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中 文 摘 要 ： 許多人壽保險商品隱含有選擇權，例如最低獲利保證、分

紅、以及可提前解約的權利。如果沒有正確地估計這些選擇

權的價值，保險公司的清償能力將受到影響。實務界和學術

界分別發展出兩類方法來估計這些選擇權的價值。英美系國

家的精算學會採用隨機模擬法（或稱精算法）：在實際測度

下運用隨機模型模擬出有內含保證或選擇權的保單現值的機

率分佈，再根據這個機率分佈來計算相關的的成本並提列準

備金。學術文獻則大多運用財務理論中選擇權定價方法來評

價內含的選擇權，稱為選擇權定價法或財務法。這個方法是

在一些市場完美度的假設（例如）arbitrage-free or 

complete 以及風險中立的測度下進行的。 

 

本計畫嘗試延伸比較或整合上述兩種方法的文獻。第一個嘗

試是透過分析多期的保證以及解約選擇權，延伸了 Boyle 

and Hardy (1997)以及 Hardy (2003)。第二是嘗試延伸

Barbarin and Devolder (2005) and Gatzert and Kling 

(2007)。我們使用和 Barbarin and Devolder (2005) 相反

的模式來整合精算與財務方法：先進行風險中立評價以計算

保費，再用隨機模擬來估計經濟資本。第三部分則是延伸

Kling et al. (2007), Gatzert and Kling (2007), 

Gatzert (2008), and Graf, Kling, and Russ (2009)：探

討數種常見的投資策略（例如 CPPI 與 TIPP）會如何影響保

單的評價與保險公司的清償能力，並運用演算法來求解最適

的投資策略、分紅機制、契約參數、以及資本結構等。 

 

因著本計畫的資源與執行，已經產生了一篇期刊論文以及六

篇審稿中或即將投稿的論文。未來將上述的嘗試寫成完整的

文章後，應該還能發出更多的論文。 

 

中文關鍵詞： 保險財務、模擬、人壽保險 

英 文 摘 要 ： Many popular life insurance products contain option-

like covenants: minimum return guarantees, 

participating clauses, and/or surrender options.  

Improper pricing, reserving, and/or hedging of these 

guarantees and options impair the solvency of an 

insurer.  There are two paradigms to handle the 

issues.  Actuarial associations in UK, US, and Canada 

adopted the stochastic simulation method (also called 

the actuarial approach) to analyze these embedded 

guarantees and options.  The idea is to simulate the 



payoff distribution of an embedded guarantee/option 

using stochastic models in the real-world probability 

measure.  Insurers then estimate the expected cost of 

the guarantee/option and the associated reserves 

based on the simulated distribution.  Academics on 

the other hand employed the machinery of option 

pricing for the valuation of the embedded guarantees 

and options.  In this so-called option pricing 

approach or financial approach, computations take 

place under a risk-neutral probability measure with 

certain assumptions on the market (e.g., completeness 

and no arbitrage).   

 

This project extends the literatures of comparing and 

integrating these two approaches in three aspects.  

Firstly, we extend Boyle and Hardy (1997) by 

analyzing the cliquet-style type of periodic 

guarantee and incorporating surrender options.  

Secondly, we turn the procedure proposed by Barbarin 

and Devolder (2005) the other way around: performing 

risk-neutral valuation first for policy premiums and 

then conducting stochastic simulation to calculate 

the associated economic capital.  Thirdly, we extend 

Kling et al. (2007), Gatzert and Kling (2007), 

Gatzert (2008), and Graf, Kling, and Russ (2009) by 

analyzing how investment strategies affect the 

valuation of insurance policies and the solvency of 

insurance companies with some popular strategies, 

e.g., constant proportion portfolio insurance (CPPI) 

and time-invariant portfolio protection (TIPP).  We 

further employ a heuristic search algorithm to solve 

for the optimal combination of investment strategies, 

surplus distribution schemes, contract parameters, 

and capital structure in a more comprehensive 

framework.   

 

The resources and implementation of this project have 

produced one journal article and six working papers 

that are currently under review or will be submitted 

in the near future.  We expect more papers will be 

produced when the above extensions are written up. 

 



英文關鍵詞： Insurance Finance, Simulation, Life Insurance 
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中文摘要 

 

許多人壽保險商品隱含有選擇權，例如最低獲利保證、分紅、以及可提前解約的權

利。如果沒有正確地估計這些選擇權的價值，保險公司的清償能力將受到影響。實務界

和學術界分別發展出兩類方法來估計這些選擇權的價值。英美系國家的精算學會採用隨

機模擬法（或稱精算法）：在實際測度下運用隨機模型模擬出有內含保證或選擇權的保

單現值的機率分佈，再根據這個機率分佈來計算相關的的成本並提列準備金。學術文獻

則大多運用財務理論中選擇權定價方法來評價內含的選擇權，稱為選擇權定價法或財務

法。這個方法是在一些市場完美度的假設（例如）arbitrage-free or complete 以及風險中

立的測度下進行的。 

 

本計畫嘗試延伸比較或整合上述兩種方法的文獻。第一個嘗試是透過分析多期的

保證以及解約選擇權，延伸了 Boyle and Hardy (1997)以及 Hardy (2003)。第二是嘗試延

伸 Barbarin and Devolder (2005) and Gatzert and Kling (2007)。我們使用和 Barbarin and 

Devolder (2005) 相反的模式來整合精算與財務方法：先進行風險中立評價以計算保費，

再用隨機模擬來估計經濟資本。第三部分則是延伸 Kling et al. (2007), Gatzert and Kling 

(2007), Gatzert (2008), and Graf, Kling, and Russ (2009)：探討數種常見的投資策略（例如

CPPI 與 TIPP）會如何影響保單的評價與保險公司的清償能力，並運用演算法來求解最

適的投資策略、分紅機制、契約參數、以及資本結構等。 

 

因著本計畫的資源與執行，已經產生了一篇期刊論文以及六篇審稿中或即將投稿的

論文。未來將上述的嘗試寫成完整的文章後，應該還能發出更多的論文。 

 

 

關鍵詞：保險財務、模擬、人壽保險 
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Abstract 

Many popular life insurance products contain option-like covenants: minimum return 

guarantees, participating clauses, and/or surrender options.  Improper pricing, reserving, 

and/or hedging of these guarantees and options impair the solvency of an insurer.  There are 

two paradigms to handle the issues.  Actuarial associations in UK, US, and Canada adopted 

the stochastic simulation method (also called the actuarial approach) to analyze these 

embedded guarantees and options.  The idea is to simulate the payoff distribution of an 

embedded guarantee/option using stochastic models in the real-world probability measure.  

Insurers then estimate the expected cost of the guarantee/option and the associated reserves 

based on the simulated distribution.  Academics on the other hand employed the machinery 

of option pricing for the valuation of the embedded guarantees and options.  In this so-called 

option pricing approach or financial approach, computations take place under a risk-neutral 

probability measure with certain assumptions on the market (e.g., completeness and no 

arbitrage).   

 

This project extends the literatures of comparing and integrating these two 

approaches in three aspects.  Firstly, we extend Boyle and Hardy (1997) by analyzing the 

cliquet-style type of periodic guarantee and incorporating surrender options.  Secondly, we 

turn the procedure proposed by Barbarin and Devolder (2005) the other way around: 

performing risk-neutral valuation first for policy premiums and then conducting stochastic 

simulation to calculate the associated economic capital.  Thirdly, we extend Kling et al. 

(2007), Gatzert and Kling (2007), Gatzert (2008), and Graf, Kling, and Russ (2009) by 

analyzing how investment strategies affect the valuation of insurance policies and the 

solvency of insurance companies with some popular strategies, e.g., constant proportion 

portfolio insurance (CPPI) and time-invariant portfolio protection (TIPP).  We further 
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employ a heuristic search algorithm to solve for the optimal combination of investment 

strategies, surplus distribution schemes, contract parameters, and capital structure in a more 

comprehensive framework.   

 

The resources and implementation of this project have produced one journal article 

and six working papers that are currently under review or will be submitted in the near future.  

We expect more papers will be produced when the above extensions are written up. 

 

 

Keywords: Insurance Finance, Simulation, Life Insurance 
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報告內容 

 

因著本計畫的資源與執行所產生的期刊論文目前為1： 

1. 謝明華、黃雅文、郭維裕、與蔡政憲，2014，壽險準備金風險之衡量，經濟論文（已

被接受）。 

 

六篇審稿中或即將投稿的工作論文（working paper or work in progress）則是： 

1. Kuo, Weiyu, Ming-Hua Hsieh, Chenghsien Tsai, and Yu-Ching Li, 2014, Generating 

Economics Scenarios for the Long-Term Solvency Assessment of Life Insurance 

Companies: The Orthogonal ARMA-GARCH Approach, to be submitted to the 2014 

Annual Meeting of American Risk and Insurance Association. 

2. Hsieh, Ming-Hua, Jin-Lung Peng, Chenghsien Tsai, Jennifer L. Wang, and Ko-Lun Kung, 

2014, Explaining the Rate Spreads on Life Settlements, to be submitted to Journal of Risk 

and Insurance (earlier versions were presented in 2013 Risk Theory Seminar and 2013 

American Risk and Insurance Association Annual Meeting). 

3. Chan, Linus Fang-Shu, Cary Chi-Liang Tsai, and Chenghsien Tsai, 2014, Relational 

Modeling on Mortality Rates: International Tests and Hedging, to be submitted to 

Insurance: Mathematics and Economics (an earlier version was presented in 2012 

International Longevity Risk and Capital Markets Solutions Conference). 

4. Wang, Jennifer L., Ming-Hua Hsieh, and Chenghsien Tsai, 2014, Using Life Settlements to 

Hedge the Mortality Risk of Life Insurers: An Asset-Liability Management Approach, to be 

submitted to Journal of Derivatives or re-submitted to Journal of Risk and Insurance 

(earlier versions were presented in 2011 International Longevity Risk and Capital Markets 

                                                 
1 由於論文從著手進行到完成出版往往需要好幾年，可能會橫跨幾期的國科會計畫執行期間，因此個人會

將論文主要進行期間的國科會計畫皆列為感謝支持的對象。畢竟論文得以完成的確是接受到這些計畫接續

的支持。 
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Solutions Conference and 2012 American Risk and Insurance Association Annual 

Meeting). 

5. Chan, Linus Fang-Shu, Cary Chi-Liang Tsai, and Chenghsien Tsai, 2014, Empirical Tests 

on a Relational Model of Mortality Rates with Applications to Internal Hedging, to be 

submitted to Journal of Risk and Insurance (an earlier version was presented in 2011 

International Longevity Risk and Capital Markets Solutions Conference). 

6. Hwang, Ya-Wen and Chenghsien Tsai, 2013, The Longevity Risk of Life Insurance Policies 

Induced by Pricing Errors, submitted to the IUP Journal of Financial Risk Management. 

 

 

以下附上謝明華、黃雅文、郭維裕、與蔡政憲（2014）那篇期刊論文，以及 Kuo, Hsieh, 

Tsai, and Li (2014)，Hsieh, Peng, Tsai, Wang, and Kung (2014)，以及 Chan, Tsai, and Tsai 

(2014)等三篇工作論文於此結案報告中。其中謝明華等（2014）中的保單準備金計算和本

計畫的保單評價實為一體之兩面。Kuo et al. (2014) 所發展的資產面模型和本計畫資產面

的模擬是相關的，由本計畫進用的助理李淯靖協助完成，也因此將其列為共同作者之一。

Chan, Tsai, and Tsai (2014)是個人在本計畫的補助下到美國 National Association of 

Insurance Commissioners 移地研究時所寫的。至於 Hsieh et al. (2014)則是由本計畫進用的

助理宮可倫協助完成的，我們也將其列為共同作者之一。 
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摘要 

壽險準備金存續期間長之特性使得如何衡量準備金風險成為壽險公司首要之務。

相較於傳統的 P 測度法與歐盟 Solvency II 之 QIS 2 所提出之 Q 測度法，本研究

提出 QPQ 方法來衡量壽險準備金之風險。理論上，在 P 測度法下計算未來責任

現值時，折現率須採用無風險利率加上風險溢酬，然而風險溢酬無客觀可行的方

法來進行估計，因此，大部分精算文獻並未考量風險溢酬。在 Q 測度法下，是

在風險中立假設下模擬市場風險因子未來可能的變化，無法描繪實際市場波動所

造成準備金價值變動之風險。 

QPQ 方法則可避免上述方法的缺點。在時點 0t  時，以市場經濟狀態並在 Q 測

度下計算最佳估計值來作為準備金之估計值。但在準備金風險衡量方面，壽險公

司需先在 P 測度下模擬時點 t H 之市場情境，再於每個模擬出來的市場情境所

對應的 Q 測度下進行最佳估計，計算時點 t H 下之準備金。重覆進行此步驟後

可以得到時點 t H 下準備金之分佈。再以對應於所關心的風險期間之無風險利

率來折現，即可推得時點 0t  下準備金之分佈。最後透過風險衡量值，如風險值

或尾端風險期望值來衡量準備金之風險。 

本研究以生死合險、利變型年金與股票指數型基金為例進行模擬試算。數值結果

發現 P 測度法與 Q 測度法所計算之準備金風險與 QPQ 方法的確有顯著差異。傳

統 P 測度法可能會過度衡量風險，因其考量全段保障期間之風險。而 Q 測度下

所計算之準備金風險低於 QPQ 方法所得之結果，顯示以 Q 測度法衡量準備金風

險可能無法正確反映風險。由於準備金適足性對壽險公司清償能力有很大之影響，

因此，基於保守監理考量，本研究建議壽險公司應採用 QPQ 方法來衡量準備金

風險。 

 

關鍵字：風險管理；人壽保險；準備金 

 

 



 

1. 緒論 

如何正確衡量準備金風險為壽險公司風險管理首要之務，因準備金風險顯著

影響保險公司之清償能力。壽險公司承保人身風險，其保險契約存續期間可能長

達七、八十年，利率些微的變動都會對準備金造成很大之影響。另一方面，人壽

保險具儲蓄性質，因此壽險準備金金額龐大，為壽險公司主要負債項目。2 

傳統/現行的精算方法是根據期望值來估計責任準備金。以終身壽險為例，

被保險人死亡時保險公司給予理賠，因此精算人員以預定之死亡率計算未來預期

理賠與保費收入之期望值，再以預定之保單利率 (固定值) 折現至評價點，即為

該時點下該保單之責任準備金。換言之，Bowers et al. (1997) 之傳統/現行精算方

法主要是考量死亡時間的不確定性，以期望值概念來衡量未來負債之現值。 

過去文獻探討死亡時間、利率、解約率、死亡率不確定性以及費用率結構對

準備金風險之影響，其研究方法為在隨機利率或解約率等模型下，模擬壽險保單

準備金之分佈，進一步以統計量分析準備金風險 (如 Panjer and Bellhouse, 1980; 

Bellhouse and Panjer, 1981; Giaccotto, 1986; Beekman and Fuelling, 1990, 1992, 

1993; De Schepper and Goovaerts, 1992; Frees, 1990; Parker, 1994, 1996; Marceau 

and Gaillardetz, 1999; Tsai, Kuo and Chen, 2002; Tsai, Chen and Chan, 2003; Tsai, 

Kuo and Chiang, 2009; Lin and Tzeng, 2010) 。綜合以上文獻發現，準備金分佈受

利率風險之影響相當顯著，反觀死亡率風險對準備金的影響微乎其微。另外，費

                                                 
2 我國壽險業 2006 至 2012 年責任準備金皆超過整體負債的 80%。 



 

用率與解約的保單年度亦會影響準備金的期望值與不確定性。在長壽風險部分，

Lin and Tzeng (2010) 實證結果發現，當保單保障期間越長，為因應長壽風險所

需額外增加計提準備金之比率越高。 

上述文獻主要以模擬方法探討準備金之分佈，因此在計算準備金期望值的過

程中，也可以產生其他動差的估計值，進一步進行風險的衡量。上述精算方法是

在 P 測度下計算準備金之風險。但此方法下所計算之風險值 (Value at Risk, VaR) 

期間有多長呢？以 20 年期生死合險為例，保險公司通常在保單發行時，應用 VaR

概念估計其負債，並將計算所得之負債除以 20 作為準備金之估計值，3但此方

法下的 VaR 期間是一年嗎？除以 20 的涵意究竟為何呢？此外，在 P 測度法下

計算未來責任現值時，需以評價點所估計之利率期限結構再加上風險溢酬 (Risk 

Premium) 以進行折現，但上述精算文獻在 P 測度下估計準備金風險時，其折現

                                                 
3 進行債券風險值計算時，是根據未來一年殖利率曲線之可能變動計算出債券一年後價格的機率

分佈，因此，風險值的時段 (Time Horizon) 是一年。而在進行債券的評價 (Valuation) 時，多是

以現在的殖利率曲線做折現率計算現值，或是根據現在的殖利率曲線做校準，在Q測度下模擬債

券到期前的無風險利率。換言之，做評價時需要考量債券到期前利率的可能值 (對三十年到期的

債券來說，就是未來這三十年間的利率) 。但在估計風險值時，關心的是未來一年殖利率曲線的

可能變動，然後在每個可能的殖利率曲線情境下再做評價。整個完整的過程就是本文所說的QPQ

方法，其中，Q的時段是債券的到期時間，而P的時段則是風險值的時段。在準備金的風險衡量

部分，傳統在P測度下估計準備金風險值是以模擬準備金分佈的方式進行。其方式為模擬未來所

有保單年度 (假設為T 年) 的利率、死亡率、解約率等變數，並將未來各年度淨現金流量以所模

擬的各年度利率折現回評價點，可得評價點之準備金分佈，進而求算風險。這樣的做法等於是在

同一個P測度下同時進行評價與風險值估計，在方法論上是有問題的。而在這個有問題的作法中，

到底時段是多少是令人困惑的。其中一個說法是鑑於估計準備金風險值的時候模擬了「未來所有

年度之利率變動」以進行折現，因此認為這些利率變動涵蓋了未來T 年之風險，因此應該除以 T

進行修正。我國風險基礎資本額制度 (Risk-based Capital) 中之C2保險風險即是以這個方法進行

風險係數之估算。針對上述以 T 進行修正的作法，本研究亦抱持著存疑的態度。因此本研究才

提出一正確的準備金風險衡量方法，亦即QPQ方法。 



 

率並未考量風險溢酬。4 

另一方面，根據國際財務會計準則 (International Financial Reporting Standard, 

IFRS) 與 Solvency II 之 Quantitative Impact Study 5 (QIS 5)5 的發展趨勢，傾向以

公平價值 (Fair Value) 來衡量未來保險契約負債之價值，主要概念是在無風險假

設下，估計未來現金流量之折現值作為準備金之最佳估計值 (Best Estimate)。亦

即，在評估保險合約負債的現金流量時，將風險及不確定性反映於現金流量的計

算上，計算各種可能發生的情境與機率，以及各種情境所產生之現金流量，並據

以計算加權算術平均；最後，再將該現金流量以無風險利率貼現以求得保險合約

之準備金。1990 年代起的諸多保險文獻，如 Grosen and Jorgensen (1997, 2000, 

2002)、Babbel et al. (2002)、Barbarin and Devolder (2005)、Milevsky and Salisbury 

(2006) 等亦主張應該在 Q 測度下進行保險契約負債的評價。 

QIS 2 建議準備金風險之量化有兩種方法6：(1)百分位數法  (Percentile 

Approach) ，以及(2)資金成本法 (Cost of Capital Rate) 。7QIS 2 提到採用百分位

數法時，應以最佳估計法所求得之準備金分佈來計算 75 百分位數。換言之，QIS 

2 建議在 Q 測度下同時評價準備金並估計風險，因此，在百分位數法下計算風險

邊際時，須在 Q 測度下進行模擬。假設站在時點 0t = ，欲估計 H 年之準備金風

                                                 
4 風險溢酬之估計需要有商品之市場價格以及其波動度，而人壽保險商品無法於金融市場上取得

交易價格與波動度，因此難以客觀估計其風險溢酬。 
5 參見 European Commission (2010) 之「QIS5 Technical Specifications」報告書，頁 25-49。 
6 參見 European Commission (2006) 之「QIS2 Quantitative Impact Study 2 Technical Specifications」
報告書，頁 11-12。European Commission (2007) 之「QIS 3 Technical Specifications Part I: 
Instructions」也提到計算風險邊際可使用此兩種方法，頁 12。 
7 QIS5 則建議使用 Cost of Capital Rate 法衡量準備金風險，參見 European Commission (2010) 之

「QIS5 Technical Specifications」報告書，頁 54。 



 

險，其方法為在時點 t H= 下，以 Q 測度下之模型模擬未來現金流量與相對應之

無風險利率，可以得到時點 t H= 下準備金之分佈，再將其以無風險利率折現以

推得 0t = 下準備金之分佈，最後透過風險衡量值來衡量準備金之風險。然而，

在 Q 測度下，市場未來可能的變化是在風險中立環境下進行模擬，並無法描繪

實際市場波動對準備金價值變動所造成之風險。 

基於保守監理之考量，並合理反映準備金風險，本研究提出 QPQ 方法來衡

量準備金風險。QPQ 方法乃應用巢狀模擬法 (Nested Simulations Approach) 來量

化準備金之風險，由於準備金風險衡量分成「準備金最佳估計值」與「準備金風

險邊際」兩部分，在準備金風險邊際部分需模擬外部情境與內部情境，因此共需

三個步驟，而此三個步驟分別在 Q 測度、P 測度以及 Q 測度下進行，因此本研

究稱為 QPQ 方法，其架構如圖 1。假設保單期間為T 年，在時點 0t = 時，在 Q

測度下以最佳估計值法作為準備金之估計值 (QPQ 中的第一個 Q)。但在準備金

風險衡量方面，假設欲估計 H 年之準備金風險，則壽險公司應先在 P 測度下模

擬 (0, )H 間之市場狀況情境 ,H iS  (QPQ 中間的 P)。然後，在任一 ,H iS 下，於時點

t H= 我們可以再作準備金的評價 (在 Q 測度下)，計算時點 t H= 準備金之公平

值 (QPQ 中的第二個 Q)。因為模擬了多個市場情境，我們可以得到時點 t H= 下

準備金之分佈，再透過風險衡量值 (風險值或尾端風險期望值) 來衡量準備金之

風險。8 

                                                 
8 由於需在時點 0t = 估計風險，因此需再以 0t = 之利率期限結構 (零息債券殖利率曲線) 所對

應到期日之殖利率進行折現，則可推得 0t = 下準備金之分佈， 



 

QPQ 方法主要為解決只在一個測度下同時進行準備金評價以及衡量風險之

問題。以 P 測度法為例，在同一個 P 測度下，在方法論上是有問題的，且折現率

多未考慮風險溢酬。而 Q 測度法是在風險中立環境下模擬市場未來可能的變化，

並無法描繪實際市場波動所造成之風險。本研究所提之 QPQ 方法則是在 P 測度

下模擬市場未來可能的變化 (QPQ 中間的 P)，在每個未來的可能情境下再以 Q

測度法進行評價 (QPQ 中的第二個 Q)，即可得到未來市場狀況不確定下的價值

機率分佈，最後將此機率分佈的各個值折現到評價時點來估計風險。QPQ 方法

和財務工程的文獻以及最近的保險文獻一致。在選擇權風險的計算方面，McNeil 

et al. (2005) 介紹風險衡量方法為應用歷史資料建立風險因子在 P 測度下之模型，

…
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風險邊際 

圖 1 QPQ 方法架構圖 



 

並應用此模型使用蒙地卡羅法模擬風險因子，進一步在 Q 測度下求得選擇權價

格在 ( , 1)t t  之差量分佈，最後應用風險衡量指標計算選擇權之風險。Gordy and 

Juneja (2010) 在 衡 量 衍 生 性 商 品 組 合 風 險 時 ， 採 用 巢 狀 模 擬 法  (Nested 

Simulations Approach)，在 Q 測度下評價衍生性金融商品，並在 P 測度下模擬外

層模擬步驟 (Outer Step) 之市場情境。在保險文獻方面，Bauer et al. (2012) 建議

應以巢狀模擬法計算保險公司之清償資本額要求 (Solvency Capital Requirement)，

研究中也提及需在 P 測度下模擬時點 0 到時點 1 間之市場情境。這些文獻都與

QPQ 方法概念一致。9 

模擬結果顯示保險公司應以最佳估計法估計準備金期望值，因在 P 測度法下

所使用之折現率不符合金融市場一致性評價之假設。在準備金風險衡量部分，模

擬結果顯示傳統之 P 測度法可能會過度衡量風險，因其考量全段保障期間之風險。

而 Q 測度下所計算之準備金風險低於 QPQ 方法所得之結果，顯示以 Q 測度衡量

準備金風險可能無法正確反映風險。準備金適足性對壽險公司清償能力有很大之

影響，因此，基於保守監理考量，本研究建議壽險公司應採用 QPQ 方法來衡量

準備金風險。 

本文架構如下：第 1 節為緒論，說明本研究之動機，隨後介紹人壽保險未來

責任價值與風險之評估方法，包含 P 測度法、Q 測度法與 QPQ 方法。第 3 節簡

述評估時所用之模型，包含利率模型與股票相關資料。第 4 節為數值分析，強調

                                                 
9 Bauer et al. (2012) 以資產的角度出發，衡量清償資本額要求，換言之，即是衡量資產扣掉負債

之公平價值；Gordy and Juneja (2010) 則是探討資產的風險衡量。而本研究以負債角度出發，類

似於衡量「負債扣掉資產」之公平價值與風險。 



 

QPQ 方法估計風險與其他兩種方法之差異，最後為結論。 

2. 價值與風險評估方法 

準備金係指保險公司為因應所承擔之責任 (未來理賠之現金流出扣除未來

保費之現金流入) 在今日所應提列之數值。10因責任準備金現值受到利率與其他

風險因子之影響，其不確定性造成準備金之機率分佈，11學術上多以期望值 (傳

統法) 或以最佳估計值 (公平評價法) 來衡量應提列之準備金。而準備金風險則

係指此未來責任之不確定性。12 

2.1 未來責任之期望值或最佳估計值 

本研究中我們以時點 0t = 為例，衡量未來責任之現值 ( 0L )，亦即準備金之

現值。文獻與實務上之計算方法有兩種：(1) 在 P 測度法下所求得之現值稱為期

望值；(2) 在 Q 測度法下所求得之現值稱為最佳估計值。假設未來第 y 年底現金

流入 (保費收入) 為 I
yC ，第 y 年底現金流出 (理賠支出) 為 O

yC 。各年度現金流入

與當年度存活人數有關，因此在模擬 I
yC 時與死亡率 ( q ) 有關，可表示成 ( )I

yC q 。

近年來保險公司發行的商品日益複雜，各年度現金流出除與死亡率有關外，尚可

能與市場利率 (r ) 或金融商品報酬率 ( R ) 有關，13可表示成 ( , , )O
yC q r R 。假設

保單期間為T 年，則各年度之淨現金流量 yCF 為 O I
y yC C ，依據各年度折現因子 yv ，

                                                 
10 保險契約簽訂後，保險公司向要保人收取保費，因此收取保費在先，損失理賠在後。保險公

司在收取保費後，為履行保險契約內之損失理賠責任，需逐年提存責任準備金。 
11 利率與其他風險因子具不確定性，因此當對未來利率與其他風險因子估計不同時，會得到不

同的準備金估計值。 
12 保險法所稱之法定責任準備金係指在期望值/最佳估計值之上，再加上風險邊際，以達謹慎保

守估計準備金之目的。 
13 因保單有效期間不只一年，因此需模擬未來各年度之市場利率或金融商品報酬率，因此我們

以向量符號表示 r 與 R 。 



 

可計算未來責任現值 0L ，公式如下： 

0
0

T

y y
y

L CF v


  .14                          (1) 

以下介紹在 P 測度法與 Q 測度法下之模擬計算流程，並分別以 P
0L 與 Q

0L 代表

未來責任之期望值與最佳估計值。 

2.1.1 P 測度法 

根據 Tsai et al. (2003)，在 P 測度法下保險公司依據市場參數所模擬之未來情

境下之現金流量，並以所對應之利率折現回 0t = 計算其未來責任現值 P
0L 。本節

介紹在 P 測度法下模擬準備金期望值之流程： 

步驟 1：站在 0t = ，收集市場利率期限結構與模擬各年度現金流出所需之金融市

場商品報酬率過去歷史資料，建立在 P 測度下之模型。 

步驟 2：以 0t = 之市場利率期限結構 0r 以及金融市場商品報酬率資料 0R 為模型

起 始 值 ， 可 模 擬 出 在 P 測 度 法 下 未 來 N 年 之 利 率 期 限 結 構

P P P
0 0,1 0,2{ ,  ,...}t t year t yearr rr= = == 與金融市場商品報酬率

P P P
1 2{ , ,...}R RR = 。 

步驟 3：以步驟 1 與 2 模擬所得之資料，可估算未來T 年各年度之現金流出

( P P( , , )O
y tC q r R ) 與現金流入 ( ( )I

yC q )。在 P 測度法下，各年度折現因子

P P 1
0,  

1

(1 )
m y

y m year
m

v r






  ， P
0 1v  。各年度之淨現金流量 yCF 為 O I

y yC C ，依

據各年度折現因子 P
yv ，即可得該模擬情境下準備金之現值。 

步驟 4：重複執行步驟 1 至步驟 3 共 N 次，即可得準備金現值之分佈 ( P
0, 1t iL   ,

                                                 
14 注意，本研究乃計算已收保費後之準備金，在第 3 與第 4 節的保單模擬試算裡，因假設保費

為躉繳，故未來各年度之現金流入為 0。 



 

P
0, 2t iL   , …, P

0,t i NL   ) ， 15 再 應 用 期 望 值 概 念 計 算 準 備 金 之 估 計 值

( P P
0 0,( )t iL E L  )。 

在 P 測度法下計算未來責任現值時，乃以評價點所估計之利率期限結構進行

折現。這種做法的主要問題為高估負債金流之現值 (價格)，因其折現率未考量

風險溢酬。理論上，對一個不確定的現金流之現值 (價格) 計算有兩大類可行做

法，第一類為均衡 (Equilibrium) 價格之評價模型，如資本資產定價理論 (Capital 

Assets Pricing Model, CAPM)，此類評價模型不改變機率測度，但折現率須加上

風險溢酬。第二類為無套利 (No-arbitrage) 價格之評價模型，如 Black-Scholes

之選擇權定價模型。此類評價模型不改變折現率，但須調整測度，使得不確定現

金流之期望值降低。在第一類方法下，風險溢酬無客觀可行的方法來進行估計，

同時，若保險商品連結金融市場標的，則此風險溢酬可能會隨著此連結商品之變

動而成為一隨機變數。由於此方法在實務操作上具有困難度，16因而大部分精算

文獻在 P 測度法下估計準備金風險時，其折現率並未考量風險溢酬。 

2.1.2 Q 測度法 

Babbel et al. (2002) 認為在評估保險合約負債之現金流量時，應將風險及不

確定性反映於現金流量之機率測度，17計算各種可能發生的情境所產生之現金流

                                                 
15 假設

P

0, 1t i
L  

, P

0 , 2t i
L  

, …, P

0,t i N
L  

已由小到大排序。 
16 人壽保險商品無法於金融市場上取得交易價格與波動度，因此難以客觀估計其風險溢酬。 
17 在 Solvency II、Swiss Solvency test，以及 IFRS 4 中，負債的價值必需符合市場一致性 (Market 
Consistent) 之要求。所謂市場一致性的負債價值，主要精神在於負債價值應等同於在金融市場

上可取得的複製投資組合 (Replicating Portfolio) 之價值。在選擇權定價理論中 (Harrison and 
Kreps, 1979; Harrison and Pliska, 1981)，複製投資組合的價值可透過風險中立評價法求得。而風

險中立評價法的作法是經由微妙的測度轉換將真實測度 (P-measure) 轉換成風險中立測度



 

量，並據以計算加權算術平均，最後，再將該現金流量以無風險利率貼現以求得

保險合約之準備金，因此，保險公司必須考量符合金融市場一致性的評價假設。 

在 Q 測度法下保險公司應先以金融市場所提供之利率資訊與利率模型估計

無風險利率，作為各年度現金流量之折現因子。若保單給付連結金融市場商品，

則在 Q 測度法下，需以財務理論模型 (如 Black-Scholes 選擇權公式) 估計保險

商品之價值。本節我們介紹在 Q 測度法下模擬準備金之最佳估計值的架構： 

步驟 1：站在 0t = ，收集市場利率期限結構 0r ，由 0r 可校準 (Calibrate; 詳細步

驟請參看 3.2 節) 在 Q 測度下利率模型之參數，並進一步估計無風險利

率期限結構 Q Q Q
0 0,1 0,2{ ,  ,...}t t year t yearr rr= = == 。 

步驟 2：假設保險商品給付與金融市場商品報酬率有關，則以該金融商品報酬率

歷史資料建構該商品報酬率之動態模型與模型參數，並以 0R 為起始值，

可模擬出在 Q 測度下未來T 年該商品報酬率
Q Q Q

1 2{ , ,...}R RR = 。 

步驟 3： (無法以財務理論模型計算公平價值之保險商品)18 

以蒙地卡羅模擬法計算該保險商品負債之公平價值。以步驟 1 與步驟 2 

所模擬之利率期限結構 Q
0tr= 與金融商品報酬率

QR 模擬未來T 年各年度之

現金流出 ( Q Q( , , )O
y tC q r R ) 與現金流入 ( ( )I

yC q )。19在 Q 測度下，各年度

                                                                                                                                            
(Q-measure) 後，以無風險利率折現預期現金流量即可求得價格。因此，保險公司應以 Q 測度法

來計算負債價值。 
18 以利變型年金為例，若帳戶價值每年依兩年期利率增加，則其負債現值無法以財務理論模型

推算，此時可用蒙地卡羅模擬法進行分析。 
19 由於本研究目的在於提出一QPQ方法以正確估計準備金風險，因此本文沒考慮解約。當解約
率為0時，在同一時點下，生死合險保單之現金流量僅與生存率與死亡率有關，因此，無論在P
測度或Q測度下，其各年度現金流入與流出皆相同。而利變型年金與股票指數型年金之現金流量
與市場標的 (兩年期利率與股票報酬率) 有關，因此其各年度現金流入與流出在P測度與Q測度模



 

折現因子 Q Q 1
0,  

1

(1 )
m y

y m year
m

v r






  ， Q
0 1v  。各年度之淨現金流量 yCF 為

O I
y yC C ，依據各年度折現因子 Q

yv ，即可得該路徑下準備金之現值。 

步驟 4：重複 N 次步驟 1 至步驟 3，即可得準備金現值之分佈 ( Q
0, 1t iL   , Q

0, 2t iL   , …,  

Q
0,t i NL   )，再應用期望值概念計算準備金之最佳估計值 ( Q Q

0 0,( )t iL E L  )。 

步驟 5： (可以財務理論模型計算公平價值之保險商品)20 

若保險商品可以財務理論模型 (選擇權) 計算公平價值，則以步驟 1 至

步驟 2 求得之利率模型之參數與金融商品報酬率動態模型之參數，可計

算該保險商品在 0t = 負債之現值，即為期初準備金之最佳估計值 

( Q
0L )。 

2.2 未來責任風險之量化 

本研究以風險衡量指標 (VaR 與 CTE) 量化未來責任之風險，其定義如下： 

( )( ) 1 %VaRP L L     ,                         (2) 

( ) ( ) ( )VaR VaRL L E L    ,                         (3) 

( ) ( )[ | ]CTE VaRL E L L L   ,                      (4) 

( ) ( ) ( )CTE CTEL L E L    ,                        (5) 

( )VaRL  代表準備金現值超過 ( )VaRL  的機率為 % 。而 ( )CTEL  則是準備金現值超過

( )VaRL  之期望值。責任之風險強調偏離預期期望值之差距，因此公式(3)與公式(5)

                                                                                                                                            
擬下之結果會有所不同。但注意，在P測度下，我們不需要也沒有做評價，我們只做風險因子的
隨機模擬，所以沒有涉及現金流量。要計算現金流量都是在Q測度下。因此現金流量是否因為測
度的不同而有不同是不影響我們的結果的。 
20 以股票指數型年金為例，假設期滿時年金價值與當時股票價格有關，因此，可應用選擇權公

式計算該保險商品之價值。 



 

將未來責任風險 ( )VaRL  與 ( )CTEL  定義為 VaR 與 CTE 再扣除未來責任期望值。 

2.2.1 P 測度法 

本研究以模擬法模擬準備金現值之分佈，在 2.1.1 節中，P 測度法下模擬之

準備金現值分佈為 ( P
0, 1t iL   , P

0, 2t iL   , …, P
0,t i NL   )，根據公式(2)與公式(4)之概念，

P P
( ) 0, ( %)VaR t i NL L    ， P P

( ) 0,[ ]CTE t iL E L  ， % 1,...,i N N   。而未來責任之風險

為： 

P P P
( ) ( ) 0VaR VaRL L L 
   , 

P P P
( ) ( ) 0CTE CTEL L L 
   . 

