7/><,n = A7/x,n ) (7)

F

—=A-LF 1 Al

1iaFa

~I—1,0

where A7 =gl gt and Pt s estimated during in-sample fitting.®  We set F = 40
for out-of-sample forecasting tests, after weighting the tradeoff between the adequacy of
in-sample sizes and the number of out-of-sample tests.

The projected parameter 7, is assumed to satisfy:

—=A-1F
~A A+l ~A-1,A

]/x,n = }/x,n + A]/x,n ' (8)9

Combining the projected parameters with the mortality rates of year A using Equation (3)
could produce the projected mortality rates of the person aged x in year A+1 (i.e., Bfﬂ).
Then we calculate RMSE and MAE in the same way as in the in-sample fitting section to
measure the forecasting errors. Repeating the above procedures for A from 1990 to the most
recent year available produces the following table.
[Insert Tables 3 Here]

Table 3 demonstrates that the LHT model produces the most accurate forecasting
among the tested models. From Table 3a we see that the improvement ratios of LHT over
Lee-Carter and CBD on RMSE when predicting females” mortality rates are 28% and 66%

respectively, in terms of the global average. The improvement ratios with regard to MAE

® For instance, A can be set as 1991 with F = 40.  This setup would mean that the first pair of years used to
estimate “historical” yis 1951-1952. There would be 40 yand 39 Ay.
° We use the top script " toindicate a projected value, " to denote an estimated value, and  for an

averaged value.
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are similarly significant: 33% and 59%. In predicting males’ mortality rates, the global
average improvement ratios of LHT upon Lee-Carter and CBD are 9% and 41% in terms of
RMSE and 15% and 36% with regard to MAE, as we can see from Table 3b.

Furthermore, the LHT model renders the smallest RMSE and MAE in 18 and 20 out
of the 23 sampled countries when predicting females” mortality rates, as we can count from
Table 3a. In 15 countries including UK, US, Australia and Japan, the improvement ratios of
LHT over both benchmarks are more than 25% in terms of both accuracy measures. From
Table 3b we count that LHT wins 15 and 16 rounds in forecasting males’ mortality rates in
terms of RMSE and MAE respectively. It works particularly well in 9 countries including
France, Italy, Sweden, Czech Republic, and Australia.

The comparative advantage of the LHT model to the benchmark models are more
significant in out-of-sample forecasting than in in-sample fitting tests. The LHT model
provides the most accurate results for more countries in forecasting tests than in fitting tests.
More specifically, it stands out in 18 (female; RMSE), 20 (female; MAE), 15 (male; RMSE),
16 (male; MAE) during forecasting tests while wins in 14 (female; RMSE), 13 (female;
MAE), 14 (male; RMSE), 12 (male; MAE) for fitting tests. The global-average
improvement ratios of LHT upon benchmarks are also higher in forecasting than in fitting

with one exception only:'® 28% vs. 11% (female; RMSE; with respect to Lee-Carter), 66%

1% The exception happens when LHT is compared with Lee-Carter using males’ data judging by RMSE: 9% vs.
14%. The bad forecasting of LHT for the males of Ireland causes this exception. The improvement ratio to
Lee-Carter is -162% in forecasting versus -3% in fitting.
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vs. 55% (female; RMSE; to CBD), 33% vs. 5% (female; MAE; Lee-Carter), 59% vs. 52%
(female; MAE; CBD), 41% vs. 20% (male; RMSE; CBD), 15% vs. 10% (male; MAE;
Lee-Carter), and 36% vs. 15% (male; MAE; CBD).

Out of the solid performance of the LHT model as depicted in the above, we observe
that LHT exhibits better forecasting results on females’ mortality rates than on males’. The
improvement ratios of LHT upon two benchmarks, on the basis of the global average with
regard to both accuracy measures, are higher when predicting females’ mortality rates than in
predicting males’.  Furthermore, all 12 regional improvement ratios™ in predicting females’
mortality rates are all positive and noteworthy (21% to 72%) while one is negative and one
shows immaterial improvement (4%) when predicting males’.