2.2.2 Q 測度法 

QIS 2 建議以百分位數法計算風險邊際，施行步驟如下，假設在時點 0t = ，

欲估計未來 H 年間之準備金風險，則在時點 t H= 時，以 Q 測度下之模型模擬未

來現金流量與相對應之無風險利率，可以得到時點 t H= 下準備金之分佈，再將

其以無風險利率折現以推得 0t = 下準備金之分佈，再透過風險衡量值，來衡量

準備金之風險。本研究以 0t = 為例，計算一年的準備金風險，因此需模擬 1t = 下

準備金之分佈。詳細模擬流程如下： 

步驟 1：在 2.1.2 節中已建構 Q 測度下之利率模型與金融商品報酬率動態模型。

以 0t = 之市場利率期限結構 0r 以及金融市場商品報酬率資料 0R 為模型

起始值模擬 1t = 之利率期限結構 Q
1tr= 與金融市場商品報酬率 Q

1tR = 。 

步驟 2：站在 1t = ，以步驟 1 之結果，應用 2.2.1 節中計算最佳估計值方法計算



 

在 1t = 下準備金之最佳估計值 ( Q
1, 1t iL   )。 

步驟 3：將步驟 2 之結果以 0t = 之無風險利率 ( Q
0,1t yearr= ) 折現回期初 ( 0t = )，

Q Q Q
0 1, 1 1, 1 0,1( ) /(1 )t i t i t yearE L L r      。 

步驟 4：重複 N 次步驟 1 至步驟 3，即可得準備金現值之分佈 ( Q
0 1, 1( )t iE L   ,

Q
0 1, 2( )t iE L   , …, Q

0 1,( )t i NE L   )，再應用風險衡量指標 VaR 與 CTE (公式(2)

與(4))，即可估計 Q
( )VaRL  與 Q

( )CTEL  。而未來責任之風險為： 

Q Q Q
( ) ( ) 0VaR VaRL L L 
   , 

P P P
( ) ( ) 0CTE CTEL L L 
   . 

2.2.3 QPQ 方法 

此方法的概念主要是在 P 測度下模擬一年內市場環境之變化，再利用最佳

估計值 (Q 測度下) 求得在金融市場變化下，一年後準備金之分佈。21將 1t  之

準備金分佈以時點 0t = 的利率期限結構所相對應之一年期殖利率折現至期初

( 0t  )，再應用風險衡量指標，如 VaR 或 CTE，即可估計準備金之風險。詳細

模擬架構如下： 

步驟 1：在 2.1.1 節中已建構 P 測度下之利率模型與金融商品報酬率動態模型。

以 0t = 之市場利率期限結構 0r 以及金融市場商品報酬率資料 0R 為模型

起始值模擬 1t = 之利率期限結構 P
1tr= 與金融市場商品報酬率 P

1tR = 。 

步驟 2：站在 1t = ，以步驟 1 之結果，應用 2.2.1 節中計算最佳估計值方法計算

                                                 
21 注意，這邊的步驟已是 QPQ 方法中的 P 與第二個 Q，第一個 Q 為在 Q 測度法下計算準備金

在時點 0t  之最佳估計值。 



 

在 1t = 下準備金之最佳估計值 ( Q
1, 1t iL   )。 

步驟 3：將步驟 2 之結果以 0t = 之無風險利率 ( Q
0,1t yearr= ) 折現回期初 ( 0t = )，

Q Q Q
0 1, 1 1, 1 0,1( ) /(1 )t i t i t yearE L L r      。 

步驟 4：重複 N 次步驟 1 至步驟 3，即可得準備金現值之分佈 ( Q
0 1, 1( )t iE L   ,

Q
0 1, 2( )t iE L   , …, Q

0 1,( )t i NE L   )，再應用風險衡量指標 VaR 與 CTE (公式(2)

與(4))，即可估計準備金之風險。 

2.2.2 節與 2.2.3 節主要差別在於模擬 1t = 準備金分佈方法不同，在 Q 測度法

下是以 Q 測度所建構之利率模型與金融商品報酬率動態模型模擬，在 QPQ 方法

下是以 P 測度所建構之利率模型與金融商品報酬率動態模型進行模擬。 

2.3 釋例保單 

為比較與分析在三種不同方法下之準備金期望值與風險衡量之差異，本研究

以三張壽險保單為範例，分別為：T 年期生死合險 (Endowment)、利變型年金 

(Interest-Sensitive Annuity) 與股票指數型年金 (Equity-Index Annuity, EIA)，並於

表 1 整理此三種保單之基本假設。 

(1) T 年期生死合險 

假設保額 F 元下之年繳保費為 P 元，保單預定利率為 d，x 歲之死亡率為 xq 。

當被保險人於保障期間內死亡，或滿期仍存活，皆可領到 F 元。 

(2) 利變型年金 

假設累積期為T 年，期初躉繳保費為 SP 元，若宣告利率為 cr ，則累積期滿該



 

利變型年金之累積價值為：
1

,
0

(1 )
T

c t
t

SP r




  。保險公司以累積價值與當時之年

金生命表計算每年可請領之年金金額。 

(3) 股票指數型年金 

本研究以點對點式 (Point-to-point) 股票指數型年金 (Hardy, 2003) 為例，假

設累積期為T 年，期初躉繳保費為 SP 元，連動之股票指數價值為 tS ，若參與

率為 且保證收益為 G ，則累積期滿該股票指數型年金之累積價值為

   0
max , 1 1TS

SG SP   。保險公司以累積價值與當時之年金生命表計算每

年可請領之年金金額。 

表 1: 保單基本假設22 

T 年期生死合險  利變型年金  股票指數型年金 

F   1,000,000  SP   627,708  SP   627,708 

P   45,300 
T   10 

T   7 

T   20   60% 

d   4%  cr  2 年期利率 G   70.95 (1 3%)SP  

xq   1989 TSO 90%     股票指數  台灣 50 指數 

 

人身保險為壽險公司主要經營項目，壽險保單為主要契約類型，由於生死合

險相當於定期壽險加上生存保險之組合，又可視為終極年齡為 x T 歲23之終身壽

險，因此本研究以生死合險作為傳統型保單之範例。隨著近年來利率持續下降，

壽險公司發行利變型年金商品，將傳統型商品中固定的預定利率變成連結於浮動

                                                 
22 本研究探討之生死合險保單採用業界之假設與現金流量分析，其用台灣第三回經驗生命表

(1989 Taiwan Standard Ordinary Experience Mortality Table) 乘以 90%計價之年繳保費為 45,300
元，換算成躉繳保費為 627,708 元。 

23 假設 x 歲投保，保障期間為 T 年。 



 

的市場利率。股票指數型年金則是將預定利率連結於股價指數，並附有保證給付

機制，具備選擇權的性質。以上兩類保單主要是在利率較低的環境中，連結金融

市場標的之保險商品，以吸引不同風險屬性之保險商品購買者。 

3. 經濟情境模型與評價模型 

3.1 經濟情境模型 

根據表 1，本研究探討三張壽險保單所面臨之市場狀態變數包括利率期限結

構以及股票指數報酬。在利率期限結構部分採用台灣櫃檯買賣中心所公布之殖利

率資料進行估計，每年度資料有 1 個月、3 個月、6 個月、1 年、1.5 年、2 年、…、

30 年期債券之利率共 62 筆資料。雖然將所有變數皆納入模型的建構，能反映出

比較多的變異，但是在參數估計上卻可能面臨模型維度 (Dimension) 過高而導致

估計不易/準的問題。每組利率資料 62 筆再加上股票報酬，資料龐大而無法直接

使用 GARCH 模型產生變數間之共變數矩陣，因此本研究參考 Alexander (2001, 

2002)、梁正德和郭維裕 (2009)，採用 Orthogonal GARCH 方法24來建構利率期間

結構與股票指數報酬率的模型。而 Orthogonal GARCH 方法主要概念為應用主成

份分析法使風險因子正交，並進一步從所有正交因子波動中產生原來風險因子的

完整共變異矩陣，以描述所欲估計之變數。 

本研究收集台灣櫃檯買賣中心所公布之殖利率曲線週資料，25每週發佈 1 個

                                                 
24 Orthogonal GARCH 方法主要應用主成分分析法進行風險因子之估計，Hull and White (2002)
亦應用主成分分析法來建構利率期間結構。Orthogonal GARCH 方法之介紹詳見附錄 1。 

25 利率資料來源：櫃臺買賣中心/債券交易資訊/公債/日統計/殖利率曲線。 
  （http://www.otc.org.tw/ch/bond_trading_info/gov_bond/daily/GovBondDaily.php#） 



 

月、3 個月、6 個月、1 年、1.5 年、2 年、…、30 年期共 62 個殖利率資料，資

料收集期間為 2006 年 1 月 6 日至 2011 年 4 月 15 日，26共 270 個資料點。股票

指數則採台灣 50 指數週報酬率資料，其資料來源為台灣經濟新報資料庫，資料

期間與殖利率曲線相同。 

首先對利率期限結構進行主成份分析 (下圖 3)，由圖 3 可知，前三個因素 ( 1F 、

2F 與 3F ) 為主要決定利率期限結構之因素，因此，本研究中 3p = ， 1F 、 2F 與 3F

能夠解釋資料變數 (利率期限結構) 約 92.85%以上的總變異數。再將估計所得之

共同因素 1F 、 2F 與 3F 以及股票指數報酬率歷史資料進行統計分析，可得到共同

因素與股票指數報酬間之相關係數矩陣如表 2。27其中， idF 表示 iF 之差量， SR 為

標準化後之股票指數報酬率。28 

 

圖 3 主成份分析 

 

 

                                                 
26 櫃檯買賣中心所提供之殖利率日資料從 2006 年 1 月 2 日開始，因本研究以週資料進行模型配

適，因此資料起始點從 2006 年 1 月 6 日開始。 
27 在 Orthogonal GARCH 模型下模擬未來利率期限結構與股票指數報酬時，需先根據共同因素

(
1

F 、
2

F 、
3

F 與
S

R ) 的歷史資料估計相關係數矩陣。將此相關係數矩陣做 Cholesky 分解後，再

乘以此四個因素動態模型中的亂數，即能將此四個因素間的相關性納入考量。 
28 股票指數報酬率在資料期間內之平均值為 6.212%。 
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表 2 相關係數矩陣 

  1dF  2dF  3dF  SR  

1dF  1 -0.0002 -0.0006 0.1489 

2dF  -0.0002 1 -0.0002 0.1079 

3dF  -0.0006 -0.0002 1 0.1117 

SR  0.1489 0.1079 0.1117 1 

 

表 3 因素分析 

1dF ：AR(1) 1, 1 1, 1 1,t t tF a F h-= + , ( )2
1, 1,~ 0,t N hh s  

1 0.2315a    

(0.0001) 
1,0 0.0094F    2

1, 1.0032   

2dF ：AR(1) 2, 2 2, 1 2,t t tF a F h-= + , ( )2
2, 2,~ 0,t N hh s  

2 0.1031a    

(0.0920) 
2,0 1.0905F    2

2, 1.0037   

3dF ：AR(1)+ARCH(1) 3, 3 3, 1 3,t t tF a F h-= + , ( )
3,

2
3, ~ 0,

t
t N

h
h s , 

3,

2 2
0 1 3, 1

t
th

s g g h -= +

3 0.2969a    

(0.0000) 
3,0 0.0651F    

0 0.5067   

(0.0000) 

1 0.5823   

(0.0000) 
3,0 0.0560   

SR ：GARCH(1,1) , 4,S t tR  , ( )
4,

2
4, ~ 0,

t
t N

h
h s , 

4, 14,

2 2 2
0 1 4, 1 2 tt

t 
     

    

0 0.3486   1 0.1278   2 0.8420   



 

(0.0983) (0.0070) (0.0000) 

4,0 2.5003   
4,0

2 9.9970


    

註：括號內為 p 值。 

 

接下來我們建構共同因素 ( 1F、 2F 、 3F 與 SR ) 之動態變化模型，以 ARMA (p, 

q)-GARCH(m, n) 時間序列模型進行配適。模型配適方法第一步將模型殘差符合

白噪音 (White Noise) 之時間序列模型選為候選模型，若有多種候選模型，再根

據 Akaike Information Criterion (AIC) 或 Bayesian Information Criterion (BIC) 的

大小來挑選，以 AIC 或 BIC 最小者為最適模型。29模型估計結果如上表 3。 

3.2 評價模型 

假設風險中立下，動態利率模型服從 CIR 模型 (Cox et al., 1985)，可表示為

下式： 

( ) ( ( )) ( ) ( ),       0r rdr t a b r t dt r t dz t t    . 

a 為利率反轉速度 (Mean Reversion Speed)，b 代表利率之平均長期水準，而 r 為

利率變動之瞬間波動度， rdz 代表隨機誤差項，注意， 22 ra  。 

    CIR 模型參數配適方法為找到最適之參數值 â、b̂ 與 ˆ r ，使得預測之利率值

r̂ 與樣本點 r 之平方誤差 (Square Error) 最小，請見下式： 

 2

, ,
1

ˆMin  
r

N

i ia b
i

r r




 . 

透過 MATLAB 程式求得 CIR 模型參數後，本研究參考 Glasserman (2003) 之

方法預測未來之利率。其概念為在已知u 時點利率 ( )r u 下， ( )r t 會服從一時間的

                                                 
29 相關統計資料請見附錄 2。 



 

函數再乘以一非中央卡方隨機變數 (Noncentral Chi-square Random Variable)，詳

見下式： 

( ) ( )
2

( )

(1 ) 4
( ) ( ) ,  

4 (1 )

a t u a t u
r

d a t u
r

e ae
r t r u t u

e

 
 

   

 

     
, 

其中，自由度
2

4

r

ba
d


 。 

股票價格服從幾何布朗運動模型 (Geometric Brownian Motion Model)，在 Q

測度法下，股票價格的動態過程為
( )

( )
( ) f

dS t
r dt dW t

S t
  ， fr 為無風險利率， 則

以股票選擇權之隱含波動度估計， ( )W t 為維納過程 (Wiener Process)。 

本研究以 2011 年 4 月 15 日之殖利率曲線資料為基準，取 2 年、5 年、10 年、

20 年以及 30 年期殖利率共五個點配適 CIR 模型參數，在給定不同起始值下，皆

得到表 4 之 CIR 模型參數校準結果。 

表 4 CIR 模型參數結果 

a  b    

0.0944 0.0268 0.0269 

而股票價格動態過程之波動度資料採用台灣經濟新報資料庫下台灣 50 指數

選擇權在 2011 年 4 月 15 日之隱含波動度，為 18.34%。 

4 數值分析 

4.1 期望值/最佳估計值 

表 5 列出三張壽險保單試算結果，以生死合險為例，若以期望值估計準備金

現值，則有低估準備金之現象，這是因為在 P 測度下模擬所得利率較 Q 測度下

高 (請參考附錄 3)。反觀股票指數型年金，其最佳估計值為 719,695，期望值為



 

924,657，這是因為在 P 測度下，股票指數之平均報酬率為 6.212%，然而在 Q 測

度下，採用 Blake-Scholes 公式計算股票指數型年金之價值時，假設股價之報酬

為無風險利率 (1.32%)，因此，最佳估計值遠低於期望值。30 

在利變型年金部分， 0t = 時準備金之期望值為 636,913，31然而在 Q 測度下

衡量準備金之最佳估計值為 632,495，我們發現最佳估計值較期望值低。這是因

為在 Q 測度下，所模擬之一年期利率與兩年期利率非常接近，然而在經濟情境

模型下，所模擬之一年期利率與兩年期利率差距較大，因此在 Q 測度下計算所

得之期初負債 (準備金) 會較低。 

表 5 期望值與最佳估計值 

0L  生死合險 利變型年金32 股票指數型年金 

期望值 ( P
0L ) 652,546  

636,913  

 (187) 
924,657 

最佳估計值 ( Q
0L ) 656,043  

632,495 

(23) 
719,695 

註：括號內之數字代表標準誤。33 

4.2 準備金風險之量化 

接 下 來 我 們 在 時 間 點 0t = 衡 量 準 備 金 之 風 險 ， 並 分 別 以 VaR(75) 與

                                                 
30 在 P 測度法下負債現值高達 924,657，可能原因為股票指數之平均報酬率為 6.212%，而折現

率平均為 1.32%。我們改以股票指數之平均報酬率 (6.212%) 為折現率，則負債現值下降至

664,578。 
31 依「利率變動型年金保險費率相關規範」(行政院金融監督管理委員會 2009 年 11 月 16 日金管

保財字第 09802510721 號令修正發布)，利率變動型年金保險的責任準備金在累積期間以年金保

單價值準備金全額提存。 
32 本研究假設利變型年金之宣告利率為兩年期利率 (實務上，台灣壽險公司所販售之利變型年金

亦多以兩年期利率為宣告利率)，因此，年金累積價值每年依照所公告之兩年期利率進行累積，

準備金亦會隨著累積價值而增加。然而，保險公司進行準備金公平現值估計時，是以評價時點之

整條殖利率曲線進行折現，而非單以兩年期利率為折現率。因為未來之殖利率曲線存在不確定性，

故仍須估計利變型年金之準備金風險。 
33 利變型年金係以蒙地卡羅法計算未來負債之期望值與最佳估計值，因此，本研究於表 5 中同

時列出利變型年金期望值與最佳估計值計算過程之標準誤。 



 

CTE(65)34衡量，並與躉繳純保費與期初準備金期望值 (最佳估計值) 相比較。表

6 至表 8 分別列出三張壽險保單在三種不同計算方式下之風險。注意，在 Q 測度

法與 QPQ 方法下是先模擬 1t = 之準備金分佈後再折現回 0t = ，因此可以計算期

望值。 

表 6 為生死合險之風險衡量值，在以 VaR(75)與 CTE(65)衡量準備金風險下，

傳統 P 測度法之風險值最高 (8,710 與 12,921)，這是因為傳統準備金方法是模擬

保單有效期間內所有年度之現金流量與所對應之折現率，因此計算之風險並非單

一年度風險值，而是全段保障期間內之風險。而 Q 測度法所得結果皆比 QPQ 方

法低，根據歷史資料校準之結果，在 Q 測度法下 CIR 模型利率波動度為 2.692%，

而歷史利率資料波動度為 9.373%，因此在 Q 測度法下模擬 0t = 到 1t = 之變化會

較 QPQ 方法小，故風險也相對較小。另外，QPQ 方法顯示在生死合險保單下，

保險公司在原先提列之準備金外，應額外計提 0.69~0.83%的比例，以因應利率

變動對準備金之影響。 

傳統上保險公司會以有效保單年度來調整在P測度法下計算之準備金風險，

本研究以 0t = 為衡量時點，因此生死合險之有效保單年度為 20 年。表 6 在 P 測

度法下同時計算以 T 修正之風險衡量值，與 QPQ 方法相比，此方法仍然低估準

備金之風險。 

 

                                                 
34 台灣對於投資保證的責任準備金風險衡量值標準為 VaR(75)，而美國對於準備金之風險衡量標

準為 CTE(65)。 



 

 

 

 

 

表 6 生死合險之風險衡量值 

衡量方法 P 測度法 Q 測度法 QPQ 方法 

(75)VaRL   
8,710 

(1,948) 
2,195 4,526 

(75)VaRL  / SP  
1.39% 

(0.31%) 
0.35% 0.72% 

(75)VaRL  / 0L  
1.33% 

(0.30%) 
0.35% 0.69% 

(65)CTEL   
12,921 

(2,889) 
2,794 5,428 

(65)CTEL  / SP  
2.06% 

(0.46%) 
0.45% 0.86% 

(65)CTEL  / 0L  
1.98% 

(0.43%) 
0.43% 0.83% 

註：括號內數字為以 20 修正後的風險衡量值。 

 

表 7 為利變型年金之風險衡量結果，在以 VaR(75)與 CTE(65)衡量準備金風

險下，傳統 P 測度法之風險最高 (4,123 與 5,681)，但同樣的問題，在傳統 P 測

度法下所估算之風險並非一年度之風險。然而在 Q 測度法下，因準備金之分佈

為右偏，35造成以 VaR(75)估計準備金風險時為負數之現象，這也再次說明以 Q

測度法估計之風險邊際並無法正確反映此類保單所承擔之風險。另外，在 QPQ

                                                 
35 準備金期望值為 632,086，較表 5 之最佳估計值低。 



 

方法下所估計之風險衡量值約為躉繳保費的 0.2%，保險公司應額外計提

0.18~0.22%的比例以因應利率變動對準備金之影響。 

 

 

 

表 7 利變型年金之風險衡量值 

衡量方法 P 測度法 Q 測度法 QPQ 方法 

(75)VaRL   
4,123 

(1,304) 
-20836 1,151 

(75)VaRL  / SP  
0.66% 

(0.21%) 
0% 0.18% 

(75)VaRL  / 0L  
0.65% 

(0.20%) 
0% 0.18% 

(65)CTEL   
5,681 

(1,796) 
46 1,379 

(65)CTEL  / SP  
0.90% 

(0.29%) 
0.01% 0.22% 

(65)CTEL  / P
0L  

0.90% 

(0.28%) 
0.01% 0.22% 

註：括號內數字為以 10 修正後的風險衡量值。 

 

表 8 為股票指數型年金之風險衡量結果，由於在 P 測度下，股票指數之報酬

率為 6.212%，因此其風險衡量值在 VaR(75)與 CTE(65)下分別高達 114,107 與

334,665，尤其是在 CTE(65)下，風險衡量值超過躉繳保費的 50%，顯示以在 P

                                                 
36 站在 t=1 時，在 Q 測度下所模擬之一年期利率與兩年期利率間之差量較小，使得負債現值變

小，甚至低於 t =0 所衡量之負債現值，因此造成 (75)VaR
L 為負的情形。然而在 P 測度下模擬所得

之一年期利率與兩年期利率間之差量較大，因此負債現值變高。 



 

測度法下會有高估股票指數型年金保單之準備金風險現象。在 QPQ 方法下所估

計之準備金風險約為躉繳保費的 7%~11%，最佳估計值的 6%~9%，而 Q 測度法

所衡量之風險僅為 QPQ 方法的六成，顯示以 Q 測度法衡量準備金的風險會有低

估準備金風險之情形。 

 

 

表 8 股票指數型年金之風險衡量值 

衡量方法 P 測度法 Q 測度法 QPQ 方法 

(75)VaRL   
114,107 

(43,128) 
26,093 45,196 

(75)VaRL  / SP  
18.18% 

(6.87%) 
4.16% 7.20% 

(75)VaRL  / 0L  
12.34% 

(4.66%) 
3.63% 6.28% 

(65)CTEL   
334,665 

(126,491) 
42,451 71,353 

(65)CTEL  / SP  
53.32% 

(20.15%) 
6.76% 11.37% 

(65)CTEL  / P
0L  

36.19% 

(13.68%) 
5.90% 9.91% 

註：括號內數字為以 7 修正後的風險衡量值。 

 

5 結論與建議 

壽險保單存續期間長，準備金龐大，因此準備金風險管理為是壽險公司最重

要之一環。文獻上多在 P 測度法下模擬準備金分佈，並衡量風險 (Tsai et al., 2003, 

2009)。在 P 測度法下計算未來責任現值時，乃以評價點所估計之利率期限結構



 

進行折現，這種做法的主要問題為高估負債金流之現值 (價格)。正確的方法為

折現率須加上風險溢酬，可是風險溢酬無客觀可行的方法來進行估計，因此，多

數精算文獻在 P 測度法下計算未來責任現值時並未進行風險溢酬之調整。QIS 5

則提倡在 Q 測度下計算準備金之公平價值與風險邊際，換言之，在此方法下不

改變折現率，但須調整測度，使得不確定現金流之期望值降低。然而在 Q 測度

法下，是在風險中立環境下模擬市場未來可能的變化，無法描繪實際市場波動所

造成之風險。 

本研究提出一 QPQ 方法來衡量準備金之風險，此方法可解決只在一個測度

下同時進行準備金評價以及衡量風險之問題與缺失。此方法的概念為在時點 t下，

以 Q 測度法衡量準備金之最佳估計值，並在 P 測度下模擬一年內市場環境之變

化，再利用最佳估計值 (在 Q 測度下) 求得在金融市場變化下， 1t+ 下準備金之

分佈。再以時點 t的利率期限結構所相對應到期日之殖利率將 1t+ 之準備金分佈

折現至時點 t，進一步應用風險衡量指標，如 VaR 或 CTE，來估計準備金之風險。

QPQ 方法與 Gordy and Juneja (2010) 與 Bauer et al. (2012) 所建議之以巢狀模擬

法計算衡量衍生性商品組合風險與清償資本額要求之概念相同。 

模擬結果顯示，在 P 測度法下所求得之準備金期望值，以及在 Q 測度法下

所求得之準備金最佳估計值差異甚大。這種做法的主要問題是使用了錯誤的折現

率而高估負債金流的現值 (價格)。Babbel et al. (2002) 認為在評估保險合約負債

之現金流量時，應將風險及不確定性反映於現金流量與所對應之折現率的計算上。



 

因此折現率須加上風險溢酬。但正確地衡量風險溢酬在實務上執行困難，為符合

金融市場一致性的評價假設，因此 QIS 5 提倡保險公司需在 Q 測度下衡量準備金

之最佳估計值。 

在準備金風險衡量部分，傳統 P 測度法以模擬方法計算所得結果會過度衡量

風險，因為模擬過程所計算之風險並非單一年度風險值，而是全段保障期間內之

風險。然而在 Q 測度法下可能無法正確衡量特定類型保單之準備金風險，例如

利變型年金，甚至出現準備金風險為負數之現象。數值結果發現 P 測度法與 Q

測度法所計算之準備金風險與 QPQ 方法有顯著差異。相較於 P 測度法與 Q 測度

法，本研究建議保險公司以 QPQ 方法來估計之準備金之風險，以正確反映保單

所承擔之風險。 

QPQ 方法顯示在生死合險保單下，其保單預定利率為 4%，然而在 Q 測度下

所校準之利率模型長期平均利率水準為 2.684%，因此相較於已計提之準備金 (最

佳估計值)，保險公司應額外計提 0.69~0.83%的比例以因應利率變動對生死合險

準備金之影響。在利變型年金部分，宣告利率為兩年期定存利率，保險公司應額

外計提 0.18~0.22%的比例以因應利率變動對準備金之影響。在股票指數型年金

保單部分，在 P 測度下，股票指數報酬率服從 GARCH(1,1)時間序列模型，在

QPQ 方法下所估計之準備金風險約為最佳估計值的 6%~9%。 

由以上三張保單之分析結果，本研究發現準備金風險顯著。基於評價的理論

以及風險的本質，本研究提出 QPQ 方法來估計準備金風險，保險公司應以正確



 

方式衡量準備金之風險，並計提相對應之風險資本，以避免因準備金不足而影響

公司清償能力。 

值得注意的是，本研究所提之 QPQ 方法為衡量準備金風險之架構，且此架

構可將選擇權概念納入其中，例如保險商品契約可能賦予保單持有人解約之權利 

(解約權)，因此，未來的研究可在此正確架構下 (QPQ 方法) 對保險契約中所隱

含的各種選擇權進行正確的評價與風險衡量，並將解約率、死亡率不確定性與費

用率結構等因素加入，以衡量上述因素對準備金風險之影響。  



 

附錄 1：Orthogonal GARCH 方法 

使用 Orthogonal GARCH 方法可以應用主成份分析法使風險因子正交，進一

步從所有正交因子波動中產生原來風險因子的完整共變異矩陣。正交法的技巧在

於將風險因子細分為相關類別，再從細分的類別的每個主成份中產生單變量變異

數預測，因為主成份因子間並不相關，因此共變異矩陣中僅有對角線不為零。再

利用因子加權矩陣將對角線矩陣的主成份共變異矩陣轉換成完整之共變異矩

陣。 

(1) 因素分析  (Factor Analysis，FA) 

因素分析是反映資料變數與因素 (或主成份) 間的關係，其認為資料變數中

存在無法觀察之潛在因素 (Latent Factor)，使得資料變數間存在高度相關。因此，

觀察資料變數的相關程度，即可找出其潛在因素，進一步透過數學分析以少數變

數來替代多變量結構。 

假設可觀察之資料變數 1 2(   ... )pX X X X 與少數無法觀察得到的共同因素

(Common Factors) 1 2(   ... )mF F F F 存在一線性關係： 

( ) ( 1) ( 1)( 1) p m m pp   
  X μ L F ε , 

其中， 1 2(   ... )m   μ 為資料變數的期望值； { }ijlL 為 p m 矩陣，代表因素

負荷量 (Factor Loadings)，表示潛在共同因素對資料變數的影響程度，相當於迴

歸係數； 1 2(   ... )m   ε 為誤差項，代表個別資料變數的獨特因素。另外，因素

分析模型還需要加入下列假設： 



 

(a) 共同因素之期望值為 0，共變異矩陣為一單位矩陣，即因素間彼此不相關； 

(b) 誤差項之期望值為 0，共變異為一對角矩陣，表示誤差項間彼此不相關； 

(c) 共同因素與誤差項間彼此不相關。 

基於上述模型設定，可推導變數 iX 與共同因素 jF 之共變異即為因素負荷量

ijl ，進一步推導 X 的共變異矩陣以及共同因素 jF 之 GARCH 模型。 

(2) 主成份分析  (Principal Component Analysis，PCA) 

主成份分析是希望透過少數變數（即主成份）來解釋資料變數的大部分變異。

假 設 有 p 個 資 料 變 數 1 2(   ... )pX X X X ， 其 線 性 組 合 有 p 組 ， 則 主 成 份

1 2(   ... )pY Y Y Y ： 

Y = ΩX , 
1 11 1

1

a ...

a ...

p

p p pp

a a

a a

   
       
      

Ω     , 

其中， 為主成份 對個別變數 的權重，因此主成份向量 Y 之變異與共變異

為： 

, 1, 2,...,i p .     