Table 3 also displays some weak spots of the LHT model. For instance, it works
particularly badly, compared to both benchmarks, in Ireland for both females’ and males’
mortality forecasting with regard to both accuracy measures. It does not work well in
Bulgaria and Hungary relative to the Lee-Carter model when forecasting females’ mortality
rates. In forecasting males’ mortality rates, LHT is inferior to CBD in Hungary and to
Lee-Carter in Bulgaria, Netherlands, Norway, and Canada.

Fitting and Forecasting on Multi-Country Index

1 The 12 regional improvement ratios are from comparing with two benchmark models by two accuracy
measures in three regions.
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Observing that many mortality-linked assets link to multi-country indexes rather than
single-country mortality rates, we conduct in-sample fitting and out-of-sample forecasting
tests on multi-country indexes. We establish equally weighted mortality indexes for
European, North America, and Asia-Pacific regions and for the 23 sampled countries as a
whole. The tests results are shown in Table 4.

[Insert Table 4 Here]

Table 4 demonstrates that the LHT model produces the most accurate results among
the three tested models in both fitting and forecasting tests. In the fitting tests, all but one
improvement ratios are positive and 24 out of 32 ratios are larger than 25%.'> The
performance of LHT is even better in forecasting. Every improvement ratio is positive, and
only two of the 32 ratios are smaller than 25%.

We notice that LHT works particurlarly well for the European and global indexes.
All fitting improvement ratios are larger than 20% and all forecasting ones are larger than
59%. We speculate that the cross-country averaing makes the mortality rate curve
smoothier with more stable changes across time.  The relations between two cross-country
mortality rate curves thus come closer to linear, which gives the LHT model more edges in
tests.

CROSS-COUNTRY HEDGING

12 The exception is the case when LHT is compared with Lee-Carter in fitting the Asia-Pacific region index
judged by MAE. There are 32 cases in total: comparing LHT with two benchmark models on both genders’ 4
multi-country indexes with two accuracy measures.
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Managing mortality rate risk will most likely involves cross-country hedging. Chan,
Tsai, and Tsai (2011) demonstrated the deficiency of internal hedging and called on the
development of mortality-linked assets. Mortality-linked assets are however scarce and
usually tie to a multi-country mortality index. Therefore, it may be necessary for life
insurers and/or social benefits programs to resort to the assets that link to foreign mortality
rates.

Few papers addressed the issue of the cross-country hedging. Zhou, Li, and Tan (2011)
studied the impact of population basis risk, i.e., the risk due to the mismatch in the
populations of the exposure and the hedge, on prices of mortality-linked securities. We in
this section demonstrate how relational modeling can be applied to such hedging.

Suppose that there is an insurer selling life insurance and annuity products in country C.
The associated reserves will depend on future survival probabilities and can be expressed in a
functional form by V({ ,pSy}) inwhich { ,pS,} indicates the forecasted one-year survival
probabilities that take possible mortality improvements into account for age x in country d .
Assume that there exists an asset linked to the mortality rates of another country / region r.
The value function of this asset is expressed by A({q,}). How can the insurer utilize the
asset to hedge its mortality risk?

Applying LHT to the time-series mortality rates of country d and to the
cross-section mortality rates between country d and region r will help. We can calculate
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the mortality durations of both reserves and assets and then employ the strategy of mortality
duration matching that is commonly seen in interes rate risk management to hedge the
insurer’s mortality risk.  To see this, assume that the linear relationship between the forces
of mortality of two mortality rate curves for country d and region r has been obtained
from (6):
B () = L+ @) < i, (O + B, telo,n]. (6)

The associated relationship for the k-year survival probaobilties is | pr = (, p¢)* " x e 71,
In other words, we take the mortality rate curves of some countries as bases and regard the
curves implied by the indexes composed of the mortality rates of the countries in the same
regions as targets. The base countries tested are Canada, United Kingdom, and Japan with
the target indexes of North America, Europe, and Asia-Pacific respectively.