, ,  1, 2,...,i k p .  

所謂的主成份即為 Y 中變異數極大化者，而且各主成份間須相互獨立： 

 

假設 X 之共變異矩陣Σ具有 p 組特徵值與特徵向量 ，其

中 。則最適解 即為Σ之特徵向量解 ，而主成份之變異數

ika iY kX

iiiYVar Σaa)(
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則為Σ之特徵值 。 

透過主成份分析法找出的前幾個主成份能夠解釋資料變數約 80%或 90%以

上的總變異數，因此可在不減少太多資訊下進行資料縮減，以這些變數代替原始

的資料變數，來達到降低模型維度的目的。 

附錄 2：AIC 與 BIC 統計資料 

利率共同因子與 

股票指數報酬率 
時間序列模型  AIC  BIC 

1dF  
AR(1)  2.7940  2.8074 

AR(1,1)  2.8005  2.8273 

2dF  
AR(1)  2.8362  2.8496 

AR(3)  2.8393  2.8527 

3dF   AR(1)+ARCH(1)  2.5443  2.5845 

SR  
GARCH(1,1)  4.9905  5.0306 

GARCH(1,2)  4.9967  5.0181 

附錄 3：利率期限結構 

期間 1 年期 2 年期 3 年期 4 年期 5 年期 

P 測度下 0.6265% 0.7844% 0.9208% 1.0403% 1.1416% 

Q 測度下 0.5621% 0.6581% 0.7483% 0.8331% 0.9127% 

期間 6 年期 7 年期 8 年期 9 年期 10 年期 

P 測度下 1.2363% 1.3155% 1.3919% 1.4551% 1.5131% 

Q 測度下 0.9876% 1.0581% 1.1243% 1.1867% 1.2455% 

期間 11 年期 12 年期 13 年期 14 年期 15 年期 

P 測度下 1.5647% 1.6112% 1.6517% 1.6891% 1.7192% 

Q 測度下 1.3008% 1.3530% 1.4022% 1.4486% 1.4925% 

期間 16 年期 17 年期 18 年期 19 年期 20 年期 

P 測度下 1.7488% 1.7741% 1.7962% 1.8151% 1.8384% 

Q 測度下 1.5338% 1.5730% 1.6100% 1.6450% 1.6781% 

i
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Abstract 

How to measure the risk of policy reserves is important for life insurers because 

policy reserves are the largest liabilities with long durations. In this paper, we propose 

the „QPQ“ method for determining the risk of policy reserves. We compare our 

approach with the traditional P-measure approach and Q-measure approach proposed 

by QIS 2 of Solvency II. Under the P-measure approach, the discount rate should be 

theothetically adjusted by risk premiums. However, it is difficult to determine the risk 

premiums of liabilities and thus most literatures did not consider the risk premium 

adjustment. Under the Q-measure approach, risk factors are simulated under the 

assumptions of risk nutrality. The movements of the risk factors however do not 

reflect the real movements of risk factors and thus can not reflect the possible 

real-world fluctuation of the reserves. The QPQ method can avoid the drawbacks of 

the above approaches.  

Based on the QPQ method, life insurers use best estimate valuation to determine their 

reserves at time 0t   under Q measure. Then they generate stochastic future 

economic states (risk factors) from time 0 to time T under P-measure and apply the 

best estimate valuation to quantify their reserves at time t H . For each scenario of 

the simulated stochastic future economic states, the reserve is again computed using 

best estimate valuation. The distribution of the reserve at time t H  is then 

discounted back to time 0t   by the risk-free rate with maturity H . At the last step, 

commonly used risk measures (e.g., VaR and CTE) on the reserve distribution at time 

0t   are used to quantify the risk margin of the reserves. 

We apply the QPQ method to calculate the risk of reserves of the endowment policy, 

interest sensitive annuity, and and equity-indexed annuity. We find that there exist 

significantly differences between the QPQ approach and P-measure/Q-measure 

approaches. The risk of reserves is overestimated under P-measure. However, the risk 

margin under Q-measure is lower than that under the QPQ method and suggesting 

that the risk of reserves is underestimated under Q-measure. Since the adequacy of 

policy reserves is critical to the solvency of life insurers, we suggest life insurers 

adopt the QPQ method to estimate and manage the reserve risk. 

 

Keywords: Risk Management, Life Insurance, Reserving 
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1. INTRODUCTION 

Assessing the long-term solvency of a life insurer is important since the 

protections/promises offered by the insurer now are usually not realized until decades later.  

The protections will be invalid should the insurer be insolvent in the meantime.  Insurance 

regulators and other stakeholders of life insurers thus have devised various ways to assess and 

maintain the solvencies of life insurers over a long run.  For instance, regulators may ask 

insurers to establish adequate reserves to cover future liabilities and to maintain adequate 

capital to absorb unexpected losses.   

How to assess the adequacies of reserves and capital are not easy tasks, however.  The 

adequacies depend not only on the investment and business strategies of the insurer but also 

on exogenous economic conditions.  For example, the low interest rate era that has persisted 

over the past decade in several countries threatens the solvencies of many insurers that had 

sold products with high pricing rates set according to the high interest rates prevailing during 

1990s.  Low stock returns from the end of 1990s to the beginning of 2010s aggravated the 

distress on the insurers’ solvencies.   

The actuarial professions and insurance supervisors therefore devoted resources to 

establishing the models that could generate possible economic scenarios of the returns on 

major asset classes for solvency assessment.  We might trace back the modeling 

development to the Maturity Guarantees Working Party (1980) and the subsequent works of 

Wilkie (1986a; 1986b; 1987; 1992; 1995).  Similar modeling was applied to the economic 

series / investment returns of other countries including Australia (Carter, 1991; Hua, 1994), 

Switzerland (Metz and Ort, 1993), and South Africa (Thomson, 1994).  Starting from 1999, 

the American Academy of Actuaries (AAA) established three-phase economic scenario 

generation (ESG) models for reserve adequacy tests and the interest rate risk component (C-3 

component) of the Risk-Based Capital (RBC) requirements.  The Casualty Actuarial Society 
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together with the Society of Actuaries (SOA) also commissioned an ESG project (Kevin, 

D’Arcy, and Gorvett, 2004) meanwhile.  As the uses of ESG models became popular, 

private-sector companies such as Barrie and Hibbert joined the modeling development.  The 

insurance supervisors in both North America and Europe now encourage insurers to develop 

their own ESG models (O’Brien, 2009).  

The key issues in establishing a comprehensive ESG models include: how to deal with 

the large number of risk factors, how to model the dynamics of some chosen factors, and how 

to incorporate the relations among risk factors.  Tackling the first issue essentially calls for 

reducing the modeling dimension, i.e., reducing the number of risk factors to be modeled.  

The significance of this first issue increases with the number of economic series and countries 

to be covered in the ESG models.  With regard to the second issue, the dynamics of the 

chosen factors should reflect observed time-series characteristics of return volatilities (e.g., 

volatility clustering) as well as change patterns (e.g., autoregression).  The choice of 

econometrics methods hinges on the number of factors to be modeled.  Retaining more 

factors usually leads to simpler methods.  The third issue, the relations among risk factors, 

may be coped with correlations and/or explicit functional relations.  The choice depends on 

the model developers’ views about whether the relations are from correlated random shocks 

or subject to common factors.   

For instance, the phase-I models for the C-3 component of US RBC intended to cover 

the Treasury yields with 10 maturities ranging from 3 months to 30 years.  To reduce the 

number of risk factors to be modeled, the in-charged task force assumed that the treasury 

curve was driven by two key rates: a long-term interest rate and the excess of a short-term 

rate over the long rate.  The changes of these rates and the changes in the variance of the 

long rate1 were then modeled to take into account mean reversion and stochastic variance.2  

                                                 
1 The variance of the spread was assumed to be constant. 
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The two key rates were endogenous to each other with additional correlated random shocks.  

Interpolation formulas were imposed to recover the yield curve in the last stage.3     

The C-3 phase-II models extended to cover 9 asset classes.  To reduce modeling 

dimensions, the work group assumed that risks were driven by four stock index returns and 

three bond index returns.  The volatilities and drifts of individual stock index returns were 

modeled by stochastic log volatility models.  The bond index returns were assumed to be 

functions of Treasury yields4 with stochastic deviations.5,6  The stock returns and bond 

returns were subject to correlated random shocks.7 

Ahlgrim, D’Arcy, and Gorvett (2004) covered the term structures of inflations and real 

interest rates, two stock index returns, dividend yields, real estate returns, and unemployment 

rates in US markets.  To reduce the number of risk factors involved in the term structures, 

they assumed that the term structure of inflation rates followed the one-factor Vasicek (1977) 

model while that of interest rates followed the two-factor Vasicek model.8  Dividend yields 

and real estate returns were modeled as the first-order autoregressive (AR) processes.  An 

AR(1) process was also applied to unemployment rates with an additional term to consider 

the impact from inflation rates.  The authors applied regime-switching models to the excess 

returns of stock indexes.9  They modeled the relations among generated economic series 

mostly by correlated random shocks but some by functions (e.g., nominal interest rates were 

                                                                                                                                                        
2 The number of dynamic models is therefore three. 
3 Interested readers may refer to AAA’s October 1999 report, Phase I Report of the American Academy of 
Actuaries' C-3 Subgroup of the Life Risk Based Capital Task Force to the National Association of Insurance 
Commissioners' Risk Based Capital Work Group.  
4 The models for Treasury yields in Phase II are the same as those in Phase I. 
5 The deviations were generated using normal distributions with constant standard deviations.   
6 The number of dynamic models is eleven: three for bond index returns and four pairs for the four stock index 
return models.   
7 Interested readers may refer to AAA’s January 2006 report, Construction and Use of Pre-Packaged Scenarios 
to Support the Determination of Regulatory Risk-Based Capital Requirements for Variable Annuities and 
Similar Products.  A joint group of AAA and SOA has been refining the interest rate and stock return models as 
well as updating the model parameters since then without major modeling changes. 
8 The volatility terms of these risk factors were thus constant.    So were other time series except the returns 
of stock indexes. 
9 The number of dynamic models is thus eight.   
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functions of inflations and real interest rates). 

Wilkie (1995) covered exchange rates and other economic series similar to those 

covered by Ahlgrim, D’Arcy, and Gorvett (2004) under a cascade framework.  His 

fundamental variable was inflation that was modeled by an AR process and autoregressive 

conditional heteroscedasticity (ARCH) process.  He then analyzed the univariate property of 

wages and further investigated the relation between wages and inflation by cointegration and 

vector autoregression (VAR).  Other economic series were modeled similarly: univariate 

AR-ARCH and/or cointegration-VAR with other series, but subject to certain cascade 

relations.10  He further applied univariate AR-ARCH modeling to several economic series of 

other countries.  The relations of several economic series11 across countries were 

considered using correlated residuals.  Wilkie (1995) did not conduct dimension reduction 

when modeling because he did not consider the entire yield curve that usually involves about 

a dozen concerned risk factors.12  Neither did he examine the relations of the economic 

series within the countries other than UK.13  

We propose a simple but comprehensive and flexible modeling approach, called 

orthogonal ARMA-GARCH (autoregressive moving average – generalized autoregressive 

conditional heteroscedasticity) modeling in this paper, to generate large-scale economic 

scenarios.  Many insurers are exposed to risk factors that easily reach seventy, eighty, or 

even a hundred.  One yield curve may contain 10 or more risk factors that have significant 

impacts on the values of the bonds held by insurers as US RBC identified.  For the insurer 

that hold not only treasury bonds but also corporate bonds rated as AAA, AA, A, and BBB 

classes, the risk factors reflecting the uncertainties about risk-free rates and credit risk spreads 

                                                 
10 For instance, Wilkie (1995) assumed that the long-term interest rate was determined by real interest rate 
following an AR process, inflation rate, and dividend yield that was also affected by inflation rate. 
11 They included: inflation rates, dividend yields, dividend indexes, and exchange rates.   
12 The number of UK’s economic series considered in Wilkie (1995) is about ten.  
13 Indeed, the economic series such as interest rates, stock indexes, property indexes in other countries were not 
analyzed. 
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can reach fifty.  The number of risk factors underlying a stock index ranges from one (when 

believing in a single-factor model such as the capital asset pricing model (CAPM)), three to 

five (Fama-French models), dozens (when treating each industry as a risk factor), to hundreds 

(adopted by many historical simulation methods used to calculate the value at risk (VaR) for 

the insurer).  For the insurers having significant international investments, the number of 

risk factors multiplies.  The ESG models that can adequately capture the risk characteristics 

of insurers’ investments thus have to cover dozens or even hundreds of risk factors.  Without 

an effective way to reduce the modeling dimension, model building is infeasible.  

To reduce the dimension, we propose to apply factor analysis to asset class.  Factor 

analysis addresses the problem of analyzing the structure of the relations/correlations among 

a large number of variables by using a much smaller number of factors/dimensions.  For 

instance, we may apply factor analysis to condense the information contained in a yield curve 

into three factors.  Adopting factor analysis renders three important advantages.  The first 

crucial benefit is that the retrieved common factors can be orthogonal to each other, which 

enables us to bypass the obstacles in modeling the dynamics of these factors under the 

multi-variate framework.  Secondly, adopting factor analysis allows us to model the 

relations among the risk factors within an asset class by common factors.  This is new to the 

ESG related literature and makes more economic sense than using correlated random shocks.  

Thirdly, factor analysis renders fitness statistics (especially the percentage of variance 

explained).  The methods/assumptions used in other papers (e.g., assuming yield curves are 

driven by two key rates) provides no such statistics to assess modeling risk.  

After retrieving the orthogonal common factors, we model the dynamics of these 

factors by ARMA-GARCH processes.  We are therefore afforded great flexibilities in 

establishing the time-series models of individual factors.  We use the ARMA processes to 

model the dynamics of the mean/drift terms and the GARCH processes for the volatility 



6 

terms, respectively.  The ARMA and GARCH processes are popular in the literature and 

practice: adequate in fitting and forecasting, robust in estimating parameters, and easy to use.  

Another rationale for using GARCH is to capture the fat tails that have been identified in 

many papers for many financial market series, which is important for ESG models to 

sufficiently reflect the larger-than-normal risks through the simulated scenarios. 

Next, we construct the covariance matrix of the common factors to incorporate the 

correlations across asset classes.  We apply Cholesky decomposition to the matrix and 

multiply the decomposed triangle matrix to the independent random numbers generated for 

the ARMA-GARCH processes.  In the last stage we utilize the factor loadings to recover 

from the simulated common factors to dozens of the initial concerned risk factors.   

By combining factor analysis with ARMA-GARCH, we are capable of constructing 

ESG models adequately capturing the risk characteristics of numerous risk factors as 

demanded by life insurers as well as associated stakeholders.  Our idea, albeit seemingly 

simple, is new to this line of literatures and has potential.  It can further incorporate the risk 

factors of insurance liabilities and facilitate the calculation of economic capital in a unified 

framework. 

2. THE ORTHOGONAL ARMA-GARCH APPROACH 

The idea of using factor models with GARCH has been around for over two decades. 

For instance, Engle, Ng, and Rothschild (1990) proposed a CAPM-based framework in which 

the volatilities and correlations between individual asset returns were generated using the 

univariate GARCH variance of market returns.  This is in essence a one-factor model that 

reduces modeling dimension from dozens to one.  To tackle the difficulties in multi-variate 

modeling, Ding (1994) suggested the use of PCA with GARCH models.  He however did 
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not address the dimensionality issue since he retained all retrieved factors.  It was Alexander 

and Chibumba (1996) and Alexander (2000, 2001, 2002) that advocated retaining only a few 

components to reduce the number of to-be-modeled risk factors and enhance the practicability.  

They fit GARCH (1, 1) models to all retained components.   

We generalize Alexander’s modeling to establish an ESG model covering distinct asset 

classes.  The generalization is in two aspects in addition to extending to more asset classes.  

The ESG-generated scenarios are usually used for long-term concerns and thus should 

consider conditional means in addition to conditional volatilities.  Secondly, fitting the 

dynamics of the components representing different economic series with general ARMA (p, q) 

- GARCH (m, n) models is more appropriate than imposing universal GARCH (1, 1) models.   

To establish an orthogonal ARMA-GARCH (shortening as O-GARCH starting from 

here) model, we first conduct factor analysis / PCA on the risk factors of an asset class14 to 

extract principal components which can represent the original set of risk factors with a 

minimum loss of information.  Since PCA renders orthogonal components, we may apply 

univariate ARMA-GARCH models to them to capture the characteristics of individual 

components’ means and volatilities.  The relations among asset classes are then incorporated 

by the correlation matrix of all components.  Our O-GARCH modeling is therefore 

                                                 
14 Defining an appropriate asset class for the purpose of conducting factor analysis involves subtle 
considerations.  Asset classes are usually defined by distinct risk types such as stock return risks (price changes 
and dividend yields), interest rate risk (bonds), credit risk (corporate bonds), foreign exchange rate risk, and real 
estate return risks (price changes and rental yields).  They may also be defined by geographic areas.  
Researchers have to examine the characteristics of samples to determine appropriate classifications. 
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computationally efficient (by using factor analysis), econometrically appropriate (in 

identifying underlying driving factors and providing fitness statistics as well as by using 

general time-series models to reflect changing means and clustering volatilities), and 

economically sound (by using common factors in addition to random shocks to capture the 

relations among risk factors).     

2.1 Factor Analysis 

Factor analysis postulates that each observed variable (i.e., risk factors in this paper) is 

linearly dependent upon one or more common factors and one specific factor.  Common 

factors are unobservable variables which influence more than one risk factor; specific factors 

are latent idiosyncratic variables that influence only one risk factor.  Since our purpose is 

finding the minimum number of common factors needed to account for the maximum portion 

of the variance resulted from the original set of variables, we adopt the principal component 

analysis (PCA) method to obtain factor solutions.15  PCA defines common factors / principal 

components as the linear combinations of original risk factors.  Conversely, risk factors are 

also linear combinations of principal components.  This means that principal components 

can account for total variances or a portion of total variances when some components are 

dropped off.  Another advantage of using PCA is that PCA neither requires the distribution 

assumption about the data nor has to determine the number of common factors in advance 

                                                 
15 The most widely used methods to estimate parameters are maximum likelihood and principal component 
(Johnson and Wichern, 2007). 
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(Tsay, 2005).  Thirdly, the extracted principal components are orthogonal to each other. 

Let tX  be the vector of k  observed variables associated with an asset class at time t  

( Tt ,2,1 ) with mean μ  and covariance matrix Σ .  tX  are further assumed to be 

linearly dependent on m  common factors tf  and k  specific factors tε , where km  .  

More specifically, 

ttt εLfμX  ,        (1) 

where L  is the )( mk  matrix of factor loadings.  

The underlying assumptions of factor analysis are: 0ε )( tE , Dεε  )( ttE , 0f )( tE , 

mttE Iff )( , and 0εf  )( ttE  where mI  is a )( mm  identity matrix and D  is a diagonal 

matrix.  Consequently, the )( kk   covariance matrix Σ  of the observed variables can be 

expressed as 

DLLΣ  .        (2) 

We thus may regard LL  as an approximation of the original covariance matrix, i.e.,  

LLΣ  . 

2.1.1 Extracting factors by PCA 

Let )ˆ,ˆ(,),ˆ,ˆ( 11 kk ee    with k ˆˆˆ
21    be pairs of the eigenvalues and 

eigenvectors of the sample covariance matrix Σ̂ .  Σ̂  can be decomposed by the spectral 

decomposition as:  





k

i
iii

1

ˆˆˆˆ eeΣ  .        (3) 



10 

Sorting common factors by eigenvalues and retaining the first m factors, we may express the 

matrix of estimated factor loadings by: 





 mm eeeL ˆˆˆˆˆˆˆ

2211   . 

The estimated specific variances are the diagonal elements of the matrix LLΣ  ˆˆˆ .  That is, 

 22
1 ˆ,,ˆˆ

kdiag  D , where 



m

j
ijiii l

1

222 ˆˆˆ  , where 2ˆii  is the ),( ii th element of Σ̂ . 

 j̂  means the contribution to the total sample variance from the jth factor.  Since 

jjjjj  ˆˆˆˆˆ 











 ee  and the eigenvector jê  has unity length, the proportion of the total 

sample variance 


k

i
ii

1

2̂  explained by the jth factor is 


k

i
iij

1

2ˆˆ  .  When one applies the 

spectral decomposition to normalized tX , the proportion of the total sample variance 

explained by the jth factor becomes kj̂ .  We choose to analyze normalized tX  in the 

following to prevent the estimates of factor loadings from being influenced by the variables 

with large variances (Johnson and Wichern, 2007). 

2.1.2 Selecting factors 

A critical decision to be made in factor analysis is to determine how many common 

factors to be retained.  It involves the tradeoff between model parsimony and model 

plausibility (Fabrigar et al., 1999).  A well-known criterion is retaining the common factors 

with eigenvalues greater than 1.  Another informal but useful guidance is to examine the 

scree plot which plots the eigenvalues in descending order.  By looking for an “elbow” 

where the last substantial drop in the magnitude of the eigenvalues happens, the researcher 
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retains the factors prior to this last substantial drop (see e.g. Fabrigar et al., 1999; Tsay, 2005; 

Johnson and Wichern, 2007).  A bottom line for many researchers in determining the 

number of factors to be retained is the cumulative proportion of the total sample variance 

explained by the retained factors.  Since ESG models should capture most variations in past 

series so that the generated scenarios have high probabilities to cover the to-be-realized one, a 

high threshold like 95% is desirable.  

2.1.3 Rotating Factors 

The factor loadings resulting from extracting factors represent the relations between the 

common factors and the risk factors.  The higher the loadings are, the more representative 

the risk factors are on common factors.  In most cases, however, the factor loadings do not 

provide obvious or meaningful interpretations of the relations.  Factor rotation is to 

redistribute the variance among factors to achieve a simpler, more meaningful factor pattern.   

Among several rotation approaches, we choose the popular VARIMAX orthogonal 

rotation (Kaiser, 1958).  The first advantage of this approach is that it keeps the common 

factors orthogonal to each other.  Secondly, it usually produces a simpler factor loading 

structure in which the associations between risk factors and common factors are easier to 

interpret than others.  Another advantage is that the produced loading structure tends to be 

more invariant when different subsets of variables are analyzed.  The popularity of 

VARIMAX is evident since most computer packages with factor analysis are equipped with 
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this approach.   

2.1.4 Calculating factor scores 

A factor score represent a composite of all variables’ loadings on the factor (Hair et al., 

2010).  Given any vector of observations tx , the tth factor score vector is given by 

)(ˆˆˆ 1 xxΣβf  
tt , Tt ,2,1 . 

The resulted factor scores can then be used to represent the factors in subsequent analyses. 

Dimension reduction is majorly accomplished by modeling upon factor scores instead of 

original risk factors.  The number of models to be built is reduced from k to m.  More 

importantly, the common factors are orthogonal to each other so that we may proceed with 

the modeling in a uni-variate setup for each factor individually rather than under the 

multi-variate framework. 

2.2 ARMA-GARCH Modeling 

At the second stage of the O-GARCH method, the time series of the obtained orthogonal 

factor scores from an asset class are modeled individually.  We consider the general 

univariate GARCH models with lagged variables in the mean equation.  In other words, 

models like AR, ARCH or GARCH are candidates. 

For a tF , a general AR(p)-GARCH(m, s) model has the form of 

t

p

i
itit FcF   




1

, where ),0(~| 2
1 ttt N   , 

and 
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,2
1

1

2
0

2



   t

m

j
jtjt   where 0,,0   . 

This general modeling captures the possible presence of serial correlations and conditional 

heteroscedasticity.  For the sake of stationarity, the coefficients of the lagged factors in the 

mean equation must sum to less than 1, and so must be the coefficients of the lagged errors 

and lagged conditional variances in the variance equation.  We employ the maximum 

likelihood estimation in general; the least squares method is used only when conditional 

heteroscedasticity is absent.   

The estimation procedure is as follows.  Firstly, we test for serial correlation and use 

the partial autocorrelation function (PACF) determine the order of AR terms if needed.  

Then we test for conditional heteroscedasticity on the residuals of the mean equation.  If the 

conditional heteroscedasticity is found, we use PACF on the squared residuals to determine 

the order of the variance equation.  Thirdly, we use the Ljung-Box statistics to check the 

specification suitability.  When there are several models passing the Ljung-Box test, we use 

the Bayesian information criterion (BIC) to select the “optimal” model.   The Akaike 

information criterion (AIC) is used as an auxiliary. 

The resulted O-GARCH models enable us to simulate risk factor (e.g., stock returns and 

interest rates) scenarios for the corresponding asset class.  These scenarios will display 

essential risk properties of assets such as auto-correlations and volatility clustering.  The 

scenarios will also reflect the relations among the risk factors within an asset class that are 
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modeled by the retrieved common factors from that asset class.  To further reflect the 

relations among the risk factors across asset classes,  

2.3 The Covariance Matrix across Different Groups of Risk Factors 

The last stage of the O-GARCH modeling involves assembling  As illustrated in 

Alexander (2002), consider there are only two groups of m  and n  risk factors such as 

interest rates and stock returns. Let  rPPP ,, 21P  and  sQQQ ,, 21Q  are common 

factors extracted from group 1 and 2 separately where r  and s  are the number of common 

factors. Denote by A )( rm  and B )( sn  the matrices of factor loadings of group 1 and 

2 respectively. The full-dimensional covariance matrix of the original system is given by 

  










BBBAC

BACAA
. 

where AA   and BB   are the within-group covariance matrices of group 1 and 2 

respectively and BAC   is the cross-group covariance matrix among group 1 and 2 in which

),cov( sr QPC  with )( sr  dimension can be estimated using O-GARCH again, now on a 

system of the sr   common factors sr QQQPPP  ,,,,, 2121 . Accounts need to be taken of 

the positive semi-definiteness of the estimated full-dimensional covariance matrix. Although 

AA   and BB   will always be positive semi-definite, it does not always guarantee to obtain 

a positive semi-definite BAC   (Alexander, 2008).  

3. IMPLEMENTATION OF THE ORTHOGONAL GARCH APPROACH 

3.1 Data Description 
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Four types of risk factors we examine include interest rates, stock indices, exchange 

rates, and real estate. They are commonly regarded as major market risks that insurance 

companies need to take account of and have been widely modeled in many economic 

scenario models, like CAS-SOA and AAA. However, previous studies haven’t analyzed them 

altogether from an international perspective. In consideration of this, we try to analyze the 

risk factors of interest rates, stock indices, and exchange rates in a multinational setting with 

the view of insurers in Taiwan. In contrast, real estate risks are confined to Taiwanese 

domestic market due to regionality of real estate investing and the relatively lack of quality 

international real estate data. 

All data except for those of real estate are obtained from Bloomberg. It is well known 

that time series like interest rates, exchange rates, or asset prices tend to be nonstationary. To 

make sure stationarity, we employ the first differenced series of our data. Based on data 

characteristics, we consider the change series of interest rates and the log returns of stock 

indices, exchange rates, and real estate.  

For grouping risk factors properly, things to consider include types of investment 

instruments and geographic locations. In addition, a requirement of the factor model 

presented previously that the number of risk factors ( k ) should be smaller than the sample 

time periods (T) within each group needs to obey. Simulation performance is our concern as 

well. It’s more possible to obtain easy to poor simulation performance if relatively low 
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correlated risk factors are grouped together. Given these considerations, it turns out that 

grouping happens not only among different risk types but also within identical type.  

In what follows, the variables we use as well as how we group them are presented. We 

also collect all relevant data information in Table 1. Note that the sample spans of each group 

are not probably the same. The idea that each group is treated independently in the context of 

O-GARCH through orthogonalization allows us not to trim data observations in the 

beginning of modeling until the correlation matrix of estimated factor scores is calculated.  

[Insert Table 1 here] 

Interest rates 

Monthly zero coupon yields for the US dollar (USD), the Euro (EUR), the Australian 

dollar (AUD), the New Zealand dollar (NZD), the Canadian dollar (CAD), and the New 

Taiwan dollar (TWD) with 30 maturities between 1 year and 30 years are available. There are 

180 interest rates totally considered apparently large than the sample observations we can 

obtain. According to geographic location and the degree of correlation, we divide interest 

rates into four groups. Among them, USD and CAD become the US-CA group which 

represents the interest rates of American areas. Similarly, the AU-NZ group formed by AUD 

and NZD represents the Oceania interest rates. EUR and TWD group by themselves.  

Stock indices 

We consider four market indices including the Dow Jones, S&P 500, Nasdaq, and 
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Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), which all use 

month-end closing price adjusted for dividend, in terms of local currency. At first, only four 

equity risk factors don’t raise any concerns about grouping. However, poor performance in 

simulation later forces us to group them. When doing simulation, we figured out that the 

performance of the four-index group was not better than that of groups of three-US-index as 

well as TAIEX. It seems sensible because the O-GARCH model performs better in a 

highly-correlated system. Any US stock index has lower correlation with TAIEX than other 

two US indices. Therefore, all four stock indices are divided into two groups – one contains 

three US indices and the other is TAIEX alone. Note that group containing only one risk 

factor, like TAIEX, does not need to perform the orthogonal factor model. 

Exchange rates 

The data include five monthly exchange rates, the euro, Canadian dollar, Australian 

dollar, New Zealand dollar, and New Taiwan dollar against the US dollar. Rather group 

exchange rates, we analyze them as a whole. 

Real estate 

We focus our attention on domestic housing prices and rents. Moreover, because of their 

different income characteristics, we regard them as two distinct groups. For house pricing 

risks, we analyze quarterly house price indices, constructed by Cathay Real Estate, for new 

and pre-sold houses including a Taiwan national composite index and five geographic 
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regional indices for Taipei City, Taipei County, Taoyuan-Hsinchu, Taichung, and 

Tainan-Kaohsiung areas. For rent risk, taking data availability and reliability into account, we 

only study the quarterly average rents for Grade-A office in Taipei City which is obtained 

from REPro International Inc. again, since the rent risk group only contain one series, we 

don’t perform the orthogonal factor model on it. 

3.2 Descriptive Statistics 

Table 2 provides some descriptive statistics for USD and CAD yields and corresponding 

changes at representative maturities, stock and exchange rate returns. For USD and CAD 

yields, the long term (more than 10 years) means are higher than short-term means, implying 

that both term structures of USD and CAD yields are upward sloping; the standard deviations 

are negatively related with maturities. The values of skewness and excess kurtosis show that 

both USD and CAD yield distributions tend to be near normal.  

For changes in USD and CAD yields, the sample averages are negative and the standard 

deviations are also nearly positively proportional to maturities. The ADF test results show 

that yields at most maturities exhibit nonstationary but changes in yields stationary. Therefore, 

we examine changes in yields instead of yields for interest rate factors in the following 

analysis. 

For stock returns, TAIEX seems to have different characteristics from three US indices. 

These three US stock returns of all roughly 6% are on average higher than the TAIEX return. 
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The standard deviations, however, of USs are smaller than TAIEX return’s. This phenomenon 

stands up for the partition of stock returns we consider. With negative skewness and positive 

excess kurtosis, all four stock returns consistently tend to be left-skewed and have heavy tails.  

For exchange rate returns, the sample means with relatively large standard deviations 

seems near zero. The skewness and kurtosis measures show that exchange rate returns are 

likely to be right-skewed and have heavy tails. 

Whether the sample means of the risk factors considered are significantly different from 

zero is relevant to the factor model specification as shown in eq. (1). If the sample means of a 

group of risk factors are not significantly different from zero, we won’t consider the mean 

vector μ  in eq. (1). Via hypothesis testing, we are convinced that all groups of risk factors 

have means significantly different from zero except for the exchange rate returns.16 

Therefore, we consider the mean vector μ  in eq. (1) for every risk factor groups except the 

exchange rate returns when estimating the orthogonal factor model. 

[Insert Table 2 here] 

3.3 Factor Analysis Results 

In what follows, we focus on the sample correlation matrix in our empirical analysis. To 

conserve space, we only present the results of the US-CA yield change group and the FX 

group.  

                                                 
16 We didn’t present the t statistics of significant tests here.  
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Table 3 gives the results of the eigenvalue analysis. First consider the US-CA group, a 

case where the orthogonal factor model is performed in a multi-country setting. At first 

glance, it seems reasonable that are three factors are adequate for the US-CA group since the 

first three eigenvalues are only eigenvalues greater than unity. However, we set another 

requirement for better simulation performance that the total (standardized) sample variance 

explained needs to be higher than 95%. Therefore, we determine that the first four common 

factors are needed, accounting for 96.13% of the total sample variance in the system of 

US-CA yield changes. 

Turning now to the FX group, only the first eigenvalue is greater than one and explains 

just 67% of the total sample variance, which is far lower than the standard we set to have the 

total sample variance explained. Obeying this rule, we decide that a four-factor model which 

explains 97.5% of the total sample variance provides a better fit to the system of FX.  

[Insert Table 3 here] 

To figure out the interpretation of common factors extracted, we illustrate the rotated 

estimated factor loadings of the US-CA and FX groups in Figure 1 and 2, respectively. For 

the US-CA group, the first two factors might tend to be country-specific factors. Most 

maturities of USD yield changes have large loadings on factor 1, and CAD yield changes on 

factor 2. Factor 3 might be labeled as a short-term factor on which short-term maturities of 

USD and CAD yield changes have higher loadings. Factor 4 is more meaningful for USD 
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than for CAD, especially for USD short-term maturities below 2 or 3 years. Overall, factor 1 

and 4, together, might explain the USD yield changes, and factor 2 and 3 represent the CADs. 

For the FX group, it’s more obvious that four common factors extracted might be identified 

as country factors. The AUD and NZD yields load highly on factor 1, and CAD, TWD, and 

EUR on factor 2, 3, and 4, respectively.  

[Insert Figure 1 and 2 here] 

3.4 Time-Series Models of Factors 

Table 4 reports the estimation results of time-series models for factor scores obtained 

from the US-CA and FX groups. For the US-CA group, factors 1 and 2 are shown to be serial 

correlated and/or conditional heteroscedastic. Therefore, we model them with 

AR(1)-ARCH(1) and AR(4)-ARCH(6) models, respectively. Factor 3 is shown to be close to 

white noise, so any time-series models are needed to model it. We model factor 4 with a 

simple AR(2) model due to the evidence of some serial correlation. For the FX group, factor 

2 and 4 are shown to be white noise as well. We employ an AR(3) model for factor 1 since it 

presents slight serial correlation. In the presence of serial correlation conditional 

heteroscedasticity, factor 3 is modeled by an AR(1)-ARCH(1) model.. With the evidence of, 

factor 1 follows  

[Insert Table 4 here] 

3.5 Correlation Matrix across Factor Groups 
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We calculate the correlation matrix of the common factors across groups as the initial 

values for simulation. The results are given in Table 5. For not losing any useful information, 

we calculate the correlation of any pair of factors once at a time, not of all common factors at 

the same time. As such, sample sizes of each correlation coefficient in the matrix are not the 

same. Note that for groups with one series like the TAIEX group and the house rent group the 

original time series are directly used to calculate the correlations.  

[Insert Table 5 here] 

4. SIMULATION RESULTS OF THE MODELS 

With the estimated time-series parameters which capture each common factor’s dynamic 

behaviors, the estimated factor loadings which represent the relationship between common 

factors and risk factors, and the correlation matrix among common factors, we then use the 

Monte Carlo simulation approach to simulate random movements in risk factor and generate 

a range of scenarios for a long time. 

4.1 Simulation Process 

First of all, we generate random numbers of common factors and specific factors 

respectively because of the orthogonality implied by the factor model used. The specific 

factors follow ),(~ D0εt . For common factors, we want them to keep the characteristics not 

only of dynamics guarded by the estimated time-series models but also of the correlation 

among each other.  
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We first multiply a sequence of IID N(0,1) random variables by a lower triangular matrix 

which is obtained via the well-known Cholesky decomposition on the calculated correlation 

matrix of factor scores. And it ensures that the draws from this process keep the correlation 

we want. Then the estimated time-series model is applied to generate a sequence of random 

variables over time as common factors. 

Once the random variables of common and specific factors are produced, we can 

generate the first differenced series of risk factors, and then the risk factor levels, with the 

factor model equation. The initial values used are the last observations of each risk factor. 

And we decide to generate 1000 scenarios over the next 30 years to see the long term risks 

facing the insurance companies.  

For interest rate risk factors, we further make some restrictions and adjustments to avoid 

negative values of interest rate levels and unreasonable shapes of simulated yield curves. First, 

we limit minimum and maximum values to be 0.1 % and 25%. Second, we use the first-order 

autoregressive process, AR (1), in discrete time to capture the mean reversion of interest rate 

levels, a fundamental property that short-term rates tend to revert to a long-term value:  

  tttt rrrr    11 , 

where tr  is the short-term rate at time t, r  is the long term mean of tr , and t  is a 

stochastic white noise component. The coefficient   is the rate of mean reversion which 

measures the speed of adjustment, and we expect it to be negative in this model. With this 
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process, when the rate in the previous period deviates positively (negatively) from its 

long-term level, the change in interest rate in the next period should be negative (positive), 

pushing the interest rate toward r . For estimation, we first extend the interest rate sample 

period as far as we can obtain, and then the shortest-maturity rates are modeled as tr  and are 

also used to calculate the long term mean r . Table 6 lists the sample information and the 

estimation results. As expected, the estimated values of   for every yield are all negative.  

< Insert Table 6 > 

4.2 Simulation Results 

 For accuracy check of simulation results, we compare properties of simulated data to 

their historical counterparts. To save space, we only present the results of the USD, CAD 

yields and exchange rate returns.  

The long-run mean and some percentiles of USD yields are shown in Table 7, and Table 

8 is for CAD yields. As we can see, the long-run means of simulated USD and CAD yields 

both approximate to ones of their historical data, and so do percentiles. Extreme values, 

however, tend to be divergent. The maximums of simulated USD yields, for example, have 

more and more variation from historical values as their maturities become larger.  

Adding some restrictions on extreme values of simulated interest rates when simulating 

makes the results distorted. Since yield changes are our objects for interest rate analysis, we 

also make a comparison of standard deviations for USD and CAD yield changes in Table 9 to 
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provide another way of examining simulation results. As shown, no matter what different 

maturities of USD yield changes or CAD, the simulated values are very close to the historical 

ones, proving the accuracy of simulation results. 

In Table 10, the results of exchange rate returns are present. Unlike yields, it seems that 

the means of simulated exchange rate returns are not close to the history data. The simulated 

values tend to be smaller than the historical ones. However, the simulated standard deviations 

are almost perfect. All of them are very close to their historical one. Overall, the properties of 

the simulated exchange rate returns also appear to be similar with the historical data.  
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Table 1 Definition of risk factors 

Risk 

factors 
Groups Variables 

Sampled periods 

(obs.) 

Interest 

rates 

EUR Include monthly zero coupon yields for the Euro (EUR) 

with 30 maturities between 1 year and 30 years. 

Changes in yield of EUR are modeled: 

1 ttt IRIRDIR . 

November 1991 - 

September 2010 

(227) 

US-CA Include monthly zero coupon yields for the US dollar 

(USD) and the Canadian dollar (CAD) with 30 

maturities between 1 year and 30 years. Changes in 

yield are modeled: 

1 ttt IRIRDIR . 

January 1995 - 

September 2010 

(189) 

AU-NZ Include monthly zero coupon yields for the Australian 

dollar (AUD) and the New Zealand dollar (NZD) with 

30 maturities between 1 year and 30 years. Changes in 

yield are modeled: 

1 ttt IRIRDIR . 

January 1995 - 

September 2010 

(189) 

TWD Include monthly zero coupon yields for the New 

Taiwan dollar (TWD) with 30 maturities between 1 

year and 30 years. Changes in yield are modeled: 

1 ttt IRIRDIR . 

March 1999 - 

September 2010 

(138) 

Stock 

indices 

US Include market indices of the Dow Jones, S&P 500, and 

Nasdaq using month-end closing price adjusted for 

dividend, in terms of local currency. The monthly log 

returns are modeled: 

)ln()ln( 1 ttt SSRS . 

November 1983 - 

September 2010 

(323) 

 

 
TW Include the Taiwan Stock Exchange Capitalization 

Weighted Stock Index (TAIEX). The monthly log 

May 1989 - 

September 2010 
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Risk 

factors 
Groups Variables 

Sampled periods 

(obs.) 

returns are modeled: 

)ln()ln( 1 ttt SSRS . 

(257) 

Exchange 

rates 

FX Include monthly USD spot prices with respect to EUR, 

CAD, AUD, NZD, and TWD. The monthly log returns 

are modeled:  

)ln()ln( 1 ttt FXFXRFX . 

February 1999 - 

September 2010 

(140) 

Real estate HP Include quarterly house price indices for new and 

pre-sold houses including a Taiwan national composite 

index and five geographic regional indices for Taipei 

City, Taipei County, Taoyuan-Hsinchu, Taichung, and 

Tainan-Kaohsiung areas. The quarterly log returns are 

modeled:  

)ln()ln( 1 ttt HPHPRHP . 

1993Q2 - 

2010Q2Q (69) 

 
RT Include the quarterly average rents for Grade A office 

in Taipei City. The quarterly log returns are modeled: 

)ln()ln( 1 ttt RTRTRRT . 

2002Q2 - 2010Q2 

(33) 
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Table 2 Descriptive statistics of selected risk factors a 

 Mean 

Standard 

Deviation Min. Max. Skewness

Excess 

Kurtosis ADF test b 

 Panel A: USD yields 

1y (Maturity) 3.699 2.04 7.327 0.244 -0.297 -1.351 -1.974    [2]

5y 4.524 1.505 8.012 1.299 -0.072 -0.891 -2.674    [0]

10y 5.03 1.127 7.988 2.316 0.218 -0.489 -3.993**  [0]

15y 5.45 0.911 8.009 3.154 0.279 -0.269 -4.746*** [0]

20y 5.643 0.912 8.035 3.242 0.127 -0.504 -4.631*** [0]

25y 5.582  0.931  8.073  2.944  0.301  -0.222 -4.831*** [0]

30y 5.522 0.981 8.112 2.647 0.501 0.06 -4.386*** [0]

Panel B: CAD yields 

1y (Maturity) 3.871 1.77 8.959 0.396 0.134 -0.001 -2.671    [0]

5y 4.796 1.501 9.532 1.775 0.479 0.189 -4.114*** [0]

10y 5.317 1.401 9.622 2.986 0.854 0.334 -3.806**  [0]

15y 5.633 1.39 9.626 3.56 0.981 0.206 -3.075    [0]

20y 5.766 1.43 9.641 3.613 0.988 0.366 -2.724    [0]

25y 5.629 1.436 9.634 3.502 1.007 0.32 -2.726    [3]

30y 5.493 1.453 9.628 3.391 1.033 0.304 -2.879    [0]

Panel C: Changes in USD yields 

1y (Maturity) -0.037 0.256 0.66 -1.242 -1 2.973 -6.551*** [1]

5y -0.036 0.311 0.893 -0.963 0.042 0.542 -12.356*** [0]

10y -0.028 0.293 0.979 -1.15 0.034 1.237 -11.511*** [1]

15y -0.025 0.297 1.07 -1.211 0.331 2.369 -12.51*** [1]

20y -0.023 0.279 1.205 -1.07 0.599 3.443 -12.107*** [1]

25y -0.022 0.255 0.986 -0.938 0.274 2.399 -11.797*** [1]

30y -0.021 0.245 1.004 -0.81 0.11 2.348 -13.955*** [0]

Panel D: Changes in CAD yields 

1y (Maturity) -0.041 0.296 0.857 -1.183 -0.462 1.108 -12.631*** [0]
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5y -0.038 0.272 0.64 -1.171 -0.382 0.967 -13.75*** [0]

10y -0.034 0.228 0.461 -0.716 -0.238 0.178 -14.333*** [0]

15y -0.031 0.203 0.469 -0.693 -0.221 0.42 -13.738*** [0]

20y -0.031 0.205 0.489 -0.595 -0.258 0.417 -11.916*** [1]

25y -0.031 0.189 0.484 -0.631 -0.325 0.376 -7.57*** [2]

30y -0.032 0.192 0.479 -0.674 -0.31 0.495 -7.179*** [2]

Panel E: Stock returns (%) 

Dow Jones 0.674 4.57 -26.42 12.95 -1.113 4.189 -17.023*** [0]

Nasdaq 0.667 6.783 -31.79 19.87 -0.917 2.756 -16.769*** [0]

S&P500 0.602 4.566 -24.54 12.38 -1.06 3.472 -16.41*** [0]

TAIEX 0.015 9.625 -43.53 33.24 -0.289 2.623 -14.748*** [0]

Panel F: Exchange rate returns (%) 

TWD -0.025 1.348 -3.897 3.943 -0.082 0.595 -8.992*** [0]

EUR -0.129 3.161 -8.901 11.71 0.189 1.243 -10.492*** [0]

AUD -0.307 3.808 -8.682 19.61 1.144 4.483 -10.453*** [0]

NZD -0.224 3.981 -12.85 15.21 0.397 1.846 -10.98*** [0]

CAD -0.274 2.626 -7.873 15.44 1.317 8.18 -11.375*** [0]

a Yields are in percentage.  

b For yields, the test regression includes a trend and a constant term. For yield changes and return, the test regression includes a 

constant term. The t statistics is presented. *, **, and *** indicate significant at the 10%, 5% and 1% levels respectively. The 

numbers in the brackets [ ] are the optimal lags, chosen by the Bayesian information criterion.  
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Table 3 Portion of variance explained by the chosen factors for the US-CA yield change group 

and exchange rate returns 

 

 US-CA FX 

No. of factors 1 2 3 4 1 2 3 4 

Eigenvalues 45.42 7.08 4.29 0.88 3.35 0.69 0.51 0.33 

% Variance 75.7 11.8 7.16 1.47 67 13.7 10.2 6.6 

Cumulative (%) 75.7 87.5 94.65 96.13 67 80.7 91 97.5 
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Figure 1 Rotated estimated factor loadings for the US-CA yield change group 

 

 

 

Figure 2 Rotated estimated factor loadings for the exchange rate returns 
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Table 4 Estimated GARCH models for factor scores of the US-CA yield changes, a 

t

p

i
itit FcF   




1

, ),0(~ 2
tt N   

,2
1

1

2
0

2



   t

m

j
jtjt   where 0,,0   . 

 
US-CA yield changes b FX b 

 Factor 1 Factor 2 Factor 4 Factor 1 Factor 3 

Parameter AR(1)-ARCH(1) AR(6)-ARCH(4) AR(2) AR(3) AR(1)-ARCH(1)

1  158.0  

(-2.002) 

－ － － 0.316 

(3.457) 

2  － － 0.203 

(2.767) 

－ － 

3  － 0.201 

(2.277) 

－ 0.259 

(3.139) 

－ 

6  － 0.085 

(1.241) 

－ － － 

  0.824 

(12.825) 

0.451 

(5.71) 

－ － 0.746 

(7.065) 

1  0.142 

(1.834) 

0.181 

(1.705) 

－ － 0.182 

(1.378) 

2  － 0.001 

(0.018) 

－ － － 

3  － 0.151 

(1.514) 

－ － － 

4  － 0.166 

(1.971) 

－ － － 

  － － － － － 

AIC 2.801 2.7 2.816 2.782 2.754 
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BIC 2.853 2.822 2.851 2.803 2.817 

a Each coefficient is reported with the associated t-statistic for the null hypothesis that the estimated value is equal to zero.  

b Factor(s) not presented is(are) shown to be white noise via tests of serial correlation and conditional heteroscedasticity, so we 

don’t model it(them) here with any AR-GARCH models. 
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Table 5 Correlation matrix of factors  

 RS_TW RS_US_F1 RS_ US_F2 RFX_F1 RFX_F2 RFX_F3 RFX_F4 DIR_TW_F1 DIR_TW_F2 DIR_TW_F3 DIR_TW_F4 DIR_EU_F1 DIR_EU_F2 DIR_EU_F3 

RS_TW 1 0.294 0.238 -0.298 -0.256 -0.388 0.145 0.3 0.081 0.103 0.071 -0.033 0.19 -0.021 

RS_US_F1 0.294 1 0 -0.311 -0.285 -0.133 0.002 0.101 -0.087 0.195 -0.136 -0.106 0.205 0.011 

RS_US_F2 0.238 0 1 -0.161 -0.253 -0.245 0.113 0.212 0.054 0.025 -0.006 0.002 0.19 0.014 

RFX_F1 -0.298 -0.311 -0.161 1 -0.004 0 0 -0.032 -0.094 -0.126 -0.024 0.11 -0.055 -0.191 

RFX_F2 -0.256 -0.285 -0.253 -0.004 1 0.001 -0.001 -0.028 0.011 -0.105 0 0.038 -0.204 -0.132 

RFX_F3 -0.388 -0.133 -0.245 0 0.001 1 0 -0.175 -0.062 -0.003 0.009 0.021 -0.12 0.013 

RFX_F4 0.145 0.002 0.113 0 -0.001 0 1 0.259 0.033 0.014 -0.26 0.054 0.101 -0.058 

DIR_TW_F1 0.3 0.101 0.212 -0.032 -0.028 -0.175 0.259 1 0 0 0 0.163 0.3 0.079 

DIR_TW_F2 0.081 -0.087 0.054 -0.094 0.011 -0.062 0.033 0 1 0 0 -0.015 0.057 -0.048 

DIR_TW_F3 0.103 0.195 0.025 -0.126 -0.105 -0.003 0.014 0 0 1 0 0.225 0.279 0.142 

DIR_TW_F4 0.071 -0.136 -0.006 -0.024 0 0.009 -0.26 0 0 0 1 0.015 -0.091 -0.028 

DIR_EU_F1 -0.033 -0.106 0.002 0.11 0.038 0.021 0.054 0.163 -0.015 0.225 0.015 1 0 0 

DIR_EU_F2 0.19 0.205 0.19 -0.055 -0.204 -0.12 0.101 0.3 0.057 0.279 -0.091 0 1 0 

DIR_EU_F3 -0.021 0.011 0.014 -0.191 -0.132 0.013 -0.058 0.079 -0.048 0.142 -0.028 0 0 1 

DIR_USCA_F1 0.193 0.077 0.159 0.069 -0.06 -0.023 0.196 0.406 0.046 0.151 -0.094 0.527 0.271 0.42 

DIR_USCA_F2 -0.096 -0.057 -0.153 0.159 0.023 -0.05 0.082 -0.005 0.032 0.142 -0.049 0.39 -0.04 0.241 

DIR_USCA_F3 0.06 0.056 0.03 -0.025 -0.369 0.126 0.168 0.086 0.022 0.156 -0.022 0.015 0.427 0.041 

DIR_USCA_F4 0.28 0.06 0.242 -0.087 0.041 -0.067 0.228 0.163 -0.005 0.098 -0.132 -0.076 0.39 -0.125 

DIR_AUNZ_F1 0.088 -0.049 0.017 -0.143 0.027 -0.099 0.19 0.151 -0.05 0.108 -0.027 0.297 0.06 0.386 
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DIR_AUNZ_F2 0.123 -0.039 0.07 0.1 -0.122 0.008 0.222 0.31 0.05 0.088 -0.02 0.265 0.159 0.16 

DIR_AUNZ_F3 0.133 0.093 0.095 -0.238 -0.373 -0.015 0.123 0.18 -0.004 0.202 -0.029 0.13 0.357 0.078 

DIR_AUNZ_F4 0.255 0.083 0.054 -0.299 0.101 -0.014 0.167 0.113 0.039 0.375 -0.074 -0.051 0.319 -0.031 

DIR_AUNZ_F5 0.039 -0.036 0.003 0.155 0.167 -0.101 0.104 0.14 0.001 -0.069 0.025 0.316 -0.042 0.144 

RHP_F1 0.162 0.339 -0.036 -0.014 -0.139 -0.211 0.209 0.246 0.245 0.34 -0.148 -0.201 0.311 0.053 

RHP_F2 0.171 -0.145 -0.003 0.131 -0.273 0.092 -0.098 0.11 0.023 -0.203 0.158 0.129 -0.072 0.066 

RHP_F3 -0.08 -0.102 0.06 -0.052 -0.089 0.082 0.229 0.249 -0.161 0.141 -0.216 0.237 0.145 0.008 

RHP_F4 -0.112 0.001 -0.048 -0.054 -0.096 0.069 0.034 0.005 0.002 0.096 -0.089 -0.001 -0.056 -0.299 

RHP_F5 0.081 -0.145 0.212 -0.006 0.06 -0.066 -0.219 0.173 0.164 -0.229 0.207 -0.085 0.158 -0.045 

RRT -0.003 0.063 0.007 0.283 0.035 -0.11 -0.004 0.315 -0.287 -0.073 0.112 0 0.577 -0.319 

Note: We calculate the correlation of any pair of factors once at a time, not of all common factors at the same time. Relevant information about sample period of each group can refer 

to Table 1. The original series of the TAIEX stock returns (RS_TW) and house rent returns (RRT) are directly used to calculate the correlations. 
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Table 5 Correlation matrix of factor scores (cont.) 

 
DIR_USCA

_F1

DIR_USCA

_F2 

DIR_USCA

_F3

DIR_USCA

_F4

DIR_AUNZ

_F1

DIR_AUNZ

_F2

DIR_AUNZ

_F3

DIR_AUNZ

_F4

DIR_AUNZ

_F5
RHP_F1 RHP_F2 RHP_F3 RHP_F4 RHP_F5 RRT 

RS_TW 0.193 -0.096 0.06 0.28 0.088 0.123 0.133 0.255 0.039 0.162 0.171 -0.08 -0.112 0.081 -0.003 

RS_US_F1 0.077 -0.057 0.056 0.06 -0.049 -0.039 0.093 0.083 -0.036 0.339 -0.145 -0.102 0.001 -0.145 0.063 

RS_US_F2 0.159 -0.153 0.03 0.242 0.017 0.07 0.095 0.054 0.003 -0.036 -0.003 0.06 -0.048 0.212 0.007 

RFX_F1 0.069 0.159 -0.025 -0.087 -0.143 0.1 -0.238 -0.299 0.155 -0.014 0.131 -0.052 -0.054 -0.006 0.283 

RFX_F2 -0.06 0.023 -0.369 0.041 0.027 -0.122 -0.373 0.101 0.167 -0.139 -0.273 -0.089 -0.096 0.06 0.035 

RFX_F3 -0.023 -0.05 0.126 -0.067 -0.099 0.008 -0.015 -0.014 -0.101 -0.211 0.092 0.082 0.069 -0.066 -0.11 

RFX_F4 0.196 0.082 0.168 0.228 0.19 0.222 0.123 0.167 0.104 0.209 -0.098 0.229 0.034 -0.219 -0.004 

DIR_TW_F1 0.406 -0.005 0.086 0.163 0.151 0.31 0.18 0.113 0.14 0.246 0.11 0.249 0.005 0.173 0.315 

DIR_TW_F2 0.046 0.032 0.022 -0.005 -0.05 0.05 -0.004 0.039 0.001 0.245 0.023 -0.161 0.002 0.164 -0.287 

DIR_TW_F3 0.151 0.142 0.156 0.098 0.108 0.088 0.202 0.375 -0.069 0.34 -0.203 0.141 0.096 -0.229 -0.073 

DIR_TW_F4 -0.094 -0.049 -0.022 -0.132 -0.027 -0.02 -0.029 -0.074 0.025 -0.148 0.158 -0.216 -0.089 0.207 0.112 

DIR_EU_F1 0.527 0.39 0.015 -0.076 0.297 0.265 0.13 -0.051 0.316 -0.201 0.129 0.237 -0.001 -0.085 0 

DIR_EU_F2 0.271 -0.04 0.427 0.39 0.06 0.159 0.357 0.319 -0.042 0.311 -0.072 0.145 -0.056 0.158 0.577 

DIR_EU_F3 0.42 0.241 0.041 -0.125 0.386 0.16 0.078 -0.031 0.144 0.053 0.066 0.008 -0.299 -0.045 -0.319 

DIR_USCA_F1 1 0 0 0 0.137 0.301 0.177 0.013 0.301 -0.043 0.004 0.266 -0.244 0.036 0.179 

DIR_USCA_F2 0 1 0 0 0.293 0.317 0.223 -0.066 0.251 -0.108 0.126 0.075 -0.158 -0.342 -0.081 

DIR_USCA_F3 0 0 1 0 0.136 0.085 0.401 0.251 -0.199 0.225 -0.164 0.196 -0.057 0.089 0.292 

DIR_USCA_F4 0 0 0 1 0.081 0.057 0.153 0.262 0.042 0.194 0.077 0.043 0.002 0.114 0.325 
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DIR_AUNZ_F1 0.137 0.293 0.136 0.081 1 0 0 0 0 -0.002 0.033 -0.03 -0.284 -0.01 0.008 

DIR_AUNZ_F2 0.301 0.317 0.085 0.057 0 1 0 0 0 -0.154 0.111 0.214 -0.242 -0.163 0.331 

DIR_AUNZ_F3 0.177 0.223 0.401 0.153 0 0 1 0 0 0.284 -0.089 0.208 0.174 0.288 0.18 

DIR_AUNZ_F4 0.013 -0.066 0.251 0.262 0 0 0 1 0 0.197 -0.06 -0.16 0.103 -0.136 -0.23 

DIR_AUNZ_F5 0.301 0.251 -0.199 0.042 0 0 0 0 1 0.046 0.166 -0.039 -0.017 -0.042 0.162 

RHP_F1 -0.043 -0.108 0.225 0.194 -0.002 -0.154 0.284 0.197 0.046 1 0 0 0 0 0.242 

RHP_F2 0.004 0.126 -0.164 0.077 0.033 0.111 -0.089 -0.06 0.166 0 1 0 0 0 0.128 

RHP_F3 0.266 0.075 0.196 0.043 -0.03 0.214 0.208 -0.16 -0.039 0 0 1 0 0 0.37 

RHP_F4 -0.244 -0.158 -0.057 0.002 -0.284 -0.242 0.174 0.103 -0.017 0 0 0 1 0 -0.087 

RHP_F5 0.036 -0.342 0.089 0.114 -0.01 -0.163 0.288 -0.136 -0.042 0 0 0 0 1 0.272 

RRT 0.179 -0.081 0.292 0.325 0.008 0.331 0.18 -0.23 0.162 0.242 0.128 0.37 -0.087 0.272 1 
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Table 6 Estimates of the mean reversion model for zero coupon yields 

  0,11    tttt rrrr  

where tr = the short term yield at time t, r = the long term sample mean of tr , and t  is a stochastic white 

noise component. 

Shortest-term yield 

available 
Sample used   r (%) 

EUR 1 year October 1991－September 2010 -0.0179 3.7460 

USD 1 year April 1989－September 2010 -0.0126 4.2308 

CAD 1 year December 1994－September 2010 -0.0304 3.8707 

AUD 1 year December 1994－September 2010 -0.0592 5.5244 

NZD 1 year December 1994－September 2010 -0.0276 6.2838 

TWD 1 year March 1999－September 2010 -0.0129 2.1420 
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Table 7 Descriptive statistics of historical and simulated results for USD yields 

 1 year 5 year 10 year 15 year 20 year 25 year 

Panel A: Historical data 

Long-run mean 4.231 5.208 5.727 6.061 6.240 6.259 

Minimum 0.244 1.299 2.316 3.154 3.242 2.944 

5th percentile 0.370 2.051 3.307 4.187 4.323 4.303 

10th percentile 0.519 2.471 3.680 4.432 4.620 4.572 

50th percentile 4.423 4.562 4.806 5.329 5.616 5.488 

90th percentile 5.959 6.527 6.601 6.746 6.888 6.927 

Maximum 7.327 8.012 7.988 8.009 8.035 8.074 

Panel B: Simulated data 

Long-run mean 4.189 5.155 5.677 6.015 6.198 6.219 

Minimum 0.100 0.100 0.100 0.100 0.100 0.100 

5th percentile 0.801 1.449 2.291 2.685 3.052 3.293 

10th percentile 1.412 2.000 2.789 3.197 3.544 3.752 

50th percentile 3.478 4.359 4.983 5.368 5.598 5.665 

90th percentile 5.014 6.488 7.227 7.663 7.788 7.714 

Maximum 8.913 11.033 12.263 12.981 12.932 12.582 
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Table 8 Descriptive statistics of historical and simulated results for CAD yields 

 1 year 5 year 10 year 15 year 20 year 25 year 

Panel A: Historical data 

Long-run mean 3.871 4.796 5.317 5.633 5.766 5.629 

Minimum 0.396 1.775 2.986 3.560 3.613 3.502 

5th percentile 0.584 2.481 3.536 4.123 4.209 4.047 

10th percentile 1.192 2.822 3.808 4.220 4.287 4.140 

50th percentile 4.010 4.572 5.161 5.478 5.695 5.562 

90th percentile 5.941 6.813 7.547 8.103 8.223 8.283 

Maximum 8.959 9.532 9.622 9.626 9.641 9.635 

Panel B: Simulated data 

Long-run mean 3.847 4.780 5.308 5.626 5.760 5.624 

Minimum 0.100 0.100 0.100 0.421 0.265 0.391 

5th percentile 1.542 2.385 3.213 3.743 3.769 3.703 

10th percentile 2.002 2.863 3.621 4.104 4.152 4.076 

50th percentile 3.631 4.541 5.098 5.437 5.561 5.431 

90th percentile 5.184 6.116 6.474 6.681 6.881 6.687 

Maximum 9.187 10.265 11.971 12.238 13.437 12.890 
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Table 9 Standard deviation of historical and simulated results for USD and CAD yield changes 

 1 year 5 year 10 year 15 year 20 year 25 year 

Panel A: Historical data 

USD yield changes 0.888 1.079 1.019 1.031 0.969 0.885 

CAD yield changes 1.026 0.944 0.793 0.704 0.712 0.657 

Panel B: Simulated data 

USD yield changes 0.568 0.876 0.944 0.989 0.949 0.880 

CAD yield changes 0.963 0.923 0.763 0.664 0.673 0.640 
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Table 10 Descriptive statistics of historical and simulated results for the exchange rate returns 

 TWD EUR AUD NZD CAD

Panel A: Historical data 

Mean -0.296 -1.545 -3.686 -2.690 -3.287

Standard deviation 4.687 10.985 13.236 13.842 9.128

Minimum -3.897 -8.897 -8.683 -12.853 -7.873

5th percentile -2.420 -5.820 -5.542 -5.864 -4.276

10th percentile -1.738 -3.918 -4.853 -4.732 -3.126

50th percentile -0.005 -0.010 -0.717 -0.665 -0.452

90th percentile 1.539 3.419 3.861 4.605 2.376

Maximum 3.943 11.704 19.616 15.213 15.444

Panel B: Simulated data 

Mean -0.069 -0.070 -0.154 -0.176 -0.043

Standard deviation 4.714 11.034 12.717 13.631 9.099

Minimum -8.804 -14.158 -16.286 -16.580 -12.161

5th percentile -2.228 -5.249 -6.044 -6.485 -4.312

10th percentile -1.725 -4.082 -4.710 -5.053 -3.369

50th percentile -0.008 -0.008 -0.017 -0.014 -0.007

90th percentile 1.711 4.080 4.692 5.031 3.366

Maximum 9.305 16.644 17.160 17.247 11.958
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ABSTRACT 

 

Scholars have paid attention to the determinants of rate spreads on various investment 

products, but not to those on life settlements yet.  This study investigates the spread 

determinants of life settlements, which also extends the boundary of the literature on life 

settlements.  The data on life settlements are from Coventry.  We estimate the expected rate 

spread of a life settlement under certain death time and uncertain death time with or without 

considering mortality improvements.  The average return of life settlement is 13% if we 

assume death time is certain.  Considering uncertain death time would increase the average 

return to 27%.  Additional mortality improvement would decrease the average return by 

2.5%. The regression results show that the expected spreads contain the default risk 

premiums associated with the underlying insurers.  The spreads also relate to the factors 

affecting the surrender tendencies of the underlying policies.  All regression models product 

adequate adjusted R2 and consistent results.  We further infer that there are significant, 

positive premiums for bearing the non-systematic mortality risk of life settlements. 
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1. Introduction   

The determinants of rate spreads on various investment products attract the attentions of 

scholars as well as practitioners.  The renowned CAPM (Capital Asset Pricing Model; 

Sharpe, 1964) showed that the rate spreads of stocks were determined by the market risk 

premium and the betas of individual stocks reflecting the sensitivities of stock prices to 

market movements.  Ross (1976) developed the arbitrage pricing theory (APT) in which the 

risk premiums of stocks were determined by some macroeconomic factors and the associated 

betas.  The market risk premium might be one of the factors.  Fama and French (1996) 

proposed a three-factor model to explain the risk premiums of stocks.  The factors were size 

and book-to-market ratio in addition to the market risk.  Jegadeesh and Titman (2001) added 

an additional factor: the momentum factor. 