The above concept can be applied to the relations of mortality rates across countries as
well. Later in the paper we will assume that the forces of mortality of a particular mortality
rate curve in region r is a linear transform of those in country d. More specifically, we will

implement the above procedure on forecasted survival probabilities {(~In, p¢,~In, p.):

d,r
x,n?

k=1,2,---,n } to estimate the parameter pair (« ,Bxdl'n“) that reflect the relations between the

two mortality rate curves of countries d and r. For instance, the transformation

decomposes the relations between the forces of mortality of countries d (domestic) and r

r

other region) into two components: a proportional relation reflected by «"" and a paralle
th tot t tional relat flected by «° d el
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difference determined by £%". Assuming B°" =0 implies that the force-of-mortality
curves of the two countries relate to each other proportionally. Assuming a®" =0
corresponds to the case of a constant difference between the two curves of the countries.
The fitting results on the sampling period from 1950 to 2007 are presented in Table 6.

[Insert Table 6 Here]

Denote A(/,,) as the value of a longevity bond based on the fitted force of mortality

i, forregion r. Then

DD, (A(i;,)) =~ lim AL+ea") x::) - A(fy,) -
and
o7 Yy = — fim At + B7) — Aliy,)
DD, (A(ZL,)) = }!To i ®)

are the mortality durations with respect to a proportional change and a parallel shift in the

forces of mortality 4 forregion r (see Chan, Tsai, and Tsai, 2011). ~ Similarly, the

mortality durations with respect to a proportional movement and a parallel change in the

forces of mortality ¢, forcountry d are

. A+ A x A+ a®)x it 4 B - AL+ QST Y x 1+ BO
DDad(A(:u):,n)):_l(!mo (( x,n) ( ) Hyn aé(,n) (( x,n) Hyn x,n) (9)

and

~d,r d d pd.ry ~d.r d nd.r
-m A((1+ax,n)x(/ux,n +ﬂ )+ﬂx,n) A((1+ax,n)xlux,n +ﬂx,n) , (10)

DD, (A(i,)) = - lim .

respectively.

Future Work
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We will complete the above time-series and cross-section estimations by the conference.
The global, time-series analyses on fitting and forecasting capabilities of the LHT, LC, and
CBD models will render conclusions on their relative performance. Furthermore, we plan to
calculate the mortality durations of the mortality bond designed in Lin and Cox (2005) under
various combinations of the tested base countries and target regions. The statistics obtained
from estimating «®" and A°" will be used to quantify the basis risk of using an asset
linked to different mortality rates as a hedging tool. The calculation and estimation results

will be of interest to the literature and to the undertakers of mortality risk.
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Table 1

Sampled countries from the Human Mortality Database

Geographical Region

Countr Sampling Period
(Number of Countries) unry pling Fert
Australia 1950-2007
Asia-Pacific (3) New Zealand 1950-2008
Japan 1950-2009
Hungary; Ireland; Spain 1950-2006
France; Italy; Switzerland 1950-2007
Austria; Denmark; Netherlands;
Europe (18) Norway; Sweden; 1950-2008
Belgium; Bulgaria; Czech
Republic; Finland; Portugal, 1950-2009
Slovakia; United Kingdom
North America (2) Canada; United States 1950-2007
Table 2: Descriptive Statistics on the Fitting Improvement Ratios of the LHT Model with

respect to the Lee-Carter and CBD Models across 22 Countries of Male Populations

(@) Performance Relative to Lee-Carter

No. of
Mean (%) Median (%) S.D. (%) Max. (%) Min. (%)
Samples
Improvement
o 22 36.91 37.45 16.53 69.89 8.02
Ratio in RMSE
Improvement
22 43.15 43.12 14.41 68.68 20.06
Ratio in MAE
(b) Performance Relative to CBD
No. of ) )
Mean (%) Median (%) S.D. (%) Max. (%) Min. (%)
Samples
Improvement
22 68.86 66.61 9.46 85.59 54.46
Ratio in RMSE
Improvement
22 69.78 68.42 9.10 84.86 54.68
Ratio in MAE
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Table 3: In-Sample Fitting Results