Many papers studied the determinants of yield spreads on corporate bonds, e.g., Fons 

(1994), Longstaff and Schwartz (1995), Duffie and Singleton (1997), Duffee (1999), Elton et 

al. (2001), Collin-Dufresne, Goldstein, and Martin (2001), Eom, Helwege, and Huang (2004), 

Longstaff, Mithal, and Neis (2005), Chen, Lesmond, and Wei (2007), Alexander (2008), and 

Nayak (2010).  The spreads of corporate bond yields over government bond yields consist 

of three (or more) components: expected default loss, tax premium, and the premiums for 

non-default risks.   Bodie, Kane, and Marcus (1993), Fons (1994), Cumby and Evans 

(1995), and other early papers assumed the spread is all default premium.  Elton et al. (2001) 

showed that expected default accounted for a small fraction of the spread only.  State taxes 

explained a substantial portion of the spread, and the remaining portion was closely related to 

the factors explaining the risk premiums of stocks.  Using the credit default swap premium 

as a direct measure of the default component in corporate bond spreads, Longstaff, Mithal, 

and Neis (2005) found that the spread of a corporate bond was majorly due to its default risk.  

The non-default component was time varying and strongly related to the measures of market 
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and bond-specific illiquidity.  Chen, Lesmond, and Wei (2007) further confirmed the 

importance of liquidity in determining corporate bond spreads.  Alexander (2008) identified 

inflation uncertainty as another determinant to the yield spread. 

The spread determinants of other fixed-income products were studied in the literature as 

well.  With regard to corporate loan spreads, early studies admitted the credit quality of 

borrowers as one determinant but rejected loan maturity (Barclay and Clifford, 1995a, 1995b; 

Stohs and Mauer, 1996; Amar et al., 1997; Ozkan, 2000; Steven, Nandy, and Sharpe, 2000).  

Gottesman and Roberts (2002) found evidence that lenders were compensated for longer 

maturity loans.  Santos (2011) identified that losses occurred to banks also affected the 

spreads of the loans that were made after the losses.  Menz (2012) investigated the 

correlation and causality between corporate governance and credit spreads.  Regarding the 

spreads of emerging market bonds, Min (1998), Alexopoulou, Bunda, and Ferrando (2009), 

and Küçük (2010) showed that macroeconomic fundamentals of individual countries were 

significant determinants.   

Bantwal and Kunreuther (2000) observed that catastrophe bond spreads were higher 

than those of equivalent-rated corporate bonds and tried to explain this puzzle by behavior 

economics (e.g., reluctance of investment managers to invest in cat bonds).  Zanjani (2002) 

suggested that the “extra” risk premiums might be due to the threats of catastrophes on risk 

bearers’ solvencies.  Dieckmann (2010) proposed a habit process to explain the extra 

premiums in which catastrophes were rare economic shocks that could bring investors closer 

to their subsistence level. 

The determinants of the rate spreads that can be expected from investing in life 

settlements have not yet been examined, albeit the importance of this product.  Life 

settlements are life insurance policies sold in a secondary market.  The policyholder 

involved in a life settlement transaction receives a payment exceeding the surrender value but 

less than the death benefit.  The investor in such a transaction assumes the role of paying 
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premiums, and the investment return depends on the quality of the life expectancy estimates 

provided by medical underwriters.  Life settlements are an increasingly popular asset class 

because they seemed to render good returns and/or diversification benefits to widely held 

assets (Gatzert, 2010; Braun, Gatzert, and Schmeiser, 20121).  Life settlements may develop 

to be a strong market with the potential exceeding $140 billion by 2016 (Conning & 

Company, 2011).   

This study intends to extend the scope of the literature on the spread determinants of 

risky assets to life settlements.1  Identifying the determinants and understanding their 

relative significance will help market participants assess the value and risk of life settlements.  

Our results is therefore of interest to the buyers, sellers, originators, and other stakeholders of 

life settlements, in addition to scholars.   

In estimating the rate spreads of life settlements, we first regard the life expectancy of an 

insured underlying the corresponding life settlement as the expected maturity of a corporate 

bond.  The former is subject to mortality risk while the latter default risk.  Thus we may 

calculate the internal rate of return (IRR) of a life settlement given the insured’s life 

expectancy in the similar way as we calculate the yield to maturity (YTM) of a corporate 

bond.   

The assumption behind such calculations is that the underlying insureds live out the life 

expectancies, which implies certain death time.  We propose two methods to incorporate the 

uncertainty about death time.  Within the first method, we insert into the above IRR 

calculation the probabilities of paying premiums if the insureds are alive at the beginning of a 

period and the probabilities of receiving death benefits if the insureds decease at the end of 

                                                 
1  This study extends the boundary of the researches on life settlements as well.    Many studies investigated 
the economic impacts of life settlements on life insurance markets (e.g., Giacalone, 2001; Ingraham and Salani, 
2004; Ziser, 2006 and 2007; Smith and Washington, 2006; Seitel, 2006 and 2007; Sherman, 2007; Leimberg et 
al., 2008).    Some focused on the actuarial modeling and valuation of life settlements (e.g., Russ, 2005; Perera 
and Reeves, 2006; Milliman, 2008).    Others cover issues such as securitization (Stone and Zissu, 2006; Ortiz, 
Stone, and Zissu, 2008), life expectancy estimation risk (Perera and Reeves, 2006; Stone and Zissu, 2007), and 
hedging benefits (Wang, Hsieh, and Tsai, 2011) of life settlements.   
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the period.   By the second method, we calculate the IRRs of dying at different ages and 

then obtain a mortality-weighted IRR.  Both types of IRRs reflect the spreads for bearing 

non-systematic mortality risk.  We further estimate the spreads that consider potential 

mortality improvements in the future.   

Our data on life settlements are from Coventry, a leading market maker.  The given 

data contain the life expectancies estimated by one of Coventry’s major medical underwriters.  

Note that the rate spreads investigated in this paper is ex ante, i.e., the expected spreads.2 

The differences between the calculated IRRs and the risk-free rates at the inception of 

life settlements represent the spreads expected by the investors who bear all sorts of the risks 

associated with life settlements and/or want to seize the profitable opportunities associated 

with the surrender behaviors of the underlying insureds.  We use the spot rates of US 

government bonds that have the maturities matching with the life expectancies of life 

settlements as the risk-free rates.  The tested independent variables include: mortality risk 

premium, the premium for bearing the default risk of the underlying insurer, and some 

variables determining the insureds’ motivations/tendencies to surrender their policies since 

life settlements are substitutes for surrenders.  Then we conduct three sets of regression 

analyses that correspond to the three ways in estimating the expected IRRs to investigate the 

determinants of the rate spreads on life settlements.   

Observing that the IRRs considering the uncertainty about death time have a higher 

mean than those obtained under the assumption of certain death time, we infer that there are 

positive premiums for bearing non-systematic mortality risk.  We also observe that 

introducing uncertain mortality improvements increases expected IRRs.  This implies 

positive premiums for bearing systematic mortality risk.3 

The rate spreads of life settlements contain risk premiums associated with the default 

                                                 
2  CAPM and APT proposed ex ante relations between risk and return.    Most papers on fixed‐income products 
investigated the ex‐ante relations as well.     
3 We also observe that mortality improvements reduce the expected IRRs with limited extents only.   
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risks of the underlying insurers, which is supported by the negative and significant coefficient 

of the rating-ranked variable.  The rest portions of the spreads mainly related to the 

surrender tendencies of the underlying policies.  The holders of older policies have less 

motivation to surrender their policies, which in turn leads to worse terms for the investors 

when contracting life settlements.  Our regression results show negative and significant 

coefficient of policy year with respect to IRR.   

Our results also present positive coefficients for the insureds’ age and gender.  This is 

as expected since empirical statistics show that healthier people have less motivation to 

surrender their policies.  We further decompose the information conveyed by the life 

expectancy estimated by medical underwriter into the information reflected by age and 

gender and the information captured by medical underwriting.  The regression results are 

consistent with our expectations.  Older people and males are unhealthier, ceteris paribus, 

and thus have positive and significant coefficients.  The underwriting information variable 

reflecting “extra” healthiness also has negative and significant coefficients.  

The remainder of this article is organized as follows.  We delineate the life settlements 

obtained from Coventry in Section 2.  In Section 3, we explain how to calculate IRRs in 

different ways and compare the resulted IRR distributions.  In Section 4 we speculate 

possible sources of life settlement’ rate spreads and specify corresponding variables.  

Section 5 contains regression results and analyses.  We draw conclusions and outline 

possible extensions in Section 6. 

2. Life Settlement Samples   

The data used in this study are from Coventry, one of the major originators and market 

makers in the US life settlement market.  The samples that Coventry provided for us were a 

subset of the policies originated during the period from July 2009 to April 2011.  They are 

346 universal life insurance policies with descriptive statistics presented in Table 1.      
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 [Insert Table 1 about Here] 

The insureds of the policies underlying the sampled life settlements were seniors, with a 

mean age of 76 and the range from 63 to 87 at the times when the policies were acquired by 

Coventry.  At those times their life expectancies estimated by one of Coventry’s major 

medical underwriters ranged from 6 years to 20 years with a mean of 13 years.  Three 

quarters of the insureds were male.  The insurance policies were acquired by Coventry at 

early stages.  The average policy year when the policies were bought was about 3; the 

youngest one was just one month old while the oldest was bought in its 24th policy year.  

Most policies had large amounts of death benefits: the average is 4 million dollars and the 

largest one reaches $20 million.  Their acquisition costs had a mean of $0.44 million and a 

range of $20,000 - $6.8 million.  Standard & Poor’s credit rating of insurance policies’ 

original carrier is also provided. The rating ranges from BBB- to AAA, with almost all 

carriers above investment grade. We convert the credit ratings to a numerical scale 1 to 5 with 

AA- and below equals to 1, AA equals to 2 and so forth.  

3. Calculating Expected Returns and Risk Premiums   

The first set of IRRs, ܴܴܫሺଵሻ, is obtained by solving the following equation: 

ܥܣ ൌ െ∑ ௉௥௘௠௜௨௠೟

ቀଵାூோோሺభሻቁ
೟

௅ா
௧ୀଵ ൅ ே஽஻

ቀଵାூோோሺభሻቁ
ಽಶ,     (1) 

in which AC stands for the acquisition cost of a life settlement, PV denotes the operator of 

calculating present value, Premiumt indicates the premium expected to be paid in month t, 

NDBLE is the net death benefit to be paid at the expected death time.  The unit of time used 

in the present value operator is month since the premium schedules of life settlements are in 

terms of months.  The monthly premium projection were provided by Coventry and used as 

a basis of pricing calculation.  The obtained monthly IRRs are then multiplied by 12 to 

become annual rates. 



 
 

52

All IRRs were computed in two ways to make sure they are numerically stable.  The 

first algorithm is a built-in function called “irr” in MATLAB R2011b.  To ensure of the 

regularity/reasonableness of the obtained IRRs,4 we also use the grid-search method on the 

present value of each life settlement by varying the discount rate between -100% and 100%. 

None of them have multiple rates. We detect 2 life settlements having negative IRRs.  After 

inspecting the projected premium schedule, we found that it is the sums of expected premium 

payments exceed the nominal death benefits caused negative IRRs.  We drop all samples 

with negative IRR for robustness. The distribution and the associated summary statistics are 

presented in Figure 1.   

 [Insert Figure 1 about Here] 

The mean IRR of the sampled life settlements is 8.62%.  The standard deviation of the 

IRR distribution is small: 1.21%.  The distribution is right-skewed: the skewness is about 

-0.91.  The distribution is leptokurtic with kurtosis equals to 4.22.    

We further calculated the expected IRRs of life settlements under uncertain death time.  

To take into account the differences between the policyholders underlying life settlements 

and the general public and to facilitate the comparisons between certain and uncertain death 

time cases, we scaled the death probabilities (qx; the probability of the insured, age of x, 

dying within one year) of 2008 Valuation Basic Table (VBT 2008) from the Society of 

Actuaries (SOA) so that the life expectancy for each life settlement would be equal to that in 

Coventry’s dataset. That is, let ݁ݔ be a function that maps death probabilities qx to life 

expectancy. We find the scaling parameter ߙ so that  

௫ሻݍߙሺݔ݁ ൌ 	LEୡ୭୴ୣ୬୲୰୷,	

where LEୡ୭୴ୣ୬୲୰୷ is the life expectancy estimate provided by the medical underwriter. And 

we use the adjusted probability of death ݍ௫
௔ௗ௝ ൌ  ௫ to compute the expected cash flow andݍߙ

solve for IRR. 
                                                 
4  Brealey, Myers, and Allen (2011) pointed out that an investment may have no or multiple IRRs. 
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We solve the following equation to obtain the ex-ante ܴܴܫሺଶሻ: 

ܥܣ ൌ െ∑ ௧݌ ௫
௔ௗ௝ ௉௥௘௠௜௨௠೟

ଵାூோோሺమሻ
	൅ ௧ିଵ݌ ௫

௔ௗ௝ݍ௫ା௧ିଵ
௔ௗ௝ ே஽஻

ଵାூோோሺమሻ
ఠ
௧ୀଵ ,  (2) 

where  indicates the ultimate age of the mortality table and ݌௧ିଵ ௫
௔ௗ௝ stands for the 

probability that an insured with age of x survives to time t with the adjustment to life 

expectancy provided by Coventry.  The ultimate age ߱ is 110 years old for both US male 

and female mortality tables in VBT 2008.  We assumed uniform distribution of death (UDD) 

for fractional years.  The distribution of the IRRs obtained by Equation (2) is presented as 

Figure 2.  

[Insert Figure 2 about Here] 

The IRRs calculated under uncertain death time has a higher mean of 11.25% than that 

of the IRRs assuming the death of the underlying insured happens at exactly the moment life 

expectancy predicts.  Higher IRR on average may be justified by two 

observations/speculations.  Firstly, the changes in IRRs are asymmetric between death is 

happening earlier and later than expected.  Because IRR is a convex function in death time, 

the increases in IRRs due to earlier deaths are larger on average than the decreases in IRRs 

because of later deaths.  Take the policy that has 11.167 years (i.e., 134 months) of life 

expectancy as an example.  The IRR when life expectancies are 50 months, 134 months, and 

218 months from the inception of the life settlement is 39.29%, 6.87%, and 6.71%, 

respectively.5   

Secondly, ܴܴܫሺଶሻ has a higher mean than the first set because it incorporates the 

uncertainty of death time.  The difference between these two sets of IRR may be regarded as 

the risk premium for the non-systematic mortality risk.  The risk premium is high probably 

because the IRR of a life settlement is quite sensitive to the death time of the underlying 

insured and the diversification of non-systematic mortality risk is difficult for life settlement 
                                                 
5  The associated probability is 0.37%, 0.46%, and 0.29% respectively. 
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buyers to implement (possibly due to the underlying policy is usually large and the limited 

availability of life settlements in each trade).   

The IRRs calculated under uncertain death time has a higher standard deviation of 

1.76% than that of the IRRs assuming the death of the underlying insured happens as life 

expectancy predicts.  This is reasonable due to the introduction of non-systematic mortality 

risk.  The IRR distribution becomes positively skewed under uncertain death time can be 

explained by the asymmetry effect of changes in death time on IRRs. 

We also consider the effect of tax to life settlement. Internal Revenue Service (2009) 

addresses the tax treatment to life settlement. The gain of life settlement investor should be 

treated as ordinary income instead of capital gain. Since we do not have income data of 

individual investors, we simply assume the income tax rate is 15% in the calculation 

henceforth. Adding tax in fact lowered IRR for a considerable amount. In our calculation of 

certain lifetime IRR, 15% capital tax lowered the rate to return by about 1%, to 7.73%. For 

uncertain lifetime IRR, the tax effect lowered the rate of return by 2%. This is hardly 

surprising because in the latter the expected tax payment is distributed throughout the whole 

schedule instead of at expected death time.  

The second way of incorporating uncertain death time is by estimating the distribution 

of IRR.  That is, we compute IRR for every possible death time and use the result as an 

empirical distribution. These IRRs represent the actual rate of return the policyholder in every 

state of the world. Then we weigh them via the probability distribution of death time ܭ௫ to 

get the expected IRR.  

In this case the expected IRR of the policy is computed as follows: 

1. Given that the insured is age   for each possible death time ,ݔ ݐ ൌ ݔ ൅ 1݉, ݔ ൅

2݉,… ,߱ െ 1݉,߱, we compute   ௧ܴܴܫ assumes that insured dies at time   .ݐ  

2. If time of death is within first 12 months of funding date, then instead receive the 

death benefit immediately, the insured will receive the death benefit at the end of 
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that year. 

3. The expected IRR is  ሺଷሻܴܴܫ ൌ ∑ ܲሺܭ௫ ൌ ݔ ൅ ௧ఠܴܴܫሻݐ
௧ୀଵ௠ . 

Figure 3 presents the distribution of expected IRR. The average expected IRR is 17.56% with 

standard deviation 3.18%. It can be shown this approach will always yield higher expected 

IRR than the previous approach from Jensen’s inequality.  

4. Possible Determinants of the Spreads and Variable Specifications 

The rate spreads of investing on life settlements have several sources including the 

mortality risk premium, the premium for bearing the default risk of the underlying insurer, 

the illiquidity premium, tax benefits of life insurance policies, and the profitability resulting 

from insureds’ surrender behaviors.  Life settlements can be regarded as substitutes for 

surrenders.  Stronger motivations to surrender insurance policies imply more willingness to 

enter life settlement transactions.  The terms of such transactions will be worse as a result, 

which implies higher rate spreads of life settlements.  The determinants of surrender rates 

therefore will also be those of life settlements’ spreads.   

There were few papers studying the determinants of surrender rates.  Some of them 

identified macroeconomic variables affecting the surrender rates such as Tsai, Kuo, and Chen 

(2002), Kuo, Tsai, and Chen (2003), and Kim (2005); some (e.g., Transactions of Society of 

Actuaries Reports; Taiwan Standard Ordinary Experience Mortality and Lapse Rate Reports; 

Fier and Liebenberg, 2012) investigated individual/family variables affecting surrender 

behaviors.  These reports/studies found that policy year and healthiness are negatively 

correlated with surrender rate.   

Therefore, the independent variables used in this study include healthiness proxy 

variables, policy year, and rating.  We first use the life expectancy estimated from the VBT 

2008 as the proxy for the health indicator of the underlying insured.  Since Transactions of 

Society of Actuaries Reports indicates that healthier people have smaller tendency to 
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surrender their policies and thus are less willing to enter life settlement transaction, we expect 

life expectancy to be negatively correlated with the rate spread.   

For comparison’s sake we also decompose the healthiness variable to age, gender, and a 

private information indicator. We expect age is negatively correlated with healthiness of the 

insured. We also expect male is more risky than female. Other than that, we expect the life 

expectancy estimated by medical underwriter contains proprietary information that may tell 

us more than age and gender. We use the difference between life expectancy from Coventry 

and VBT 2008 to represent he private information indicator.  

We retrieve the private information contained in the life expectancy estimated by 

Coventry as follows: 

݊݋݅ݐܽ݉ݎ݋݂݊݅	݃݊݅ݐ݅ݎݓݎܷ݁݀݊ ൌ ஼௢௩௘௡௧௥௬ܧܮ	 െ  ,௏஻்ܧܮ

in which ܧܮ௏஻் indicates the life expectancy estimated from the 2008 SOA VBT mortality 

tables. The difference between two life expectancy estimates may be regarded as proprietary 

information provided by the medical underwriter.  We expect that the person identified by 

the Coventry’s medical underwriter to be healthier than usual (given the same age and gender) 

will result in a lower spread of the life settlement.  

Tsai, Kuo, and Chiang (2009) showed that policy year is negatively correlated with 

surrender rate.  We therefore expect policy year to be negatively correlated with the spread. 

The rating of the underlying insurer reflects the default risk undertook by the life 

settlement investor.  The investor will require risk premiums.  Therefore, we expect that 

the life settlement originated from a policy issued by a better-rated insurer will render a lower 

spread.   

With regard to the dependent variable, we calculate the ex-ante rate spread as the 

difference between the expected IRR of a life settlement and a matching risk free rate close to 

the funding date of that life settlement.  We first collect the term structure of the zero rates 

of US government bonds in the first trading day of the month in which the life settlement is 
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funded and then specify the matching risk-free rate to be the spot rate with the same time to 

maturity to the life expectancy of the life settlement.  Since the life expectancy of a life 

settlement is expressed in terms of months, we interpolate linearly to match the maturity with 

life expectancy.  We have three sets of spreads corresponding to the IRRs calculated by 

Equations (1) to (3) respectively. 

5. Empirical Results   

We conduct regression analyses to investigate the significant determinants of the spreads.  

Since we have three sets of IRRs calculated under certain death time, uncertain death time, 

and uncertain death time with mortality improvements, we report three sets of regression 

results.  The results are presented in Table 2. 

 [Insert Table 2 about Here] 

The first set of regressions has high R2, and the signs of all coefficients are consistent 

with our expectation.  Both age and gender have a positive and significant coefficient, which 

is consistent with the conjecture that healthier persons have less motivation to surrender their 

policies and thus lead to less favorable terms to life settlements’ investors.      

Underwriting information reflect the evaluation from the third party medical underwriter, 

indicating policyholder’s healthiness (or unhealthiness) beyond standard mortality tables.  It 

has a negative coefficient and is significant. 

Policy year is expected to have a negative coefficient since older policies exhibit lower 

surrender rates and lead to lower IRRs of life settlements eventually.  Our regression results 

are consistent with this expectation.  This expectation is valid for alternative healthiness 

proxies.   

The rating of the insurer that issues life insurance policies underlying life settlements 

should be negatively correlated with the expected IRR of life settlements since higher rating 

means lower default risk (premium).  However, the coefficient result is not significant, 
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though negative, in the regression.   

We add one more control variables to the regression, which is the size of the policy at 

the funding date. The policy size can be an indicator to policyholder’s net worth, from the 

perspective of insurable interest. Rich people tend to be healthier because of the better living 

condition, or, if sick, can afford better medical care. We use the logarithm of net death benefit 

to control for policy size.  

The results of the second set of regressions are similar to those of the first set.  All 

coefficients have the same signs.  The major differences are in the adjusted R2 and the 

significance levels of policy year and rating.  The R2 is lower (55%) when age and gender 

are used as the healthiness proxy.  The underwriting information is positively significant. 

Policy year and rating are both significant in this case.  The results of the third set of 

regressions are rather similar to those of the second set.  All coefficients have the same signs, 

and most have the same significance levels.   

6. Conclusions and Future Work   

Scholars as well as practitioners have paid significant attention to the determinants of 

rate spreads on various investment products including common stocks, corporate bonds, 

sovereign bonds, corporate loans, and catastrophe bonds.  The determinants of the rate 

spreads on life settlements have not yet been examined, even though life settlements are an 

increasingly popular asset class with growth potentials.  This study extends the scope of the 

literature on the spread determinants of risky assets to life settlements, in addition to 

extending the boundary of the literature on life settlements. 

We first estimate the IRR of a life settlement given the insured’s life expectancy as 

people calculate the YTM of a corporate bond.  Then we calculate the IRRs under uncertain 

death time with and without considering mortality improvements.  Our data on life 

settlements are from Coventry, and the data contain attributes of the underlying policies and 
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insured as well as the life expectancies estimated by a major medical underwriter.  The 

differences between the calculated IRRs and the spot rates of US government bonds that have 

the maturities matching with the expected death time represent the rate spreads expected by 

the investors.  The tested independent variables include: mortality risk premium, the 

premium for bearing the default risk of the underlying insurer, and some variables associated 

with the insureds’ motivations to surrender their policies.   

The regression results show that the rate spreads of life settlements contain the risk 

premiums associated with the default risks of the underlying insurers.  The rate spreads also 

relate to the factors affecting the surrender tendencies of the underlying policies including 

policy year, the policy value normalized by death benefit, and the proxies for the healthiness 

of the insureds.  All regression models have adequate adjusted R2 and consistent results.  

We further infer that there are significant, positive premiums for bearing non-systematic 

mortality risk from the differences between the IRRs obtained under uncertain death time and 

those under certain death time. 

We plan to extend the current study in the near future in several aspects.  Firstly, we 

would like to make our inference about the non-systematic mortality risk be more rigorous by 

introducing risk-neutral valuations.  Such valuations can also be applied to estimate the 

premiums for bearing systematic mortality risk resulting from uncertain mortality 

improvements.  We plan to build an empirical CBD model (Cairns, Blake and Dowd, 2006), 

in addition to the current Lee-Carter model, to simulate future mortality rates since the CBD 

model is better suited for senior people.  We also plan to estimate the spreads resulting from 

the tax benefits of life insurance.   
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Table 1: Summary Statistics on the Samples of Life Settlements 

 

Mean Median Standard Deviation Minimum Maximum

Insured’s Age 75.63 75.38 4.60 63.42 86.75 

Life Expectancy 12.98 13.13 2.78 5.92 19.67 

Gender (Male = 1) 0.75 1.00 0.43 0.00 1.00 

Policy Year 2.82 2.33 3.22 0.08 23.67 

Rating 2.57 3.00 0.99 1.00 5.00 

Acquisition Cost 

($million) 
0.44 0.23 0.66 0.02 6.80 

Death Benefit 

($million) 
4.09 3.00 3.77 0.23 20.00 
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Table 2: Regression Results: Certain Death Time vs. Uncertain Death Time (with or without 

Mortality Improvements)  

 

 (1) (2) (3) 

sprd_LE sprd_LE sprd_q1 sprd_q1 sprd_q2 sprd_q2 

(Intercept) 10.36
***

 -3.06 15.13
***

 -0.93 35.64
***

 -27.55
***

 

(1.14) (1.96) (1.49) (2.95) (1.88) (3.84) 

LE_VBT -0.02
***

 -0.02
***

 -0.08
***

 

(0.00) (0.00) (0.01) 

Underwriting Information -0.03
***

 -0.03
***

 -0.02
***

 -0.02
***

 -0.07
***

 -0.07
***

 

(0.00) (0.01) (0.01) (0.01) (0.01) (0.01) 

Policy Year -0.12
***

 -0.11
***

 -0.14
***

 -0.14
***

 -0.13
***

 -0.11
**

 

(0.02) (0.03) (0.04) (0.04) (0.04) (0.05) 

Rating -0.05 -0.05 0.01 -0.01 0.26 0.25 

(0.08) (0.08) (0.11) (0.11) (0.16) (0.16) 

logAcqCost -0.21
**

 -0.19
**

 -0.34
***

 -0.33
***

 -0.80
***

 -0.73
***

 

(0.09) (0.09) (0.11) (0.11) (0.14) (0.15) 

Insured Age  0.13
***

  0.16
***

  0.63
***

 

 (0.02)  (0.03)  (0.05) 

Insured Gender  0.38
**

  0.04  1.74
***

 

 (0.18)  (0.26)  (0.32) 

R
2
 0.21 0.20 0.15 0.15 0.54 0.53 

Adj. R
2
 0.20 0.18 0.14 0.14 0.54 0.52 

Num. obs. 343 343 341 341 343 343 

 

 

Life settlement spread 

(certain death time) 

 

Life settlement 

spread 

 (uncertain death 

time) 

 

Life settlement 

spread 

 (uncertain death 

time, certain 

mortality 

improvement) 

Note: Heteroskedasticity-consistent standard errors are reported in parentheses.  The asterisks ***, 

**, and * indicate significance level of 1%, 5%, and 10% respectively. 
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Table 3: Correlation 

 

   IRRLE spread  Age  Gender  Policy Year
Underwriting 

information 
Rating 

IRRLE spread    

Age  0.17***   

Gender  0.11**  ‐0.28***  

Policy Year  ‐0.16***  0.03 0  

Underwriting 

information  ‐0.17***  0.48*** ‐0.24*** ‐0.17***  

Rating  ‐0.03  0.14** ‐0.09 0 0.06 

Log  policy  size  ‐0.05  0.18*** ‐0.06 ‐0.12** ‐0.01  0.09*

Note: The asterisks ***, **, and * indicate significance level of 1%, 5%, and 10% respectively. 
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Figure 1: Histogram of IRRs under certain death at life expectancy 

 

  

Figure 2: Histogram of IRRs under uncertain death time  

 

Mean: 8.62% 

Median: 8.70% 

Std. Dev.: 1.21% 

Skewness: -0.91 

Kurtosis: 4.22 

Mean: 11.25% 

Median: 11.33% 

Std. Dev.: 1.76% 

Skewness: -0.43 

Kurtosis: 1.33 
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Figure 3: Histogram of IRRs under probabilistic IRR 

 

 

 

 

 

  

Mean: 17.56% 

Median: 17.35% 

Std. Dev.: 3.18% 

Skewness: -0.58 

Kurtosis: 1.56 
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Empirical Tests on a Relational Model of Mortality Rates  
with Applications to Internal Hedging 

 

 

ABSTRACT 

 

Modeling and forecasting mortality rates are crucial to life insurers, social benefits 

programs, and the society.  There is a vast mass of literature on the methods to model and/or 

forecast mortality rates.  Relational modeling (Brass, 1971; Tsai and Jiang, 2010) has merits, 

but its performance had not yet been compared with other types of models.  To fill this gap, 

we use empirical data to test how a linear hazard transform (LHT) model compares with the 

renowned Lee-Carter and CBD models in terms of in-sample fitting and out-of-sample 

forecasting.  We find that the LHT model produces the smallest errors on the data of US and 

UK that cover both genders from 1951-2007 for the people 25 years old or more.  

Moreover, the proposed LHT model provides better ways of establishing mortality 

immunization strategies than Wang et al. (2010).  It is more general and may give explicit 

formulas for mortality durations.  The generality of our model further reveals the deficiency 

of internal hedging that has not yet been identified in the literature.  This finding provides 

support for the development of mortality-linked assets. 

 

 

Keywords: mortality rates, fitting, forecasting, hedging, duration 
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INTRODUCTION 

 

Modeling the changes/dynamics of mortality rates is critical to the solvency of life 

insurers, social benefits programs, and the society as a whole.  Mortality rates are one of the 

key factors in determining the premiums and reserves of life insurance and annuity products.  

Ignoring possible mortality rate changes can lead to significant under-pricing and 

under-reserving that may impair the profitability and solvency of a life insurer.  Retirement 

programs and long-term care systems need to consider the dynamics of mortality rates as well 

since incomes and benefit outgoes depend on mortality rates.  Under-estimating 

improvements in mortality rates can jeopardize the programs’ solvency and continuity.  

Mortality rates are also a significant factor in shaping the population structure of a country 

that in turn affects the growth prospects of many industries.  Therefore, modeling the 

dynamics of mortality rates is important. 

 

Many scholars recognized the importance of mortality rate dynamics and developed 

various models to understand and/or forecast mortality rates.  Demographers and 

sociologists developed explanatory models to understand which factors affected the mortality 

rates of certain populations with respect to age, gender, region, race, period, etc. (see Stallard 

(2006) and the references therein).  Lee and Carter (1992) established a fitting and 

forecasting model in which one common factor drove mortality rate dynamics of all ages and 

a pair of age-indexed parameters differentiated the changes of age-specific mortality rates.  