RMSE MAE
Improvement Improvement Improvement Improvement
Country LHT LC RatiotoLC CBD Ratioto |LHT LC RatiotoLC CBD RatiotoCBD
(%) CBD (%) (%) (%)
Euro
Austria 0.0059 0.0071 17.81 0.0167 64.83 0.0030 0.0040 26.29 0.0091 67.29
Belgium 0.0061 0.0088 31.29 0.0174 65.01 0.0029 0.0050 41.41 0.0092 68.23
Bulgaria 0.0082 0.0090 9.04 0.0210 60.89 0.0041 0.0051 20.06 0.0114 63.95
Czech Republic  0.0069 0.0075 8.02 0.0201 65.48 0.0034 0.0043 20.81 0.0103 66.72
Denmark  0.0059 0.0107 45.49 0.0146 59.88 0.0029 0.0061 52.12 0.0074 60.47
Finland 0.0067 0.0096 30.42 0.0154 56.33 0.0037 0.0056 3391 0.0082 55.06
France 0.0036 0.0059 38.37 0.0158 77.19 0.0019 0.0034 44.82 0.0090 79.24
Hungary 0.0074 0.0135 45.13 0.0163 54.67 0.0037 0.0081 54,53 0.0089 58.83
Ireland 0.0068 0.0082 17.53 0.0202 66.37 0.0037 0.0050 27.24 0.0108 66.16
Italy 0.0039 0.0068 41.84 0.0158 75.11 0.0020 0.0040 50.49 0.0084 76.44
Netherlands ~ 0.0039 0.0102 62.20 0.0176 78.10 0.0020 0.0058 65.37 0.0088 77.32
Norway 0.0067 0.0095 28.90 0.0167 59.61 0.0038 0.0055 31.23 0.0089 57.69
Portugal 0.0061 0.0078 21.80 0.0171 64.53 0.0032 0.0045 29.58 0.0102 68.61
Sweden 0.0047 0.0082 42.25 0.0171 72.30 0.0025 0.0046 45.34 0.0090 72.47
Switzerland  0.0057 0.0074 23.27 0.0172 66.86 0.0029 0.0042 31.45 0.0092 68.94
Slovakia 0.0075 0.0109 31.50 0.0164 54.46 0.0040 0.0066 38.96 0.0089 54.68
United Kingdom 0.0030 0.0070 57.59 0.0206 85.59 0.0016 0.0040 60.45 0.0105 84.86
Average 0.0058 0.0087 32.50 0.0174 66.31 0.0030 0.0051 39.65 0.0093 67.47
North America
Canada 0.0030 0.0070 57.59 0.0206 85.59 0.0016 0.0040 60.45 0.0105 84.86
United States  0.0018 0.0059 69.89 0.0118 84.99 0.0010 0.0033 68.68 0.0063 83.60
Average 0.0024 0.0064 63.74 0.0162 85.29 0.0013 0.0037 64.57 0.0084 84.23
Asia-Pacific
Australia ~ 0.0047 0.0082 42.25 0.0171 72.30 0.0025 0.0046 45.34 0.0090 72.47
Japan 0.0037 0.0078 53.33 0.0158 76.81 0.0018 0.0049 62.67 0.0090 79.86
New Zealand ~ 0.0050 0.0078 36.53 0.0156 68.00 0.0027 0.0044 38.10 0.0083 67.31
Average 0.0045 0.0080 44.04 0.0161 72.37 0.0023 0.0046 48.70 0.0088 73.21
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Table 4:  Descriptive Statistics on the Forecasting Improvement Ratios of the LHT Model
with respect to the Lee-Carter and CBD Models across 22 Countries of Male Populations

(@) Performance Relative to Lee-Carter

No. of
Mean (%) Median (%)  S.D. (%) Max. (%) Min. (%)
Samples
Improvement Ratio in
22 10.57 12.81 42.74 66.93 -72.38
RMSE
Improvement Ratio in
22 12.15 19.17 41.78 70.69 -70.48

MAE

(b) Performance Relative to CBD

No. of
Mean (%) Median (%)  S.D. (%) Max. (%) Min. (%)
Samples
Improvement Ratio in
22 30.09 44.22 33.73 77.85 -56.01
RMSE
Improvement Ratio in
22 24.02 34.19 39.45 78.72 -89.04