Later extensions such as Renshaw and Haberman (2003) and Hyndman and Ullah (2007) 

identified more common factors.  Another stream of literature has assumed specific 

functional forms for the mortality rate curve and established time-series models for the 

function parameters to project mortality rates (e.g., McNown and Rogers, 1989; Cairns, Blake, 

and Dowd, 2006a; Plat, 2009; Blackburn and Sherris, 2011).  The aforementioned 

common-factor models and curve-fitting models could take the cohort effect into account 

(e.g., Renshaw and Haberman, 2006).  A more recently developed stream of literature is 

continuous-time models.  Some applied the idea of the term structure modeling on interest 

rates to the age structure of mortality rates (Dahl, 2004; Dahl and Møller, 2005; Biffis, 2005; 

Cairns, Blake, and Dowd, 2006b).  Others, such as Biffis (2005) and Luciano and Vigna 

(2005), borrowed from credit risk modeling. 

 

Another distinct method is called relational modeling.  It hypothesizes the existence 

of a relation between two mortality rate tables/curves.1  The relations might emerge across 

genders, sub-groups of populations, geographic areas, and time.  For instance, Brass (1971) 

                                                 
1 The term “mortality rates” in this paper is used in a broad way to convey the general concept of mortality and 
survival.  Similarly, the term “mortality rate curves” encompasses survival probability curves. 
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assumed that two mortality rate tables could be related to each other linearly in terms of their 

survival probabilities.  Later extensions added more parameters to allow for the bends in 

survival functions (e.g., Zaba, 1979; Ewbank, De Leon and Stoto, 1983) or inserted 

age-specific terms to capture deviations from linearity (Murray et al., 2003).  The above 

papers analyzed mainly the relations of mortality tables across regions.  Tsai and Jiang 

(2010) focused on the relations across time, on the other hand.  They assumed that the forces 

of mortality of two mortality sequences could be modeled by a linear relation.  Then they 

tried fitting and forecasting on the 1980 and 2001 CSO tables. 

 

Relational modeling has its merits.  It starts from a mortality rate curve that contains 

information on how the mortality rates of different ages relate to each other.  These relations 

may result from biological reasons (e.g., new-born babies have higher mortality rates; 

mortality rates increase with ages for adults) or social reasons (e.g., the speed driving by 

young adults leads to higher mortality rates).  Common-factor models did not fully capture 

such information.  The second step of relational modeling specifies a relation between two 

curves.  For instance, mortality rates on the curve of a later year can be regarded as a 

transformation of those on the curve of an earlier year.  The justification for such 

specifications is that mortality rate curves move slowly with small changes and shift stably in 

terms of shape.  Small and stable changes might result from biological constraints and/or the 

rigidity of social changes (e.g., health care systems, living habits, medical technology 

improvements, and medicine inventions).  

 

We are the first to empirically assess the fitting and forecasting capabilities of a 

relational model relative to other types of models.  More specifically, we assume that there 

exists a linear relation, called linear hazard transform (LHT), between the forces of mortality 

(hazard rates) of two curves.  Then we estimate the parameters of the LHT using the 

empirical data of US and UK that cover both genders from 1950 to 2007.  To evaluate the 

performance of LHT model, we choose the well-known Lee-Carter model (Lee and Carter, 

1992) and CBD model (Cairns, Blake and Dowd, 2006a) as benchmarks and conduct 

in-sample fitting and out-of-sample forecasting comparisons.  Both models are good 

representatives of their types and have been compared extensively in extant research (e.g., 

Lee and Miller, 2001; Brouhns, Denuit and Vermunt, 2002; Czado, Delwarde and Denuit, 

2005; Booth, Tickle and Smith, 2005; Cairns et al., 2009).  We find no papers that reported 

empirical comparison of relational modeling with other types of models. 

 

The second contribution of this paper is applying our LHT model to constructing the 

insurance portfolios that are to be immunized from mortality rate risk.  Our LHT model 

requires merely two parameters to depict the dynamics of the entire mortality rate curve.  
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This feature enables us to use the durations with respect to these two parameters to construct 

a portfolio immunized from sophisticated changes of mortality rate curves.  Our LHT model 

is more general than that of Wang et al. (2010) which assumed that the force of mortality is 

constant within each age interval and changes proportionally.  Their method is indeed a 

special case of ours: setting one of the two parameters of our LHT model to zero.  Another 

advantage of our method is that it may render explicit formulas for mortality durations, which 

makes risk management easier and more accurate.  

 

Statistical comparisons show that LHT produces the smallest fitting and forecasting 

errors.  In fitting tests, it yields 71.79% and 70.49% lower RMSEs (root of mean square 

error) and MAEs (mean absolute error) on average than the Lee-Carter model on the US data 

and 55.42% and 58.38% lower errors on the UK data.  Our mean fitting errors are 87.22% 

and 86.65% lower than those of CBD in US and 85.54% and 84.95% lower in UK.  The 

median, standard deviation, minimum and maximum of our fitting errors across the sampling 

periods are smaller than those of the two benchmark models (ranging from 42.22% to 94.69%) 

as well.   

 

In forecasting tests, the average errors of LHT during the forecasting period are 

12.80% (RMSE) and 14.91% (MAE) of Lee-Carter’s on the US data and 33.15% (RMSE) 

and 31.36% (MAE) in UK.  LHT’s mean forecasting errors are lower than those of CBD by 

93.00% (RMSE) and 92.48% (MAE) in US and 84.64% (RMSE) and 83.83% (MAE) in UK.  

All other statistics of LHT’s forecasting errors are also smaller than those of the benchmark 

models.  The good performance of LHT is robust across genders, periods, and the 

sub-groups of ages larger than 45. 

 

We then derive and calculate the dollar durations of the reserves at inception with 

respect to the two parameters of the LHT model for ten life insurance and annuity products to 

quantify their mortality rate risks.  We find that the reserves of these products are more 

sensitive to the shocks from the parallel shifts of force-of-mortality curves than to the 

proportional changes.  This fact highlights the importance of our extension to Wang et al. 

(2010) since their immunization strategies were based on the assumptions that the force of 

mortality is constant within each age interval and shifts proportionally.  We further construct 

some portfolios that are immunized from the risks of both types of shifts in mortality rate 

curves.  We find that natural/internal hedging might be infeasible due to the close relations 

among premiums/reserves of insurance and annuity products.  This finding is new to the 

literature and appeals for the development of mortality-linked assets. 

 

The remainder of this paper is organized as follows.  Section 2 specifies the relations 
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between two mortality rate curves.  Section 3 delineates how we conduct statistical tests to 

compare the LHT model with the two benchmarks.  Section 4 illustrates how our model can 

generate mortality immunization strategies and reveal the deficiency of internal hedging.  

Section 5 summarizes and concludes the paper. 

 

RELATIONS BETWEEN TWO MORTALITY RATE CURVES 

 

We regard the changes of mortality rates across time as transformations from one 

curve to another.  More specifically, we assume that there is a linear relation (plus an error 

term) between the forces of mortality (i.e., hazard rates) of two mortality rate curves for years 

A and B A a  , where a N .  The mathematical form is: 

, , ,
, , , , ,( ) (1 ) ( ) ( ),B A B A A B A B

x n x n x n x n x nt t t           [0, ],t n          (1) 

where ,
A
x n  and ,

B
x n  denote the forces of mortality for years A  and B  respectively, x  

indicates the starting age of the mortality rate curve to be studied, n x  ,   represents 

the end age of the studied rate curve, ,
,

A B
x n and ,

,
A B
x n are constants to be estimated, and ,

,
A B
x n is 

the error term.  Year A  is called the base year in the following while year B  is called the 

target year. 

 

Casual observations seem to support the linear assumption.  Figure 1 plots the 

relations between 45,64 ( )A t  and  1
45,64 ( )A t   with A = 1950 and 2000 for the females of UK 

and US, respectively.2  It renders preliminary support for the reasonableness of the linear 

assumption. 

[Insert Figure 1 Here] 

 

Since the k-year survival probability 0
( )

k

x s ds

k xp e
 , Equation (1) implies the 

following relation between A
k xp  and B

k xp : 

, , , ,, ,, , , , , ,, ,0 0 0 0 0
( ) (1 ) ( ) ( ) ( )1[ ]

k k k k k
B A B A A B A B A BA B A Bx n x n x n x n x n x nx n x n

t dt t dt dt t dt t dtkB A
k x k xp e e p e e

                       .  (2) 

Taking the natural logarithm on both sides yields: 

, , ,
, , ,0

( ln ) (1 ) ( ln ) ( )
kB A B A A B A B

k x x n k x x n x np p k t dt           .              (3) 

                                                 
2 45,64 ( )A t  is derived by 45,64 45( ) ln(1 ),  [0,64]tt q t     .
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Then we may estimate the parameter pair ( , ,
, ,,A B A B

x n x n  ) using regular regression analysis that 

minimizes the sum of squares of integrated errors 
2

,
,0

1

( )
n k A B

x n
k

t dt


 
     on the data set 

{( ln A
k xp , ln B

k xp ): k=1, 2,…, n}.     

 

We can grasp the economic meaning of the transformation as well as the meanings of 

 and  from Equation (1).3  The transformation decomposes the changes in the forces of 

mortality from the curve of an earlier year to the curve of a later year into two components: a 

proportional change reflected by  and a parallel shift determined by .  Assuming 0   

implies that the curve shifts proportionally.  In this case, higher forces of mortality have 

larger improvements or deteriorations (depending on whether  is negative or positive).  

This type of curve changing behavior is also called the proportional hazard transform.  

Assuming 0  corresponds to the case of a parallel shift of the force-of-mortality curve. 

 

STATISTICAL TESTS 

 

Data, Benchmarks, and Measures 

We draw historical mortality rates xq  from the Human Mortality Database (HMD).4  

The drawn data cover both genders of US and UK, the countries that have probably been 

studied the most.  The sampling period is from 1950 to 2007, a few years after the World 

War II to the most recent year for which data are available.5   

 

Since the majority of the persons purchasing life insurance and annuities are young 

adults and older people, we focus on the mortality rates of ages 25 and above.  More 

specifically, we test the LHT model on the 25+ section of mortality rate curves.6  We further 

set 109   to avoid abnormal disruptions on the curves between ages 109 and 110 caused 

by setting 110p  to be 0 in the original US and UK mortality tables. 

 

We choose two well-known models as the benchmarks to be compared with the LHT 

                                                 
3 We omit the superscripts and/or subscripts of the parameters whenever the omission causes no confusions. 
4 Many researches such as Steinsaltz and Wachter (2006), Bhaskaran et al. (2008), Wang et al. (2010), and 
Vaupel (2010) obtained morality rate data from the HMD as well.   
5 As of March of 2012, the most recent mortality rates available for US are those of 2007 while the data of UK 
are updated to 2009.  We preferred the same length of history for both countries. 
6 We also test two other sections, 35+ and 45+.  The results are consistent with those from the 25+ section, 
which may also be inferred from Tables 4 and 8.  We do not present these results for the sake of brevity.  
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model: the Lee-Carter model and the CBD model.  The Lee-Carter model is a one-factor, 

linear model assuming that: 

, ,log x A x x A x Aq a b K    ,           (4) 

where ,x Aq  denotes the one-year death rate of age x  in year A , xa  and xb  are 

age-specific parameters, AK  represents the time-varying factor of mortality rates, and ,x A  

indicates the fitting error associated with age x  in year A .7  We follow Lee and Carter 

(1992) to estimate and forecast the parameters.   

 

The other benchmark that we choose is the CBD model that became popular recently. 

The model specification is: 

(1) (2)
, ,logit ( )x A A A x Aq K K x x     ,                      (5) 

where , , ,logit / (1 )x A x A x Aq q q  , and both (1)
AK  and (2)

AK  are modeled as random walks 

with drifts (Cairns et al., 2009).   

 

We adopt two accuracy measures, RMSE and MAE.  Their definitions are: 

1

1

1
2

, , , ,
1 { , }

1 1
( )

2( )
I

A T

s x A s x A
A A s m f x xI

RMSE q q
T x





 

   

 
    and 

1

1

1

, , , ,
1 { , }

1

2 ( )
I

A T

s x A s x A
A A s m f x xI

MAE q q
T x





 

   

 
    , 

where , ,s x Aq  indicates the observed one-year death rate for gender s  (m and f denote male 

and female, respectively) and age x  in year A ,  , ,s x Aq  represents the fitted/forecasted value, 

and Ix  is the starting age of the section on mortality rate curves.  These two measures have 

been used in the literature (e.g., Carter, 1996; Gakidou and King, 2006). 

 

In-Sample Fitting 

                                                 
7 The original model in Lee and Carter (1992) is ,log x A x x Am a b K  , where ,x Am  is the central death rate of 

age x  in year A .  We substitute the one-year death rate for the central death rate to ensure that the LHT and 
Lee-Carter models use the same raw data and avoid the disturbances from the differences between xm  and xq . 
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In-sample fitting is done by fitting Equation (3) using two mortality rate curves.  We 

first draw the xq  of two different years from our dataset, and calculate two sets of 

corresponding k xp : ,k x Ap  and ,k x Bp .  Taking the natural log of these k xp  and then 

running the regular regression analysis on Equation (3) yields   and  .  Combining the 

estimated   and   with the input ,k x Ap  gives us   1
,, [ ] k

k x Ak x Bp p e     .  We compute 

the corresponding  
, ,1x B x Bq p 

 
and then RMSE and MAE to measure the fitting errors.  

Repeating the steps for A = 1950-2006 with 1a  , we obtain the following table.8   

[Insert Table 1 here] 

 

Table 1 shows that LHT produces the smallest errors in in-sample tests.  In both US 

and UK, LHT generates smaller mean, median, standard deviation, minimum, and maximum 

of fitting errors than the two benchmark models do.  For instance, Table 1a exhibits that 

LHT’s RMSE averaged across ages, sampled years, and genders is 28.21% of Lee-Carter’s 

and 12.78% of CBD’s in US and 44.58% and 14.46% of theirs in UK.  The improvements of 

LHT upon the benchmark models with respect to the median RMSE of fitting errors are 

similar to those in the mean errors.  In addition, the standard deviations of LHT’s RMSEs 

are 22.38% and 22.39% of Lee-Carter’s and CBD’s in US and 30.95% and 17.61% in UK.  

LHT also performs well on both ends of error distributions.  For example, the minimum 

RMSEs of LHT are 52.11% and 5.31% of Lee-Carter’s and CBD’s in US and 103.89% and 

9.20% in UK.  LHT’s maximum RMSEs are 29.40% and 35.43% of Lee-Carter’s and 

19.52% and 21.48% of CBD’s for US and UK data, respectively.  Table 1b further 

demonstrates that LHT outperforms the benchmarks to a similar extent when MAE is used as 

the fitness measure.   

 

Table 2 indicates that LHT renders better fitting than the two benchmark models for 

both genders among US and UK adults.  The LHT model produces mean RMSEs that are 

30.11% and 25.89% of those by the Lee-Carter model for US males and females, respectively.  

The mean fitting errors in UK are also smaller: 42.41% for males and 48.52% for females.  

Compared with the CBD model,  LHT’s RMSEs are 15.01%, 10.55%, 14.41%, and 14.53% 

of CBD’s for US males, US females, UK males and UK females respectively.  Table 2b 

displays that the LHT model outperforms the benchmark models to a similar extent when we 

                                                 
8 The sample size T  in estimating the LHT model is thus equal to 2006-1950+1 = 57.  On the other hand, the 
sample size used to estimate the Lee-Carter and CBD models is 58 since the estimation is done upon single-year 
data rather than the data of two-year differences.   
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switch the fitness measure to MAE.   

[Insert Table 2 Here] 

 

Table 3 shows that the LHT model renders better fitting than both benchmark models 

in all sub-periods of the sampling period in US and UK with respect to the two accuracy 

measures.  The fitting errors averaged over genders and ages during each decade of the 

sampling period produced by LTH are smaller than those by Lee-Carter and CBD.  For 

instance, its mean RMSEs for US males during the decades of 50s, 60s, 70s, 80s, 90s, and 

00s are 57.88%, 50.60%, 31.04%, 18.53%, 24.40%, and 15.42% respectively of the 

Lee-Carter’s.  The ratios are 40.23%, 38.92%, 37.64%, 40.21%, 39.37%, and 34.47% for 

UK females in terms of MAE when compared with the CBD model.   

[Insert Table 3 Here] 

 

The better performance of LHT than the benchmark models can be attributed to the 

better fitting upon the populations of 45 years old or more.  Table 4 demonstrates that LHT’s 

fitting errors are smaller than Lee-Carter’s and CBD’s for the age groups of 45-64, 65-74, 

75-84, and 85-109 with respect to genders, countries, and accuracy measures.9  For instance, 

the ratios of LHT’s fitting errors to Lee-Carter’s for US males in terms of RMSE for these 

age groups are 88.70%, 73.17%, 81.13%, and 25.88% respectively.  The ratios to CBD are 

61.82%, 55.57%, 62.15%, and 32.98% for UK females in terms of MAE.  On the other hand, 

both Lee-Carter and CBD models outperform LHT for the age groups of 24-34 and 35-44.  

Since LHT provide better fitting for most age groups (45-109) than the benchmark models do, 

its overall performance is better as shown by previous tables.   

[Insert Table 4 Here] 

 

Table 4 implies that LHT will perform better than Lee-Carter and CBD in the 

sub-sections of mortality rate curves with ages greater than 25.  This is confirmed by 

replicating Tables 1-3 using the data of age groups 35+ and 45+.10  The superiority of LHT 

in the 35+ and 45+ sections of the mortality rate curve is as good as, if not better than, that in 

the 25+ section.   

 

Out-of-Sample Forecasting 

For simplicity as well as following Lee-Carter (1992), Nelson and Siegel (1987), and 

Cairns et al. (2009), we assume that the dynamics of the two parameters in Equation (3) 

follow the random walk with a drift individually.  More specifically, we assume that: 

                                                 
9 There is one exception: the 45-64 age group of UK males when measured by MAE.  LHT’s MAE is 103.1% 
of the Lee-Carter’s.   
10 We do not present the replicated tables for the sake of brevity. 
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, 1 1,
, , , , ,

A A A A A
x n x n x n x n x n

           , 

where ,x n  denote the long-term mean change (i.e., drift) of , 1
,

A A
x n  , γ = α or β, and 

, ,~ (0, )x n x nN   .  This set of assumptions are validated by the Dickey-Fuller tests in which 

we found no unit roots in the time series of ̂  and ̂ . 

We estimate the drifts using the F-year periods of data prior to the “current” year A 

upon which the projection would be made.  For instance, when we have mortality data up to 

1989 (i.e., 1989A ) and want to make projections for 1990, we will use the period from 

(1989 F ) to 1989 to estimate the drifts.  Our estimators for the drifts are simply the 

averages of changes in parameter values over the corresponding F-year period:   

       

 
11,

, ,
1

1

1

AA F i

x n x n
i A FF

 


  

  
   ,                      (6) 

where , 1 1,
, , ,ˆ ˆ ˆi i i i i

x n x n x n       and the pairs 1, , 1
, ,?( , )i i i i

x n x n    are estimated in in-sample fitting.  

We set F = 40 for out-of-sample forecasting tests after taking into account the tradeoff 

between sufficiency of the in-sample size and the number of out-of-sample tests. 

The projected parameter , 1
,

A A
x n 

 
is assumed to satisfy: 

 1,
, 1 1,

, , ,ˆ
A F

A A A A
x n x n x n  


    .        (7)11 

Plugging the projected parameters into Equation (3) to the mortality rates of year A  would 

yield the projected mortality rates of the person aged x in year A+1 (i.e.,  1A

k xp


).  Then we 

calculate RMSE and MAE in the same way as in the in-sample fitting section to measure the 

forecasting errors.  Repeating the above procedures for 1990 2007A     produces the 

following table. 

[Insert Tables 5 Here] 

 

Table 5 displays that the out-of-sample forecasting errors of LHT are smaller than 

those of the Lee-Carter and CBD models in both cases of US and UK.  For instance, the 

mean RMSEs of LHT as shown in Table 5a are 12.80% (US) and 33.15% (UK) of 

Lee-Carter’s and 7.00% (US) and 15.36% (UK) of the CBD’s.   LHT  has lower error 

variations as well.  For example, Table 5b indicates that the standard deviations of MAEs 

                                                 
11 We use the top script   to indicate a projected value,   to denote an estimated value, and  for an 
averaged value. 
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associated with LHT are 0.000239 and 0.000385 for US and UK respectively.  They are 

11.11% and 20.57% of Lee-Carter’s and 15.88% and 23.96% of CBD’s.  Other statistics in 

Table 5 also support the superiority of LHT to the benchmark models.  One example is the 

smaller maximum RMSE produced by LHT, 0.001872, compared to 0.015735 by Lee-Carter 

and 0.020640 by CBD for US. 

 

We further find that the superiority of LHT is more significant in forecasting than in 

in-sample fitting.  The error ratios of LHT to Lee-Carter with respect to almost all statistics 

in terms of both accuracy measures are smaller in forecasting tests.  This can be seen by 

comparing 12.80%, 33.15%, 7.00% and 15.36% (the ratios of LHT’s RMSEs to benchmark 

models’ as presented in the previous paragraph) with the corresponding 28.21%, 44.58%, 

12.78% and 14.46% mentioned in the paragraph after Table 1.  That the advantage of LHT 

over the benchmark models is more significant in forecasting has material practical 

implications. 

 

For each gender in US and UK, LHT’s forecasting errors are the smallest.  Table 6a 

exhibits that the ratios of LHT’s mean RMSEs to Lee-Carter’s are 13.97%, 11.26%, 31.60% 

and 35.99% for US males, US females, UK males, and UK females, respectively.  The 

corresponding ratios with respect to CBD are 9.01%, 5.14%, 17.43% and 12.90%.  The 

better performance of LHT than Lee-Carter and CBD models remains intact when the 

accuracy measure changes to MAE.  The mean MAEs generated by LHT are lower than 

those by Lee-Carter and CBD as Table 6b displays.   

[Insert Tables 6 Here] 

 

Table 7 shows that the good forecasting performance of LHT is robust across the 

decades of 1990s and 2000s.  For instance, the ratios of LHT’s mean forecasting RMSEs to 

Lee-Carter’s for females are 11.00% (US) and 24.54% (UK) in 1990s and 8.81% and 48.84% 

in 2000s.  When compared with CBD in terms of mean MAE, the ratios for males are 

10.62% (US) and 17.18% (UK) in 1990s and 8.25% and 20.04% in 2000s.   

[Insert Table 7 Here] 

 

Table 8 tells a story similar to Table 4.  LHT performs well for ages 45+ while 

Lee-Carter and CBD perform better for ages 25-44.  For instance, the ratios of  LHT’s 

mean RMSEs to Lee-Carter’s for the age group of 85-109 are 11.69% (US males), 8.84% (US 

females), 24.41% (UK males), and 26.81% (UK females).  On the other hand, the 

corresponding ratios for the age group of 25-34 are 128.57%, 347.92%, 367.21%, and 

560.42% respectively.  The mean MAEs of LHT are smaller than those of CBD  for US 

and UK adults aged 45 years old or more, but the relative performance reverses for the age 
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groups of 25-34 and 35-44.  LHT’s overall forecasting performance is better than the 

benchmark models, as we have seen from Table 5, due to its better performance for more age 

groups.  The relative advantage of LHT in the age groups of 45 and above has practical 

implications since the people in these age groups are the major customers of life insurers. 

[Insert Table 8 Here] 

 

RISK MANAGEMENT 

 

One of the major usages of mortality modeling/projection for life insurers is to 

manage mortality rate risk.  Such management might involve constructing 

internally/naturally hedged portfolios of life insurance and annuity products so that reserves 

will not deviate from the expected to a significant extent.12  We illustrate in this section how 

our LHT modeling has advantages over the models proposed in the existing literature to 

establish hedged portfolios. 

 

Mortality Durations 

We may regard the LHT model as a two-parameter model of mortality improvement 

or deterioration.  Mortality risks can thus be measured and managed by the “durations” with 

respect to parameters   and  .13  More specifically, the sensitivity of a policy’s reserves 

*R  based on the adjusted force of mortality *( ) (1 ) ( )x xt t        (see Tsai and Jiang, 

2011) to a change in   or   can be defined as 

                       *
*( )

R
DD R 


 


,                (8) 

where DD denotes dollar duration and    or  .14  DD  measures the change of the 

reserves caused by the change of a mortality parameter.  It can also be deemed as the slope 

of the reserve-to-mortality-parameter curve with the opposite sign.  Most models presented 

in the literature have many more parameters.  Life insurers hence cannot use these models 

for mortality duration management since there will be many durations to match, which 

                                                 
12 The conventional way to manage mortality rate risk is reinsurance.  Alternative ways involve asset-side 
products/derivatives linked to mortalities.  Few products are currently available though. 
13 The idea is the same as the duration management for interest rate risk.  Many financial institutions, 
especially banks and life insurers, calculate the interest rate durations for individual assets and liabilities to 
measure their exposures to interest rate risk.  The use of interest rate duration in financial markets is extensive 
(Bierwag and Fooladi, 2006).  We borrow the idea of duration management but substitute interest rate for 
mortality rate as the underlying risk factor. 

14 Another popular risk measure is modified duration ( MD ) defined as:
 

**
*

* *

( )1
( )

DD RR
MD R

R R


 


   


.  

The economic meaning of MD  is the percent change of reserves caused by the change of a mortality 
parameter.  DD  is more suitable for life insurance since it avoids irregularities caused by small or zero 
reserves (Tsai, 2009). 
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demonstrates one advantage of our LHT modeling. 

 

Under the LHT model, mortality durations may have explicit formulas that facilitate 

risk management.  Mortality rates of a future year are a function of the current-year 

mortality rates with parameters of   and  .  Since appropriate reserves determined today 

should take into account the expected changes in mortalities, reserves are functions of   

and  as well.  The partial derivatives of reserves with respect to   and   may have 

explicit formulas so that we can derive closed-form solutions for mortality durations.   

 

In the following we define and derive mortality durations of the premiums and 

reserves at inception for several products including n-year temporary life annuities-due, 

endowment, and term life insurance as illustrations.  Denote the net single premium of an 

m-year deferred, n-year temporary life annuity-due issued to an individual aged x  by: 

0

1 1.. .. [ ( ) ]
: : ( )| |

k

x

x

m n m n t dtk
x n x nm m k x

k m k m

a a p v e
 

 

     


 

    ,            (9) 

where 1/(1 )v i 
 
and ln(1 )i   .  Note that 0m   (the case of n-year temporary life 

annuity-due), 1n   (the case of m-year pure endowment) and n x m    (the case of 

m-year deferred whole life annuity-due) are three commonly seen products.  When the force 

of mortality x  changes proportionally to (1 ) x  , the underlying curve becomes 

(1 ) x      and the associated net single premium is: 

   0
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a e
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We can then define the dollar duration of the net single premium for an m-year 

deferred, n-year temporary life annuity-due with respect to  by: 
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 (11) 

Similarly, we define the dollar duration with respect to   by: 

.. ..
1..

: ( ) : ( )
:

0

| |
( | ) lim x x

m n
x n x n km m

x nm k x
k m

a a
DD a k p v

    
  

 
  





     .           (12) 

Assume that the death benefit is payable at the end of the death year.  Denote the net 

single premium of an n-year endowment policy as: 
1

1
1: :

0

( ) 1
n

k n
k x k x n xx n x n

k

A p p v p v d a







         ,                     (13) 

where 1d v  .  This implies 
..

:
:

( ) ( )x n
x n

DD A d DD a    ,    or  .  Setting 



 
 

83

n x   yields 
..

( ) ( )xxDD A d DD a     that represents the relation between the dollar 

durations of whole life insurance and whole life annuity-due.  For the n-year term life 

insurance, we have 
.. ..

1
: :1:

( ) ( ) ( | )x n n xx n
DD A d DD a DD a     

 
since its net single premium 

is 
..

1
:1

: :
| xnx n x n

A A a  .  The above durations of premiums can help life insurers to assess the 

sensitivity of premiums to mortality rate variations. 

 

For the level h-payment, m-year deferred ( 1)m h  , and n-year temporary life 

annuity-due, the dollar duration of its reserves at time 0 is  

.. .. .. ..

: : : :0( ( ( | ))) ( | ) ( | ) ( )x n x n x n x hh m m h mDD R P a DD a P a DD a     ,             (14)
 

where 
.. .. ..

: : :( | ) | /x n x n x hh m mP a a a .  Note that for the case of 1h   (single premium), 

..

:1( ) 0xDD a   and Equation (14) reduces to (11) and (12).  Similarly, the dollar durations of 

the reserves at time 0 for the level h-payment, n-year endowment and term life insurance 

( 1)n h   can be derived respectively as: 

..

:0 : : :
( ( ( ))) ( ) ( ) ( )x hh hx n x n x n

DD R P A DD A P A DD a     ,                  (15) 

and 

..
1 1 1

:0 : : :
( ( ( ))) ( ) ( ) ( )x hh hx n x n x n

DD R P A DD A P A DD a     ,                (16) 

where 
..

:
: :

( ) / x hh x n x n
P A A a  and 

..
1 1

:
: :

( ) / x hh x n x n
P A A a . 

 

We give some numerical illustrations in the following.  Assume that 3%i  , 45x  , 

and  ( 1,2, , 20)k xp k n   represent the out-of-sample forecasting mortality rates when 

using the LHT model with 2007A   and 40F  .  We calculate DD  and DD  of the 

reserves at time 0 for 10 products.  The results are as shown in Table 9.   

[Insert Table 9 Here] 

  

We find that annuity products and pure endowment have positive mortality durations, 

implying exposures to longevity risk.  For instance, the ( DD , DD ) of the reserves at time 
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0 for the single-payment, 20-year deferred whole life annuity-due and the 20-payment, 

20-year pure endowment are (3.16, 183.86) and (0.06, 5.48) respectively.  The whole life 

insurance, on the other hand, has negative mortality durations that implies exposures to 

mortality deterioration risk.15  For example, the DD and DD  of the reserves at time 0 for 

the 20-payment whole life insurance are -0.13 and -12.11 respectively.   

 

The DD s of the reserves for the life insurance and annuity products have much 

larger magnitudes than DD s, which means that the reserves are more sensitive to 

shocks/changes of   (parallel shift of force-of-mortality curves) than to those of   

(proportional shift).  This fact highlights the importance of our extension to Wang et al. 

(2010) since their immunization strategies are based on the assumption that the force of 

mortality is constant within each age interval and moves proportionally and thus utilize DD  

only.   

 

The reserves of the whole-life annuities have the largest mortality duration figures, 

(3.16, 183.86) for single-payment and (2.84, 131.43) for 20-payment.  This implies that 

whole-life annuities have the largest mortality rate risk.  The term life insurance has the 

second largest sensitivity to the parallel shifts of the forces of mortality 

( -12.86 and -13.76DD  for single-payment and 20-payment, respectively), while the 

whole life insurance has the second largest sensitivity to the proportional shifts 

( -0.11 and - 0.13DD  ).  The endowment is the least sensitive to the proportional shifts 

( -0.02 and -0.05DD  ).   

 

Internal Hedging 

After calculating the mortality durations of reserves for several life insurance and 

annuity products, we can now measure the mortality rate risk of the portfolios consisting of 

these products and construct the portfolios with minimal mortality rate risks.  The reserve 

duration of a portfolio with respect to a model parameter is simply the weighted average of 

                                                 
15 Following Wang et al. (2010), we define that a product is subject to longevity risk if mortality improvements 
would increase the reserves of that product.  A product is subject to mortality deterioration risk if increases in 
mortality rates would raise the product’s reserves.  The term “mortality rate risk” is used as a general term 
referring to the risks of reserves subject to changes in mortality rates.   
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the mortality durations of individual products’ reserves.  By combining products in different 

ways, we may find a portfolio with zero mortality durations.  This means that the portfolio is 

“immunized” from mortality rate risk.  Managing mortality rate risk by carefully 

constructing product portfolios is called the natural hedging strategy in the literature (e.g., 

Cox and Lin, 2007; Wang et al., 2010).   

 

For the purpose of demonstration, we construct some portfolios that have minimal 

exposure to mortality rate risk with regard to the reserves at time 0, i.e., the portfolios having 

zero DD  and DD .  Such portfolios are composed of at least three products since we 

have three equations as constraints to be solved: 
3

1

3

1

3

1

0,

0,

1,  and

0,  1,  2,  3.

i
i

i

i
i

i

i
i

i

w DD

w DD

w

w i











 

 



 







                               (17) 

 The solutions to equation system (17) are: 

 
2 3 3 1 1 2

1 2 32 3 3 1 1 2

   
/ , / , /

   

DD DD DD DD DD DD
w D w D w D

DD DD DD DD DD DD

     

     

   ,           (18) 

where 
2 3 3 1 1 2

2 3 3 1 1 2

   

   

DD DD DD DD DD DD
D

DD DD DD DD DD DD

     

     

   . 