MAE
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Table 5:  Out-of-Sample 5-Year Forecasting Results

RMSE MAE
Improvement Improvement Improvement Improvement
Country LHT LC RatiotoLC CBD Ratioto |LHT LC RatiotoLC CBD  Ratioto
(%) CBD (%) (%) CBD (%)
Euro
Austria 0.0118 0.0080 -48.78 0.0129 8.63 0.0079 0.0049 -60.61 0.0081 3.06
Belgium 0.0086 0.0196 55.99 0.0177 51.29 0.0051 0.0109 53.83 0.0100 49.47
Bulgaria ~ 0.0371 0.0215 -72.38 0.0313 -18.70 0.0230 0.0135 -70.48 0.0178 -29.33
Czech Republic 0.0079 0.0098 19.20 0.0141 44.04 0.0046 0.0066 31.40 0.0074 38.51
Denmark  0.0056 0.0078 28.07 0.0118 52.13 0.0035 0.0058 40.06 0.0066 47.35
Finland 0.0091 0.0231 60.43 0.0202 54.90 0.0058 0.0124 53.48 0.0113 48.68
France 0.0045 0.0100 54.65 0.0204 77.85 0.0026 0.0052 49.35 0.0124 78.72
Hungary ~ 0.0083 0.0222 62.47 0.0168 50.39 0.0043 0.0148 70.69 0.0103 58.17
Ireland 0.0119 0.0114 -4.65 0.0159 25.30 0.0074 0.0080 6.93 0.0078 4.69
Italy 0.0111 0.0094 -17.85 0.0111 0.02 0.0073 0.0060 -21.48 0.0070 -4.45
Netherlands ~ 0.0114 0.0191 40.24 0.0158 27.74 0.0064 0.0110 41.79 0.0088 27.72
Norway 0.0286 0.0232 -23.30 0.0271 -5.51 0.0154 0.0132 -17.07 0.0152 -1.77
Portugal 0.0080 0.0057 -41.21 0.0239 66.26 0.0048 0.0040 -21.57 0.0143 66.09
Sweden 0.0112 0.0111 -0.49 0.0200 44.22 0.0064 0.0067 3.22 0.0117 45.06
Switzerland ~ 0.0141 0.0086 -64.29 0.0130 -8.54 0.0087 0.0051 -69.39 0.0081 -6.53
Slovakia ~ 0.0269 0.0212 -27.09 0.0232 -15.86 0.0158 0.0136 -15.75 0.0116 -36.29
United Kingdom 0.0062 0.0104 40.32 0.0114 45.59 0.0042 0.0065 34.82 0.0060 29.86
Average 0.0131 0.0142 3.61 0.0180 29.40 0.0078 0.0087 6.43 0.0103 24.65
North America
Canada 0.0062 0.0104 40.32 0.0114 45.59 0.0042 0.0065 34.82 0.0060 29.86
United States  0.0066 0.0201 66.93 0.0204 67.49 0.0043 0.0103 58.04 0.0117 63.17
Average 0.0064 0.0152 53.63 0.0159 56.54 0.0043 0.0084 46.43 0.0089 46.51
Asia-Pacific
Australia ~ 0.0112 0.0111 -0.49 0.0200 44.22 0.0064 0.0067 3.22 0.0117 45.06
Japan 0.0130 0.0139 6.42 0.0084 -56.01 0.0082 0.0086 4.54 0.0043 -89.04
New Zealand  0.0070 0.0168 58.00 0.0180 60.89 0.0041 0.0096 57.57 0.0103 60.29
Average 0.0104 0.0139 21.31 0.0155 16.37 0.0062 0.0083 21.77 0.0088 5.44
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Table 6: In-Sample Fitting Errors of Country to Region Index

Country / Region RMSE MAE
Canada / North American 0.002196 0.001438
United Kingdom / Europe 0.005409 0.003908
Japan / Asia-Pacific 0.008017 0.005669
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