 

When generating an optimal portfolio, the key difference between the LHT model and 

Wang et al. (2010) lies in the calculations of mortality durations.  Our method involves 

calculating two mortality durations while Wang et al. (2010) compute only one with an 

implicit assumption of how the mortality rate curve changes.  They assumed that the force 

of mortality within each age interval ( , 1)x x   is constant and is changed by a certain 

percentage (e.g., -10%).  The resulting changes in reserves are then used to calculate the 

mortality duration (see Equation (11) with 
0

lim


 removed).  Therefore, the numerical value 

of their mortality duration depends on the size and sign of the designated percentage change.  

Furthermore, the assumption of constant force of mortality is inconsistent with the empirical 

mortality data.  Neither is the equal percentage change for all forces of mortality consistent 

with observed behaviors of mortality rate curves.  Their assumption of a uniform -10% 
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change is indeed equivalent to 0.1    (if DD  would have been calculated with the 

method of finite differences) and ignores the parallel shifts of mortality rate curves under the 

LHT model.  Therefore, our method is more general than theirs with the extra benefit of 

having explicit formulas for durations.   

 

Immunization Illustrations 

We formulate three portfolios with both DD  and DD  equal to 0 as displayed in 

Table 10.  The weights are calculated using Equation (18).  Portfolio 1 consists of life 

insurance products: whole life, term life, and pure endowment (all 20-payment).  The pure 

endowment accounts for 69.51% while whole life insurance makes up 23.25%.  The term 

life insurance accounts for only 7.24% of the portfolio.  Portfolios 2 (all single-premium) 

and 3 (a mix of 20-payment and single-premium) are examples of natural hedging between 

life insurance and annuity products.  The mortality deterioration risk of whole life insurance 

is hedged by the longevity risks of annuities and pure endowment.  The whole life insurance 

accounts for about two thirds of Portfolios 2 and 3 (66.61% and 60.32% respectively), and 

pure endowment makes up thirty some percent (31.79% and 38.34%).  The weights of 

annuities are low due to their large mortality durations.  These compositions show the 

substitution effect between annuities and pure endowment in hedging mortality rate risk.   

[Insert Table 10 Here] 

 

Equation (17) might have no solutions, however.  It can be proved that 1w , 2w , and 

3w  fall within the interval (0,1) if and only if the three determinants in D  are either all 

positive or all negative.  The determinants might not have the same signs because of the 

close relations among the net single premiums of insurance and annuity products (e.g., 

Equation (13)) and the resulting linkages among mortality durations.  We present two 

portfolios that have negative weights in Table 11.  Portfolio 4 is formed by replacing the 

20-payment, 20-year pure endowment of Portfolio 1 with the 20-payment, 20-year deferred 

whole life annuity-due.  Portfolio 5 is constructed by substituting the single-premium, 

20-year term life insurance for the single-premium whole life insurance in Portfolio 2.  One 

would probably expect natural hedging to be feasible.  However, the close relation 

1  1
::

|x x n xx n n
A A A d a    

 
(where 1

:x n
A  is the net single premium of the n-year pure 

endowment) among the net single premiums of these three underlying products prevents all 

weights from being positive.  The insurer has to “buy” rather than “sell” the product that has 
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a negative weight in order to hedge mortality rate risk.   

 

These examples did not show up in Wang et al. (2010) since they calculated one 

mortality duration only.  In their settings, two products are enough to hedge the sole 

duration, and the weights of the products will be positive as long as the reserve durations of 

these two products have different signs.  When the mortality rate curve changes in more 

complex ways and demands more than one parameter to model its dynamics, it takes at least 

three products for mortality immunization.  All weights will be positive only when mortality 

durations meet the aforementioned necessary and sufficient conditions.  Therefore, life 

insurers may not be able to internally hedge mortality rate risk to the full extent.   

[Insert Table 11 Here] 

 

External hedging arrangements are needed therefore.  The negative weights shown 

up in the above examples mean that a life insurer may have to buy life insurance products 

from other issuers to reduce its exposure to mortality rate risk to a desired level.  Life 

settlements seem to fit this demand.  Other mortality securities like mortality bonds and 

derivatives may also help life insurers hedge mortality rate risk externally and complement 

internal hedging.  The incompleteness of internal hedging found in this paper is new to the 

literature.   

 

CONCLUSIONS AND REMARKS 

 

Modeling and projecting mortality rates are vital to life insurers, social benefits 

programs, and the society.  Extant literature contains extensive studies on mortality rates.  

Demographers and sociologists developed cross-sectional, explanatory models.  Lee and 

Carter (1992) developed a one-factor model and stimulated later papers on factor models.  

Cairns, Blake and Dowd (2006a) represented another type of modeling that presumed a 

function for age-specific mortality rates.  Some scholars applied interest rate and credit risk 

modeling methods developed in the finance field to mortality rates.   

 

Relational modeling distinguishes itself from the above models in that it is based on 

an existing mortality rate curve with assumptions on how another curve is related to the 

existing one.  Brass (1971) and the extensions employed this method to analyze the curves 

across regions while Tsai and Jiang (2010) applied it to the curves across time.  One merit of 

relational modeling is that it takes full account of the information on how the mortality rates 

for different ages relate to each other by taking an existing curve as given.  When applied to 

a sequence of curves, this methodology might be suitable because mortality rate curves 

change in small and stable ways due to biological factors and/or the rigidity of changes in 
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social systems. 

 

We do not come across any empirical assessment in the literature of how relational 

modeling performs relative to other types of models, despite its reasonableness and potential.  

To fill this gap, we assume that the force of mortality on the curve for a later year is a linear 

transformation of that on the curve for an earlier year and employ empirical data to compare 

the performance of our model with those of the well-known Lee-Carter and CBD models.  

We conduct both in-sample fitting and out-of-sample forecasting tests using the data of US 

and UK that covered both genders from 1950 to 2007.  The test results show that LHT 

produces the smallest errors in both types of tests.   

 

We then apply our model to construct the portfolios immunized from mortality rate 

risk.  Since our model is parsimonious with parameters, we need to calculate only two 

durations (with respect to these two parameters) to construct an immunized portfolio 

consisting of three life insurance and/or annuity products.  Our model is more general than 

Wang et al. (2010) that assumed the force of mortality within each age interval is constant 

and shifts proportionally.  Furthermore, our model exposes the deficiency of internal 

hedging in achieving immunization.  This finding is new to the literature and has significant 

implications to the mortality rate risk management of life insurers.  It also supports the 

development of mortality-linked assets for life insurers to manage mortality rate risk.   
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Table 1: Summary Statistics of In-Sample Fitting Errors 

1a: RMSE 

 Mean Median Std. Deviation Min Max 

Country LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD 

US 0.001510 0.005351  0.011811 0.001354 0.004765 0.010690 0.000677 0.003026 0.003025 0.000402 0.000772 0.007571 0.003777 0.012847 0.019355  

  (28.21%) (12.78%)  (28.41%) (12.66%)  (22.38%) (22.39%)  (52.11%) (5.31%)  (29.40%) (19.52%) 

UK 0.002419 0.005426  0.016732 0.002218 0.005061 0.014347 0.000946 0.003056 0.005370 0.000830 0.000798 0.009021 0.005739 0.016198 0.026723  

    (44.58%) (14.46%)   (43.82%) (15.46%)   (30.95%) (17.61%)   (103.89%) (9.20%)   (35.43%) (21.48%) 

1b: MAE 

 Mean Median Std. Deviation Min Max 

Country LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD 

US 0.000869 0.002946  0.006509 0.000824 0.002742 0.005876 0.000349 0.001531 0.001791 0.000285 0.000493 0.004313 0.001985 0.006744 0.011020  

  (29.51%) (13.35%)  (30.06%) (14.03%)  (22.80%) (19.49%)  (57.78%) (6.60%)  (29.44%) (18.02%) 

UK 0.001301 0.003125  0.008642 0.001212 0.002966 0.007844 0.000505 0.001698 0.002614 0.000499 0.000478 0.004404 0.003064 0.009558 0.013632  

    (41.62%) (15.05%)   (40.85%) (15.45%)   (29.76%) (19.33%)   (104.36%) (11.33%)   (32.05%) (22.47%) 

 
Notes: 

1.  The mean, median, standard deviation, min, and max of RMSE and MAE are the statistics of 
109

2
, ,, ,

{ , } 25

1
( ) 1951, ,2007

2 (109 25 1) s x As x A
s m f x

q q A
 

        
    

and 
109

, , , ,
{ , } 25

1951, , 2007s x A s x A
s m f x

q q A
 

 
  

 
    respectively. 

2.  Boldface denotes the smallest number in each comparison among LHT, Lee-Carter, and CBD.   

3.  The numbers in parenthesis are the ratios of LHT’s errors to those of Lee-Carter and CBD. 
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Table 2: Fitting Errors by Genders 

  2a: RMSE 2b: MAE 

 Male Female Male Female 

Country LHT Lee-carter CBD LHT Lee-carter CBD LHT Lee-carter CBD LHT Lee-carter CBD 

US 0.001776  0.005897  0.011834 0.001244 0.004806  0.011788 0.001037  0.003310 0.006322 0.000702 0.002581 0.006697  

  (30.11%) (15.01%)  (25.89%) (10.55%)  (31.32%) (16.40%)  (27.19%) (10.48%) 

UK 0.002968  0.006997  0.020591 0.001870 0.003855  0.012872 0.001594  0.004029 0.010523 0.001008 0.002221 0.006761  

    (42.41%) (14.41%)   (48.52%) (14.53%)   (39.55%) (15.14%)   (45.37%) (14.90%) 

 

Note: 

1. The cells in Tables 2a and 2b represent the mean RMSEs and MAEs of LHT, Lee-Carter, and CBD for a specific gender.  For instance, the mean RMSEs and 

MAEs for males are obtained by 
2007 109

2
, ,, ,

1951 25

1 1
( )

57 (109 25 1) m x Am x A
A x

q q
 


  

 

 and 
2007 109

, ,, ,
1951 25

1

57 (109 25 1) m x Am x A
A x

q q
 


      respectively. 

2. Boldface denotes the smallest number in each comparison among LHT, Lee-Carter, and CBD. 

3. The numbers in parenthesis are the ratios of LHT’s errors to those of Lee-Carter and CBD. 
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Table 3: Fitting Errors by Periods 

3a: RMSE 

1950s 1960s 1970s 1980s 1990s 2000s

Country-Gender LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD 

US-Male 0.002688 0.004643 0.011780 0.005156 0.010190 0.016223 0.002256 0.007267 0.009761 0.001384 0.007471 0.008925 0.001343 0.005502 0.012576 0.001322 0.008573 0.017859 

  (57.88%) (22.81%)  (50.60%) (31.78%)  (31.04%) (23.11%)  (18.53%) (15.51%)  (24.40%) (10.68%)  (15.42%) (7.40%) 

US-Female 0.002120 0.004203 0.009872 0.004432 0.009610 0.015228 0.001430 0.004908 0.009759 0.000947 0.005557 0.009717 0.000814 0.005003 0.013761 0.000843 0.007688 0.018449 

  (50.43%) (21.47%)  (46.12%) (29.11%)  (29.14%) (14.66%)  (17.04%) (9.74%)  (16.27%) (5.91%)  (10.97%) (4.57%) 

UK-Male 0.004430 0.010749 0.021331 0.006795 0.011092 0.028912 0.003065 0.007309 0.025373 0.002404 0.007732 0.023962 0.002400 0.006736 0.015202 0.002779 0.005454 0.012663 

  (41.21%) (20.77%)  (61.26%) (23.50%)  (41.93%) (12.08%)  (31.10%) (10.03%)  (35.63%) (15.79%)  (50.96%) (21.95%) 

UK-Female 0.002888 0.005136 0.015381 0.005206 0.009787 0.019422 0.001796 0.003347 0.013053 0.001673 0.003286 0.011287 0.001365 0.004282 0.010235 0.001796 0.003408 0.013250 

    (56.23%) (18.78%)   (53.19%) (26.80%)   (53.66%) (13.76%)   (50.92%) (14.82%)   (31.88%) (13.34%)   (52.70%) (13.55%) 

3b: MAE 

1950s 1960s 1970s 1980s 1990s 2000s

Country-Gender LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD 

US-Male 0.001414 0.002489 0.005563 0.001126 0.003165 0.005507 0.001156 0.003499 0.004875 0.000881 0.003737 0.004957 0.000855 0.002767 0.007385 0.000773 0.004325 0.010381 

  (56.81%) (25.42%)  (35.57%) (20.44%)  (33.05%) (23.72%)  (23.57%) (17.77%)  (30.90%) (11.58%)  (17.87%) (7.45%) 

US-Female 0.001000 0.002325 0.005628 0.000824 0.002989 0.006317 0.000861 0.002189 0.005714 0.000541 0.002440 0.005417 0.000483 0.002211 0.007577 0.000490 0.003488 0.010101 

  (43.01%) (17.77%)  (27.57%) (13.04%)  (39.35%) (15.07%)  (22.17%) (9.99%)  (21.83%) (6.37%)  (14.05%) (4.85%) 

UK-Male 0.047245 0.075536 0.103539 0.041173 0.060915 0.108856 0.038435 0.062413 0.112838 0.037068 0.064822 0.109658 0.038381 0.059598 0.089734 0.036308 0.055589 0.084210 

  (62.55%) (45.63%)  (67.59%) (37.82%)  (61.58%) (34.06%)  (57.18%) (33.80%)  (64.40%) (42.77%)  (65.31%) (43.12%) 

UK-Female 0.037712 0.054652 0.093737 0.033973 0.055565 0.087297 0.030650 0.040871 0.081432 0.029702 0.041873 0.073875 0.028565 0.045652 0.072561 0.028985 0.041497 0.084083 

    (69.00%) (40.23%)   (61.14%) (38.92%)   (74.99%) (37.64%)   (70.93%) (40.21%)   (62.57%) (39.37%)   (69.85%) (34.47%) 

Note: 

1. The cells in Tables 3a and 3b represent the mean RMSEs and MAEs of LHT, Lee-Carter, and CBD during different periods.  For instance, the mean RMSEs 

and MAEs for males during 1950s are obtained by 
1959 109

2
, ,, ,

1951 25

1 1
( )

9 (109 25 1) m x Am x A
A x

q q
 


  

 

and 
1959 109

, ,, ,
1951 25

1

9 (109 25 1) m x Am x A
A x

q q
 


      respectively. 

2. Boldface denotes the smallest number in each comparison among LHT, Lee-Carter, and CBD. 

3. The numbers in parenthesis are the ratios of LHT’s errors to those of Lee-Carter and CBD. 
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Table 4: Fitting Errors by Ages 

4a: RMSE 

25-34 35-44 45-64 65-74 75-84 85-109

Country-Gender LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD 

US-Male 0.000371 0.000173 0.000389 0.000358 0.000212 0.000496 0.000424 0.000478 0.001374 0.001072 0.001465 0.003182 0.002017 0.002486 0.004863 0.003162 0.012218 0.022106 

  (214.45%) (95.37%)  (168.87%) (72.18%)  (88.70%) (30.86%)  (73.17%) (33.69%)  (81.13%) (41.48%)  (25.88%) (14.30%) 

US-Female 0.000226 0.000042 0.000129 0.000209 0.000088 0.000093 0.000292 0.000333 0.001047 0.000705 0.000842 0.003811 0.001398 0.001860 0.005437 0.002279 0.010120 0.022100 

  (538.10%) (175.19%)  (237.50%) (224.73%)  (87.69%) (27.89%)  (83.73%) (18.50%)  (75.16%) (25.71%)  (22.52%) (10.31%) 

UK-Male 0.000528 0.000129 0.000223 0.000514 0.000157 0.000503 0.000604 0.000605 0.001869 0.001619 0.002303 0.006466 0.003192 0.003784 0.011095 0.005202 0.013855 0.038131 

  (409.30%) (236.77%)  (327.39%) (102.19%)  (99.83%) (32.32%)  (70.30%) (25.04%)  (84.36%) (28.77%)  (37.55%) (13.64%) 

UK-Female 0.000279 0.000076 0.000101 0.000263 0.000091 0.000106 0.000351 0.000491 0.000973 0.000868 0.001108 0.002269 0.002164 0.002243 0.005652 0.003294 0.007803 0.023691 

    (367.11%) (276.24%)   (289.01%) (248.11%)   (71.49%) (36.07%)   (78.34%) (38.25%)   (96.48%) (38.29%)   (42.21%) (13.90%) 

4b: MAE 

25-34 35-44 45-64 65-74 75-84 85-109

Country-Gender LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD 

US-Male 0.000312 0.000138 0.000335 0.000301 0.000164 0.000431 0.000295 0.000357 0.001091 0.000753 0.001142 0.002495 0.001557 0.001988 0.003932 0.002120 0.009596 0.017745 

  (226.09%) (93.13%)  (183.54%) (69.84%)  (82.63%) (27.04%)  (65.94%) (30.18%)  (78.32%) (39.60%)  (22.09%) (11.95%) 

US-Female 0.000175 0.000033 0.000117 0.000165 0.000071 0.000075 0.000190 0.000243 0.000750 0.000472 0.000670 0.003585 0.001036 0.001351 0.004763 0.001495 0.007731 0.018753 

  (530.30%) (149.57%)  (232.39%) (220.00%)  (78.19%) (25.33%)  (70.45%) (13.17%)  (76.68%) (21.75%)  (19.34%) (7.97%) 

UK-Male 0.020213 0.009934 0.013829 0.019920 0.011316 0.021390 0.020668 0.020037 0.037010 0.033942 0.042684 0.074840 0.047765 0.056018 0.099856 0.058144 0.106319 0.167909 

  (203.47%) (146.16%)  (176.03%) (93.13%)  (103.15%) (55.84%)  (79.52%) (45.35%)  (85.27%) (47.83%)  (54.69%) (34.63%) 

UK-Female 0.015156 0.007407 0.008619 0.014559 0.008344 0.008687 0.016017 0.018944 0.025911 0.024832 0.029499 0.044682 0.039515 0.040400 0.063578 0.046615 0.078832 0.141334 

    (204.62%) (175.84%)   (174.48%) (167.60%)   (84.55%) (61.82%)   (84.18%) (55.57%)   (97.81%) (62.15%)   (59.13%) (32.98%) 

Note: 

1. The cells in Tables 4a and 4b represent the mean RMSEs and MAEs of LHT, Lee-Carter, and CBD for different age groups.  For instance, the mean RMSEs 

and MAEs for males with ages 25-34 are obtained by 
2007 34

2
, ,, ,

1951 25

1 1
( )

57 (34 25 1) m x Am x A
A x

q q
 


  

 

and 
2007 34

, ,, ,
1951 25

1

57 (34 25 1) m x Am x A
A x

q q
 


      respectively. 

2. Boldface denotes the smallest number in each comparison among LHT, Lee-Carter, and CBD. 

3. The numbers in parenthesis are the ratios of LHT’s errors to those of Lee-Carter and CBD. 
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Table 5: Summary Statistics of Our-of-Sample Forecasting Errors 

5a: RMSE 

 Mean Median Std. Deviation Min Max 

Country LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD 

US 0.001067 0.008338  0.015240 0.001034 0.008389 0.015738 0.000336 0.004345 0.002972 0.000399 0.001077 0.008428 0.001872 0.015735 0.020640  

  (12.80%) (7.00%)  (12.32%) (6.57%)  (7.73%) (11.30%)  (37.05%) (4.73%)  (11.90%) (9.07%) 

UK 0.002050 0.006185  0.013344 0.001959 0.004565 0.012770 0.000664 0.003635 0.003253 0.000908 0.001498 0.008600 0.003603 0.016084 0.023546  

    (33.15%) (15.36%)   (42.90%) (15.34%)   (18.27%) (20.41%)   (60.63%) (10.56%)   (22.40%) (15.30%) 

5b: MAE 

 Mean Median Std. Deviation Min Max 

Country LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD 

US 0.000655 0.004393  0.008708 0.000616 0.004707 0.009068 0.000239 0.002152 0.001506 0.000275 0.000668 0.005222 0.001252 0.008083 0.011335  

  (14.91%) (7.52%)  (13.08%) (6.79%)  (11.11%) (15.88%)  (41.08%) (5.26%)  (15.49%) (11.05%) 

UK 0.001124 0.003583  0.006950 0.001036 0.003016 0.007019 0.000385 0.001873 0.001608 0.000520 0.001002 0.004166 0.002215 0.008369 0.010343  

    (31.36%) (16.17%)   (34.33%) (14.75%)   (20.57%) (23.96%)   (51.85%) (12.48%)   (26.46%) (21.41%) 

 

Note: 

1. The mean, median, standard deviation, min, and max of RMSE and MAE are the statistics of 
109

2
, ,, ,

{ , } 25

1
( ) 1990, ,2007

2 (109 25 1) s x As x A
s m f x

q q A
 

        
    

and 
109

, , , ,
{ , } 25

1990, ,2007s x A s x A
s m f x

q q A
 

 
  

 
  

 

respectively. 

2. Boldface denotes the smallest number in each comparison among LHT, Lee-Carter, and CBD. 

3. The numbers in parenthesis are the ratios of LHT’s errors to those of Lee-Carter and CBD. 
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Table 6: Forecasting Errors by Genders 

  6a: RMSE 6b: MAE 

 Male Female Male Female 

Country LHT Lee-carter CBD LHT Lee-carter CBD LHT Lee-carter CBD LHT Lee-carter CBD 

US 0.001320  0.009447  0.014650 0.000814 0.007230  0.015831 0.000823  0.005104 0.008694 0.000486 0.003682 0.008722  

  (13.97%) (9.01%)  (11.26%) (5.14%)  (16.13%) (9.47%)  (13.21%) (5.58%) 

UK 0.002533  0.008015  0.014532 0.001567 0.004355  0.012155 0.001404  0.004654 0.007682 0.000843 0.002511 0.006218  

    (31.60%) (17.43%)   (35.99%) (12.90%)   (30.17%) (18.28%)   (33.58%) (13.56%) 

 

Note: 

1. The cells in Tables 6a and 6b represent the mean RMSEs and MAEs of LHT, Lee-Carter, and CBD for a specific gender.  For instance, the mean RMSEs and 

MAEs for males are obtained by 
2007 109

2
, ,, ,

1990 25

1 1
( )

18 (109 25 1) m x Am x A
A x

q q
 


  

 

and 
2007 109

, ,, ,
1990 25

1

18 (109 25 1) m x Am x A
A x

q q
 


      respectively. 

2. Boldface denotes the smallest number in each comparison among LHT, Lee-Carter, and CBD. 

3. The numbers in parenthesis are the ratios of LHT’s errors to those of Lee-Carter and CBD. 
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Table 7: Forecasting Errors by Periods 

7a: RMSE 7b: MAE 

 1990s 2000s 1990s 2000s 

Country-Gender LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD 

US-Male 0.001346  0.010225 0.013945 0.001345 0.010223 0.016010 0.000858 0.005115 0.008082 0.000780 0.005092 0.009458 

  (13.16%) (9.65%)  (13.16%) (8.40%)  (16.78%) (10.62%)  (15.32%) (8.25%) 

US-Female 0.000812  0.007379 0.015309 0.000856 0.009724 0.017105 0.000481 0.003102 0.008127 0.000493 0.004409 0.009466 

  (11.00%) (5.30%)  (8.81%) (5.01%)  (15.52%) (5.92%)  (11.18%) (5.21%) 

UK-Male 0.002398  0.009952 0.016858 0.002807 0.007241 0.012138 0.001465 0.005153 0.008528 0.001328 0.004030 0.006624 

  (24.10%) (14.23%)  (38.76%) (23.13%)  (28.43%) (17.18%)  (32.95%) (20.04%) 

UK-Female 0.001411  0.005750 0.012013 0.001828 0.003743 0.012880 0.000839 0.002904 0.005770 0.000849 0.002021 0.006777 

    (24.54%) (11.74%)   (48.84%) (14.20%)   (28.89%) (14.54%)   (42.00%) (12.52%) 

 

Note: 

1. The cells in Tables 7a and 7b represent the mean RMSEs and MAEs of LHT, Lee-Carter, and CBD during different periods.  For instance, the mean RMSEs 

and MAEs for males during 1990s are obtained by 
1999 109

2
, ,, ,

1990 25

1 1
( )

10 (109 25 1) m x Am x A
A x

q q
 


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and 
1999 109

, ,, ,
1990 25

1

10 (109 25 1) m x Am x A
A x

q q
 


      respectively. 

2. Boldface denotes the smallest number in each comparison among LHT, Lee-Carter, and CBD. 

3. The numbers in parenthesis are the ratios of LHT’s errors to those of Lee-Carter and CBD. 
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Table 8: Forecasting Errors by Ages 

8a: RMSE 

25-34 35-44 45-64 65-74 75-84 85-109

Country-Gender LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD 

US-Male 0.000315 0.000245 0.000430 0.000319 0.000305 0.000286 0.000343 0.000502 0.001944 0.000564 0.001718 0.004979 0.001632 0.003361 0.007137 0.002184 0.018690 0.026839 

  (128.57%) (73.26%)  (104.59%) (111.54%)  (68.33%) (17.64%)  (32.83%) (11.33%)  (48.56%) (22.87%)  (11.69%) (8.14%) 

US-Female 0.000167 0.000048 0.000136 0.000168 0.000110 0.000109 0.000196 0.000387 0.000853 0.000355 0.000759 0.003574 0.000907 0.001407 0.007264 0.001383 0.015639 0.029278 

  (347.92%) (122.79%)  (152.73%) (154.13%)  (50.65%) (22.98%)  (46.77%) (9.93%)  (64.46%) (12.49%)  (8.84%) (4.72%) 

UK-Male 0.000448 0.000122 0.000262 0.000445 0.000158 0.000346 0.000402 0.000736 0.001296 0.001300 0.002491 0.003087 0.004063 0.005487 0.006525 0.003868 0.015847 0.027148 

  (367.21%) (170.99%)  (281.65%) (128.61%)  (54.62%) (31.02%)  (52.19%) (42.11%)  (74.05%) (62.27%)  (24.41%) (14.25%) 

UK-Female 0.000269 0.000048 0.000073 0.000245 0.000076 0.000060 0.000273 0.000603 0.000768 0.000826 0.001419 0.002631 0.002534 0.002262 0.003635 0.002405 0.008972 0.022684 

    (560.42%) (368.49%)   (322.37%) (408.33%)   (45.27%) (35.55%)   (58.21%) (31.39%)   (112.02%) (69.71%)   (26.81%) (10.60%) 

8b: MAE 

25-34 35-44 45-64 65-74 75-84 85-109

Country-Gender LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD LHT Lee-Carter CBD 

US-Male 0.000261 0.000205 0.000389 0.000263 0.000252 0.000200 0.000261 0.000412 0.001632 0.000448 0.001463 0.004951 0.001193 0.002722 0.006538 0.001696 0.015150 0.023427 

  (127.32%) (67.10%)  (104.37%) (131.50%)  (63.35%) (15.99%)  (30.62%) (9.05%)  (43.83%) (18.25%)  (11.19%) (7.24%) 

US-Female 0.000138 0.000037 0.000131 0.000140 0.000092 0.000093 0.000151 0.000300 0.000618 0.000286 0.000601 0.003599 0.000613 0.001031 0.007170 0.001031 0.011548 0.024774 

  (372.97%) (105.34%)  (152.17%) (150.54%)  (50.33%) (24.43%)  (47.59%) (7.95%)  (59.46%) (8.55%)  (8.93%) (4.16%) 

UK-Male 0.000366 0.000104 0.000234 0.000366 0.000136 0.000289 0.000322 0.000500 0.001125 0.000944 0.002280 0.002721 0.002619 0.004778 0.004726 0.002753 0.012462 0.021861 

  (351.92%) (156.41%)  (269.12%) (126.64%)  (64.40%) (28.62%)  (41.40%) (34.69%)  (54.81%) (55.42%)  (22.09%) (12.59%) 

UK-Female 0.000217 0.000039 0.000063 0.000194 0.000060 0.000044 0.000204 0.000427 0.000504 0.000610 0.001167 0.002302 0.001571 0.001677 0.003209 0.001635 0.006978 0.018494 

    (556.41%) (344.44%)   (323.33%) (440.91%)   (47.78%) (40.48%)   (52.27%) (26.50%)   (93.68%) (48.96%)   (23.43%) (8.84%) 

Note: 

1. The cells in Tables 8a and 8b represent the mean RMSEs and MAEs of LHT, Lee-Carter, and CBD for different age groups.  For instance, the mean RMSEs 

and MAEs for males with ages 25-34 are obtained by 
2007 34
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and 
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, ,, ,
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1

18 (34 25 1) m x Am x A
A x

q q
 


      respectively. 

2. Boldface denotes the smallest number in each comparison among LHT, Lee-Carter, and CBD. 

3. The numbers in parenthesis are the ratios of LHT’s errors to those of Lee-Carter and CBD. 



 
 
 
 

100

Table 9: Dollar Durations of the Reserves at time 0 ( 45x  , 20n  , and 3%i  ) 

Products DD  DD

Single-payment, n-year deferred whole life annuity-due 3.16 183.86

        n-payment, n-year deferred whole life annuity-due 2.84 131.43

Single-payment whole life insurance -0.11 -8.87

        n-payment whole life insurance -0.13 -12.11

Single-payment, n-year endowment -0.02 -3.51

        n-payment, n-year endowment -0.05 -8.28

Single-payment, n-year term life insurance -0.10 -12.86

        n-payment, n-year term life insurance  -0.11 -13.76

Single-payment, n-year pure endowment 0.08 9.35
        n-payment, n-year pure endowment 0.06 5.48

 
Table 10: Immunized Portfolios with the Constraint of Positive Weights ( 45x  , 20n  , and 3%i  ) 

Portfolios DD DD  Weight

Portfolio 1    

n-payment, n-year term life insurance -0.11 -13.76 7.24%

n-payment whole life insurance -0.13 -12.11 23.25%

n-payment, n-year pure endowment 0.06 5.48 69.51%

Portfolio 2     

Single-payment, n-year deferred whole life annuity-due 3.16 183.86 1.59%

Single-payment whole life insurance -0.11 -8.87 66.61%

Single-payment, n-year pure endowment 0.08 9.35 31.79%

Portfolio 3     

n-payment, n-year deferred whole life annuity-due 2.84 131.43 1.34%

Single-payment whole life insurance -0.11 -8.87 60.32%

Single-payment, n-year pure endowment 0.08 9.35 38.34%

 
Table 11: Immunized Portfolios Allowing Negative Weights ( 45x  , 20n  , and 3%i  ) 

Portfolios DD DD  Weight

Portfolio 4    

n-payment, n-year term life insurance -0.11 -13.76 -191.48%

n-payment whole life insurance -0.13 -12.11 285.26%

n-payment, n-year deferred whole life annuity-due 2.84 131.43 6.23%

Portfolio 5    

Single-payment, n-year deferred whole life annuity-due 3.16 183.86 -0.21%

Single-payment, n-year term life insurance -0.10 -12.86 40.45%

Single-payment, n-year pure endowment 0.08 9.35 59.76%
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Figure 1: Sample Relations between the Forces of Mortality 
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國科會補助專題研究計畫項下赴國外(或大陸地區)出差或研習

心得報告                                     

日期：100年 9月 2 日 

                                 

一、 國外(大陸)研究過程 

個人於 6/18（六）搭乘長榮航空的飛機出發。因為需要轉機，在

Los Angel (LA)停一夜。隔天一早（日）搭乘Delta直飛Kansas City 

(KC)。星期一開始就開始進行一篇論文的新寫作，以及七篇論文

的修改或起草，直到 8/3從KC飛回LA為止。那篇新寫出之論文附

加於「二、研究成果」中 1。期間和訪問對象有多次一對一的討論，

                                                 
1 此論文將在 the Seventh International Longevity Risk and Capital Market Solutions Conference（9/8-9/9）中

發表。Journal of Risk and Insurance 將從該會議的論文挑選數篇集成一本特刊。 

計畫編

號 

NSC 99-2410-H-004 -063 -MY3 

計畫名

稱 

精算與財務方法在壽險保單定價、準備金估計、以及風險管

理之運用 

出國人

員姓名 
蔡政憲 

服務機

構及職

稱 

政治大學風險管理與保險學

系 

出國時

間 

100年 6月 18

日至 

100年 8月 15

日 

出國地

點 

美國 Kansas City 
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還有透過電話與電郵的溝通。由於出發前就已經寄給對方研究大

綱與初步的內容，討論均能直接切入重點。 

8/3飛抵LA預備參加2011年 ARIA （American Risk and Insurance 

Association）的年會（8/7-8/10）。由於本人先前投稿的大綱未

被接受，僅擔任一篇論文的評論人，因此這段行程不符合受國科

會補助的規定。 

參加完年會後，個人又另外和敝系的同事從 LA飛往費城，參訪美

國最大的 Life Settlement公司-Coventry。參訪完後，於 8/13

從紐約飛回台灣，8/15抵達。這段行程不在研究計畫的範圍內。 
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ABSTRACT 
 

Modeling and forecasting mortality rates are crucial to life insurers, social benefits 
programs, and the society as a whole.  The vast literature developed four methods to model 
and/or forecast mortality rates.  We propose a new way in this paper by modeling the 
dynamics of mortality rates as the transformation from one mortality curve to another.  Such 
a proposal is reasonable since mortality rates changed gradually due to biological reasons and 
the rigidity of the social system.   

We use empirical data to test the relative performance of this new modeling to the 
renowned Lee-Carter model.  The tests cover both in-sample fitting and out-of-sample 
forecasting on the US and UK mortality rates from 1951-2007.  We find that the linear 
hazard transform dominates the Lee-Carter model.  

The new model further provides better ways in generating immunization strategies 
than Wang et al. (2010) did.  Our model is more general and can produce explicit formulas 
for mortality durations.  The potential of this new thought is thus confirmed and deserve 
further pursuit. 
 
 

Keywords: mortality rates, transform, fitting, forecasting, hedging, duration
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INTRODUCTION 

Modeling the changes/dynamics of mortality rates is critical to the solvency of life 

insurers and social retirement programs.  Mortality rates are one of the key factors in pricing 

and reserving for life and annuity products.  Taking no account of possible mortality rate 

changes in the pricing and reserving might lead to significant under-pricing and 

under-reserving that would impair the profitability and solvency of a life insurer.  The 

retirement programs sponsored by governments need to understand the dynamics of mortality 

rates as well since the incomes and benefit outgoes depend on mortalities.  Under-estimating 

the improvements of mortality rates could jeopardize the solvency and continuity of the 

programs.  Mortality rates are also important to the long-term care systems and the 

population structure of a country that in turn will affect the growths or declines of many 

industries.  Therefore, mortality rate modeling is important. 

The literature recognized the importance of the mortality rate modeling and tackled 

the problem in four different ways.  Demographers and sociologists developed explanatory 

models to understand which factors affected the mortality rates of some populations with 

respect to ages, genders, regions, races, periods, etc. (please see Stallard, 2006 and the 

references therein.)These models helped us understand the determinants of mortality rates but 

lacked of forecasting capabilities. 
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The earliest and still the most popular model that could be used to forecast mortality 

rates was established by Lee and Carter (1992).  Their model was a two-component model 

in which one parameter is used to indicate the improvement rate for each age and a single 

random process drives all the dynamics.  Later extensions focused on how to better estimate 

parameters (e.g., Delwarde et al., 2007) and the incorporation of the cohort effect (e.g., 

Renshaw and Haberman, 2006).  Some developed multifactor age-period models such as 

Renshaw and Haberman (2003), Carins, Blake, and Dowd (2006b), and Cairns et al. (2007).   

The third way was to fit mortality rate curves to certain functions (e.g., Currie et al., 

2004) and then established time-series models for the function parameters to perform 

forecasting.  The underlying rationale is that the mortality rate curves themselves held the 

information on how the mortality rates of different ages relate to each other.  These relations 

might result from biological reasons (e.g., new-born babies have higher mortality rates; 

mortality rates increase with ages for matured people) or social reasons (e.g., speed driving of 

young adults).  The Lee-Carter line of papers did not capture such information. 

The fourth approach developed mortality rate models using the framework of 

financial valuation models for the term structure of interest rates (e.g., Dahl, 2004; Dahl and 

Møller, 2005; Biffis, 2005; Cairns, Blake, and Dowd, 2006a).They usually specified the 

dynamics of one or few mortality rates and then imposed certain relations on the mortality 

rates across ages so that the model could depict the changes of the entire curve.  For more 
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detailed literature review, please refer to Cairns, Blake, and Dowd(2008) and the references 

therein. 

We propose a new way to model the dynamics of mortality rates in this paper.  

Instead of modeling the curve first and then modeling the dynamics of the curve factors, we 

model the relations between two curves.  More specifically, the mortality rates on a later 

curve are regarded as a transformation of those on an earlier curve.  The justification for our 

new way is that mortality rate curves shifted slowly with small changes and shifted stably in 

terms of the shape.  The small and stable changes might result from biological constraints 

and/or the rigidity of social changes (e.g., health care systems, living habits, improvements of 

medical technologies and public health, and inventions of medicines).  We therefore may be 

able to model the changes in mortality rates between two curves as transformations from the 

earlier age-specific mortality rates to the later corresponding ones. 

To investigate the potential of our initiative, we conducted in-sample fitting and 

out-of-sample forecasting tests.  We first assume that there exists a linear relation, called 

linear hazard transform (LHT), between the forces of mortality (hazard rates) of two curves.2 

Then we derived the corresponding relations between the survival probabilities of two curves 

so that we might estimate the parameters of the LHT using the empirical data of US and UK 

from 1950 to 2007 that cover both genders.  To evaluate the performance the LHT, we 

                                                 
2Jiang and Tsai (2011) were indeed the first to apply LHT to mortality fitting and forecasting.  However, their 
paper focuses on the techniques of applying LHT in alternative ways and did not use empirical data to test the 
performance of the method relative to that of an existing model.     
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chose the 1992 Lee-Carter model as the benchmark and performed in-sample fitting and 

out-of-sample forecasting comparisons.  The Lee-Carter model has been popular since 

published and was used as comparison benchmark in papers like Brouhns, Denuit, and 

Vermunt (2002) as well as Czado, Delwarde, and Denuit (2005). 

The statistical comparisons show that our LHT model dominates the Lee-Carter 

model.  In the fitting tests our model produces lower RMSE (root of mean square error) and 

MAE (mean absolute error) than the Lee-Carter model does by 71.8% and 70.5% on average 

for the US and by 55.4% and 58.4% on average for the UK.  Our model outperforms the 

Lee-Carter model by 87.2% and 85.9% for the US and by 66.9% and 68.6% for the UK in the 

forecasting tests. 

We further illustrate one advantage of our LHT method in constructing the insurance 

portfolios immunized from the mortality rate risk.  Since our LHT requires merely two 

parameters to depict the dynamics of the entire mortality rate curves, we can utilize the 

durations with respect to these two parameters to construct the immunized portfolio using 

three types of life insurance / annuity products.  Our method is more general than that of 

Wang et al. (2010) in which they calculated the optimal life insurance–annuity product mix 

ratio by assuming the force of mortality shifted proportionally.  Indeed, their method is a 

special case of ours that one of the parameters in our model is set to zero.  Another 

advantage of our method is that we could have the explicit formulas for the mortality 
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durations, which makes the risk management more easily and accurately. 

This paper contributes to the literature in several aspects.  It proposes a new method 

in modeling the dynamics of mortality rate curves, and demonstrates the potential idea of 

transformation using empirical data.  The merits of our method include: easy to understand 

and implement, fewer parameters to be estimated, good accuracies in both fitting and 

forecasting, and easy to generate hedging strategies.  We seem to find a new avenue to 

model and manage the mortality/longevity risk. 

The remainder of this paper is organized as follows.  Section 2 specifies the assumed 

relations between two mortality rate curves used in this paper.  It explains the economic 

meanings of the parameters and how we can estimate parameters using empirical data.  

Section 3 delineates how we conduct statistical tests in comparing our model with a 

benchmark model.  It describes the data, the benchmark model, the two accuracy measures, 

and how the in-sample fitting and out-of-sample forecasting are done.  Section 4 applies our 

model to risk management.  It demonstrates how our method can generate the immunization 

strategies using the durations with respect to the parameters to hedge the mortality/longevity 

risk.  In Section 5 the paper is summarized and conclusions are drawn. 

 

RELATIONS BETWEEN TWO MORTALITY CURVES 

We propose in this paper to model the dynamics of mortality rates across time as the 
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transformations from one curve to another.  More specifically, we assume that there is a 

linear relation plus an error term between the forces of mortality (hazard rates) of two 

mortality rate curves in years A and B A a= + , where a Z∈  is the difference of two years A

and B .  The mathematical form is: 

, , ,
, , , , ,( ) (1 ) ( ) ( ),B A B A A B A B

x n x n x n x n x nt t tµ α µ β ε= + × + +  [0, ],t n∈     (1) 

where x denotes age, ε indicates the error, n xω= − , and ω represents the ultimate age of the 

mortality table.  Year A  is called the base year in the following while year B A a= +  is 

called the target year. 

Since 0
( )

t
x s ds

t xp e
µ−∫= , equation (1) implies the following relation between the 

corresponding survival probabilities of curves B and A: 

, , ,
, , , , ,0 0 0 0

,, , ,, , 0

( ) (1 ) ( ) ( )

( )1( )

k k k kB A B A A B A B
x n x n x n x n x n

k A BA B A B x nx n x n

t dt t dt dt t dtB
k x

t dtkA
k x

p e e

p e e

µ α µ β ε

εα β

− − + × − −

−+ − ×

∫ ∫ ∫ ∫= =

∫= × ×
.    (2) 

Taking the natural logarithm on both sides yields: 

, , ,
, , ,0

ln (1 ) (ln ) ( )
kB A B A A B A B

k x x n k x x n x np p k t dtα β ε= + × − × − ∫ .          (3) 

Then we would like to minimize the sum of squared errors across the ages from x to 

ω  by choosing the parameter pair ( , ,
, ,,A B A B

x n x nα β ): 

{ }

2

0
1

2, ,
, ,

1

( )

(ln ) (1 ) (ln )

n k

k
n

B A B A A B
k x x n k x x n

k

SSE t dt

p p k

ε

α β

=

=

 
  

 = − + × − × 

∑ ∫

∑



.  (4) 

The solutions of ( , ,
, ,,A B A B

x n x nα β )can be obtained by the regular regression analysis.  More 

specifically, take the derivatives of equation (2.4) with respect to ,
,

A B
x nα  and ,

,
A B
x nβ : 
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{ }, ,
, ,,

1,

2 ln (ln ) (1 ) (ln ) 0
n

A B A B A A B
k x k x x n k x x nA B

kx n

SSE p p p kα β
α =

∂  = − × − + × + × = ∂ ∑  and (5) 

{ }, ,
, ,,

1,

2 (ln ) (1 ) (ln ) 0
n

B A B A A B
k x x n k x x nA B

kx n

SSE k p p kα β
β =

∂  = × − + × + × = ∂ ∑ .   (6) 

Solving for the 
,
,

A B
x nα  and 

,

,

A B

x nβ that make the two equations above equal to 0 gives: 



2

, 1 1 1 1
, 2

2 2

1 1 1

(ln )(ln ) (ln ) (ln )
1

(ln ) (ln )

n n n n
A B A B

k x k x k x k xA B k k k k
x n

n n n
A A

k x k x
k k k

p p k k p k p

p k k p
α = = = =

= = =

       −              = −
     −          

∑ ∑ ∑ ∑

∑ ∑ ∑
 and (7) 



2

, 1 1 1 1
, 2

2 2

1 1 1

(ln )(ln ) (ln ) (ln ) (ln )

(ln ) (ln )

n n n n
A B A A B

k x k x k x k x k xA B k k k k
x n n n n

A A
k x k x

k k k

p p k p p k p

p k k p
β = = = =

= = =

       −              =
     −          

∑ ∑ ∑ ∑

∑ ∑ ∑
. (8) 

We may grab the economic meaning of the transformation as well as the meanings of 

α  and β  from equation (3).3  The transformation decomposes the changes of the 

mortality rates (in their logarithm forms) from an earlier curve to a later curve into two 

components: a proportional change reflected by α  and a parallel shift determined by

β .4Assuming 0α =  and 0β = means no changes in mortality rates across time.  

Assuming 0β = implies that the force-of-mortality curve shifts proportionally to the 

mortality rates.  Higher forces of mortality will have larger improvements or deteriorations, 

depending on whether α is negative or positive.  This type of curve changing behavior is 

also called proportional hazard transform.  Assuming 0α =  but 0β ≠  corresponds to the 

cases of parallel shifts of the force-of-mortality curves. 

 

                                                 
3 We omit superscript and/or subscript whenever the omission causes no confusions for the easiness of reading. 
4 If the regressions are run on k xp , the shifts will be the product of β  and k .  In other words, the shift 
increases with the number of the surviving years. 
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STATISTICAL TESTS 

To investigate whether our initiative works, we conduct two types of statistical tests: 

in-sample fitting and out-of-sample forecasting.  We first estimate the parameters of the 

transformation function (equation (3)) year by year.  Applying the estimated parameters to 

the base-year mortality rate curve would give us the estimated / fitted target-year curve.  

Then we compare the fitting errors of our LHT to those of a benchmark model. 

With regard to the forecasting tests, we first assume that the parameters of the LHT 

followed random walks with drifts.  Then we add the drifts estimated using a moving 

window of 40 years to the “current “estimated parameters to obtain a pair of forecasted 

parameters.  Applying this pair of forecasted parameters to that “current” mortality rate 

curve would give us a forecasted curve.  The performance of our LHT models could then be 

assessed by comparing our forecasting errors with those of the benchmark model. 

Data, Benchmark, and Measures 

We draw historical mortality rates from the Human Mortality Database.  The drawn 

data cover both genders of US and UK, the countries that were studied the most probably.  

The sampling period is from 1950 to 2007, a few years after the World War II to the most 

recent ones available.5 

Since the majority of the persons purchasing life insurance and annuities are young 

                                                 
5 As of July of 2011, the most recent mortality rates of US are those of 2007 while the data of UK are updated 
to 2009.  We preferred the same length of history for both countries and thus ended up with the sampling 
period of 1951-2007. 
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adults and older, we focus on the mortality rates of ages 25 and above.  More specifically, 

we test our method on the section of the mortality rate curves: 25+.6 The ultimate age of the 

US and UK mortality tables during the sampling period is 110. 110p is thus set as 0, which 

causes abnormal shapes of the curves between ages 109 and 110.  Therefore, the sections of 

the mortality rate curves that are tested in this paper are those between ages 25-109.  This 

corresponds to the case of 109ω = . 

We choose the well-known Lee-Carter model as the benchmark to be compared with 

our LHT.  The Lee-Carter model has been studied extensively in the literature and served as 

a benchmark model in many papers as well (e.g., Booth et al., 2005; Lee and Miller, 2001).  

The Lee-Carter model is in essence a relational model assuming that: 

, ,log x A x x A x Aq a b K ε= + + ,        (9) 

where ,x Aq denotes the one-year death rate of age x in year A , xa and xb  are age-specific 

constants, AK represents the time-varying levels of mortality rates, and ,x Aε indicates the error 

associated with the age x in year A .7 

To estimate the parameters of equation (9), we first estimate xa  by 

1

1

1

,
1 log

A T

x x A
A A

a q
T

+ −

=

= ∑  in which 1A denotes the first sample year and T indicates the number of 

                                                 
6 We also test two other sections: 35+ and 45+.  The results are consistent with those from the 25+ section, 
which can also be glimpsed from Table 2.  We decide not to present these results for the sake of the paper 
length.  
7In Lee and Carter (1992), the model is in essence a relational model assuming ,ln x A x x Am a b K= +  where 

,x Am  is the central death rate of age x  in year A .  To make our analysis be compared with Lee-Carter 
model, we substitute the one-year death rate for the central death rate in their approach. 
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sample years ( )T N∈ .  Then we apply singular value decomposition (SVD) technique to 

obtain an OLS estimate for xb  and AK  with the constraints of 1x
x

b =∑  and 

0A
A

K =∑ ,as Lee and Carter (1992) did.  They further assumed that AK  followed the 

process of the random walk with a drift when forecasting mortality rates. 

We adopt two accuracy measures: RMSE and MAE.  Their definitions are: 



1

1

1
2

, ,
1

1 ( )
( )

I

A T

x A x A
A A x xI

RMSE q q
T x

ω

ω

+ −

= + =

= −
− ∑ ∑ and 



1

1

1

, ,
1

1
( )

I

A T

x A x A
A A x xI

MAE q q
T x

ω

ω

+ −

= + =

= −
− ∑ ∑ , 

in which ,x Aq  indicates the observed one-year death rate of age x  in year A ,  ,x Aq

represents the fitted/forecasted value, Ix  is the starting age of the mortality rate curve.  

These two measures are used in many papers (e.g., Gakidou and King, 2006). 

In-Sample Fitting 

The in-sample fitting is done by fitting equation (3) using two mortality rate curves.  

We first draw the xq of two different years from our dataset and calculate the corresponding  

k xp : A
k xp  and B

k xp .  Taking the natural log of these k xp  and then running the regular 

regression analysis would render the 
,A a

a  and 
,A a

β in equation (3).Plugging the estimated 



,A a
a  and 

,A a
β into equation (3) with A

k xp as input could give us 

B

k xp and 

  

1 1/
B B B

x k k x k xp p p+ − −= , 1,  2,  3,k =  .Then we calculate RMSE and MAE to measure the 

fitting errors.  Repeating the steps for A = 1951-2006 with 1a = , we generate the following 
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tables.8 

[Insert Tables 1-3 Here] 

As we can see from the rows titled “Overall-25” in Table 1, the fitting errors of our 

LHT relative to the Lee-Carter model averaged across ages, sampled years, and genders, in 

terms of RMSE, are28.2% (=0.00150984/0.00535141)and 44.6% for the US and UK data 

respectively.9  In terms of MAE, our fitting errors are 29.5% and 41.6% of the Lee-Carter’s.  

In addition to the significant improvements in the average of fitting errors, our method has 

lower standard deviation of fitting errors across the sampled years under both fitting 

measures.  For instance, our standard deviations are 20.9% (= 0.00061883/0.00296784) and 

29.7% for US and UK data, respectively, in terms of RMSE.  The minimum, medium, and 

maximum of fitting errors during the sampling period of our method are also smaller than 

those of the Lee-Carter model in both countries using these two accuracy measures.  The 

improvements of our method to the Lee-Carter model are significant and extensive. 

The other rows of Table 1 further show our model performs better than the Lee-Carter 

model in fitting the data of both genders.  Our LHT model produces mean fitting errors with 

respect to the data of US males and US females that were30.1% (= 0.00177571/0.00589731) 

and 25.9% of those by the Lee-Carter model, respectively, measured by RMSE.  The fitting 

                                                 
8 The sample size T  in estimating the LHT is thus equal to 2006-1951+1 = 56.  On the other hand, the 
sample size sued to estimate the Lee-Carter model is 57 since the estimation can be done using a single-year 
data.  The LHT uses the two-year data at a time instead. 
9Also, we can see from the rows titled “Overall-45” in Table 1, the fitting errors of our LHT relative to the 
Lee-Carter model averaged across ages, sampled years, and genders, in terms of RMSE, are 27.4% (= 
0.00167276/0.00609781) and 41.9% for the US and UK data respectively. 
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errors to UK data are also smaller: 42.4% and 48.5%.  The variations of our fitting errors 

across years are 21.6% (=0.00068953/0.00318861), 20.0%, 28.6%, and 31.4% of the 

Lee-Carter’s for US males, US females, UK males, and UK females, respectively.  The 

maximum errors produced by our model during the sampling period are also fractions of the 

errors by the Lee-Carter model: 29.4% (=0.00377734/0.01284675), 29.5%, 35.4%, and 

56.8%.  The superiorities of LHT model to the Lee-Carter model remain at the equivalent 

levels even when we switch the accuracy measure to MAE.  The better performance of our 

model relative to the Lee-Carter model is robust across genders. 

Our LHT model performs better than the Lee-Carter model in all the sub-periods of 

the sampling period in both US and UK, as Table 2 shows.  The mean and standard 

deviation of the fitting errors during each decade of the sampling period produced by our 

LTH are all smaller than those by the Lee-Carter model.  For instance, our mean fitting 

errors to US males in terms of RMSE for the decades of 50s, 60s, 70s, 80s, and 90s are 57.9% 

(= 0.00268754/0.00464334), 50.6%, 31.0%, 18.5%, and 24.4% of the Lee-Carter’s, 

respectively.  The variations within each of these decades of our method are also smaller: 

34.3% (=0.00064566/0.00188334), 15.5%, 21.4%, 8.8%, and 11.5% relative to those of the 

Lee-Carter model, respectively.  The dominance of our model over the Lee-Carter model in 

terms of the sub-period performance is robust across genders, countries, and accuracy 

measures. 
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The advantages of our model over the Lee-Carter model indeed lie in the better fitting 

to the populations 45 years older.  Table 3 shows that our fitting errors are smaller than the 

Lee-Carter’s for the age groups of 45-64, 65-74, 75-84, and 85-109 to both genders, countries, 

and accuracy measures.10  For instance, the ratios of our fitting errors relative to the 

Lee-Carter’s with respect to US male in terms of RMSE for these age groups are: 88.7% 

(=0.00042377/0.0004779), 73.2%, 81.1%, and 25.9%respectively. The Lee-Carter model 

outperforms our model for the age groups of 24-34 and 35-44, and this out-performance is 

consistent across genders, countries, and accuracy measures.  Since we provide better fitting 

to most ages (45-109) than the Lee-Carter model, our overall performance in fitting the 

mortality rate curves of ages 25-109 is better (see Tables 1 and 2).   

Table 3 implies that the performance of our model would be better than that of the 

Lee-Carter model on the sections of the mortality rate curves with ages greater than 25.  

This speculation is confirmed by replicating Tables 1-3 using the data on the age sections of 

35+ and 45+.11 Since the major customers of life insurance and annuity products are 

25-years older with the annuity buyers concentrating on even older age groups, the better 

performance of our method relative to the Lee-Carter model as illustrated above is 

meaningful and has practical implications to life insurers. 

Out-of-Sample Forecasting 

                                                 
10These is one exception: the 45-64 age group of UK male when measured by MAE.  Our MAE is 103.2% of 
the Lee-Carter’s.   
11We do not present the replicated tables for the sake of paper length. 
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For simplicity and following Lee-Carter (1992) and Nelson and Siegel (1987), we 

assume that the dynamics of the two parameters follow the random walk with a drift 

individually.  In formulas, 1A A A
αα α α α ε−− = ∆ = +  and 1A A A

ββ β β β ε−− = ∆ = + , 

whereα  and β indicate the long-term means of α  and β respectively, ~ (0, )Nα αε σ , 

~ (0, )Nβ βε σ . 

We estimate the drifts using the F-year periods of data prior to the “current” year 

upon which the projection would be made.12  For instance, if we have the mortality data up 

to 1989(i.e.,   1989A = ) and head for making projections for 1990, we will use the period of 

(1989-F+1) to1989 to estimate the drifts.  Our estimators for the drifts are simply the 

averages of the changes in the parameter values over the corresponding F-year period: 





11

1

1
1

A iA

i A FF
α α

−−

= − +

= ∆
− ∑  and 





11

1

1
1

A iA

i A FF
β β

−−

= − +

= ∆
− ∑ ,    (10) 

in which iα∆  and iβ∆  are calculated using the ,1iα  and ,1iβ estimated in the in-sample 

fitting.  We set F = 40 for the out-of-sample forecasting tests. 

The projected parameters are equal to: 




1 1AA A
α α α

− −
= +  and  

1 1AA A
β β β

− −
= + .    (11)13 

Using equation (3) to apply the projected parameters to the mortality rates of year A would 

render the projected mortality rates for a person aged x at the beginning of year A (i.e., 

                                                 
12 Using Dickey-Fuller test, we confirm that there is no unit root in the time-series of ,1iα  and ,1iβ , 

1, , 1i A F A= − + − . 
13We use the top script   to indicate a projected value,  to denote an estimated value, and 



 for an 
averaged value. 
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

1A

xp
+

).  Then we calculate RMSE and MAE to measure the forecasting errors.  We repeat 

the procedures above for 1990 2007A = −  and produce the following tables. 

[Insert Tables 4-6 Here] 

The rows titled “Overall-25” in Table 4 shows that the out-of-sample forecasting 

errors of our method are smaller than those of the Lee-Carter model in both US and UK.14  

For instance, the mean RMSE of our model are 0.00106694 and 0.00205025 while those of 

the Lee-Carter model are 0.00833841 and 0.00618506.  Our model also produces smaller 

error variations.  The standard deviations of MAE produced by our model are 0.00021660 

and 0.00044835 in US and UK respectively, and they are smaller than 0.00419124 and 

0.00306349 resulting from the Lee-Carter model.  Other statistics of Table 4 also support the 

superiority of our method to the Lee-Carter model.  An example is the much smaller 

maximum RMSE produced by our model: 0.00147155 vs. 0.01534837 in US and 0.00301468 

vs. 0.01291569 in UK. 

To each gender of US and UK, our forecasting errors are smaller as well.  The ratios 

of our mean RMSE to Lee-Carter’s mean RMSE are 14.0% (= 0.00131977/0.00944712), 

11.3%, 31.6%, and 36.0% to US males, US females, UK males, and UK females respectively.  

The ratios with respect to median RMSE show similarly smaller errors: 12.5%, 12.3%, 28.4%, 

and 37.8% respectively.  The standard deviations and the ranges of our forecasting errors are 

                                                 
14We calculate the forecasting errors using the same formulas to those used in calculating the in-sample fitting 
errors. 



 
 

20 

also smaller than those of Lee-Carter’s.  For instance, the ranges of our MAE to males are 

0.000742 (US) and 0.001268 (UK).  They are much smaller than the corresponding errors 

produced by the Lee-Carter model: 0.006534 and 0.006272.   

We further find that the superiority of our model to the Lee-Carter model is even more 

significant in the forecasting than in the in-sample fitting.  The error ratios of our method to 

Lee-Carter’s with respect to all statistics in terms of both accuracy measures are consistently 

smaller in forecasting tests.  This can be illustrated by comparing 14.0%, 11.3%, 31.6% and 

36.0% (the ratios of our mean RMSE to Lee-Carter’s mean RMSE presented in the previous 

paragraph) with the corresponding 30.1%, 25.9%, 42.4% and 48.5% presented in the previous 

section. 

The superior forecasting performance of our LHT model to the Lee-Carter model is 

robust in both decades of 1990s and 2000s, as Table 5 shows.  For instance, the ratios of our 

mean forecasting RMSE to Lee-Carter’s for females are 11.0% (US) and 24.5% (UK) in 

1990s and 8.8% and 48.8% in 2000s.15  The ratios in terms of the standard deviations of 

MAE for males are 13.4% (US) and 22.4% (UK) in 1990s and 7.8% and 12.7% in 2000s. 

Comparing Table 5 with Table 2, we also observe that the superiority of our model to 

the Lee-Carter model is more significant in forecasting than in in-sample fitting.  All but 

two ratios of our errors to Lee-Carter’s are smaller in forecasting than in fitting.  For 

                                                 
1511.0% is obtained by 0.00081182/0.00737924. 
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instance, the mean RMSE ratio of ours to Lee-Carter’s in 1990s is 13.2% (= 

0.00134595/0.01022495) from Table 5, and the corresponding ratio in Table 2 is 24.4% (= 

0.00134275/0.00550242). 

Table 6 tells similar stories to Table 3: our model performs well to the ages 45+ while 

the Lee-Carter model is better to ages 25-44.  For instance, the ratios of mean forecasting 

errors between ours and Lee-Carter’s to the age group of 85-109 are 11.7% (US males), 8.8% 

(US females), 24.4% (UK males), and 26.8% (UK females).16On the other hand, the 

corresponding ratios to the age group of 25-34 are 128.5%, 349.3%, 367.5% and 554.9% 

respectively.  The relative performance of the two models is consistent in in-sample fitting 

and out-of-sample forecasting.  In addition, the overall forecasting performance of our 

model is better since the LHT is superior to the Lee-Carter model in many more ages, and the 

people at these ages are the major customers of life insurers. 

 

RISK MANAGEMENT 

One major Usage of the mortality modeling/projection by life insurers is managing the 

mortality rate risk.  Such management might involve developing internal / natural hedging 

portfolios of life insurance and annuity products so that reserves will not deviate from the 

expected to a significant extent.17We will illustrate in this section how our new method has 

                                                 
1611.7% is calculated by 0.00218371/ 0.01869033. 
17The conventional way to manage the mortality rate risk is by reinsurance.  Alternative ways are to use the 
asset products / derivatives linked to mortalities, but only few products are available. 
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advantages over the existing literature in developing the hedging portfolios. 

Mortality Durations 

We may regard the LHT as a two-factor model on mortality improvements.  The 

mortality improvement risks can thus be measured and managed by the “duration” with 

respect to the factors α  and β 18.More specifically, the sensitivities of a policy’s reserve 

*R  (based on the adjusted force of mortality (1 ) xα µ β+ × + , see Tsai and Jiang (2011))to 

changes in α  and β can be defined as 

*
*( ) RDD Rγ γ

∂
= −

∂
, (12) 

where DD denotes the dollar duration, and γ α= or β . DD  measures the change of the 

reserves caused by the change of a mortality factor.  It can also be deemed as the slope of 

the reserve-factor curve with the opposite sign.19 

Under the LHT, the mortality durations may have explicit formulas that can facilitate 

the risk management.  The mortality rates of a future year under the LHT are a function of 

the current-year mortality rates with the parameters/factors of α  and β .  Since appropriate 

reserving done today should take into account of the expected changes in mortalities, and 

                                                 
18The idea is the same as the duration management for the interest rate risk.  Many financial institutions, 
especially banks and life insurers, calculate the interest rate durations of individual assets and liabilities to 
measure their exposures to the interest rate risk.  The use of the interest rate duration in finance markets is 
extensive (Bierwag and Fooladi, 2006).  We apply the same idea of duration management but substitute the 
interest rate for the mortality rate as the underlying risk factor. 
19Another popular risk measure is modified duration ( MD ) defined as: **

*
* *

( )1( )
DD RRMD R

R R
γ

γ γ
∂

= − × =
∂

.  

The economic meaning of MD is the percentage change of reserves caused by the change of a mortality factor.
DD  is more suitable for life insurance since it avoids the irregularities caused by small or zero reserves as Tsai 
(2009) identified. 
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thus should be based on the projected mortality rates, reserves are functions ofα and β .  

The partial derivatives of reserves with respect to α  and β may have explicit formulas so 

that we may derive closed-form formulas for mortality duration.   

For the original and adjusted force of mortality xµ , we will define and derive the 

mortality durations for several products including n -year temporary life annuities-due, 

endowment, and term life insurance.  Denote the net single premiums of the m-year deferred 

and n-year temporary life annuity-due issued to an individual aged x  by: 

0

1 1.. .. [ ( ) ]
:  :  ,( )| |

k
x

x

m n m n t dtk
x n i x n im m k x

k m k m
a a p v e

m d
m d

+ − + − − +
+

= =

∫= = =∑ ∑ ,          (13) 

where 1/(1 )v i= + and ln(1 )iδ = + .  The symbol is associated with xµ δ+ because it net 

single premium is based on the curve (or function) xµ δ+ .  Note that 0m =  (n-year 

temporary life annuity-due), 1n =  (m-year pure endowment), and n x mω= − −  (m-year 

deferred whole life annuity-due) are three common special cases. 

When the force of mortality xµ  is changed proportionally to (1 ) xα µ+ , the 

underlying curve becomes (1 ) xα µ δ+ × + , and the associated net single premium above is: 

0

1.. [(1 ) ( ) ]
:  ,((1 ) )| .

k
x

x

m n t dt
x n im

k m
a e

am  d
am  d

+ − − + × +
+ × +

=

∫= ∑                   (14) 

Then we can define the dollar duration of the single premium of the m-year deferred and 

n-year temporary life annuity-due with respect to α , the proportional shift of xµ , by: 
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0
0

.. ..
.. :  ,((1 ) ) :  ,( )

:  
0

( )1 [ ( ) ]

0

| |( | ) lim

1                     lim

x x

k
k x

x

x n i x n im m
x n im

t dtm n t dt

k m

a aDD a

ee

am  d m d
a a
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m d

a

a

a

+ × + +

→

−+ − − +

→
=

−
= −

∫ −∫= − ∑
.               (15) 

It is easy to see that  

1..

:  ( | ) ( ln )
m n

k
x n im k x k x

k m
DD a p p va

+ −

=

= −∑ .                   (16)
 

Similarly, we define the dollar duration with respect to β , the parallel (constant) shift of xµ , 

by:
 

0
0

.. ..
.. :  :  

:  
0

1 1[ ( ) ]

0

| ( ) | ( )( | ) lim

1                     lim

k
k

x

x n i x n im x m x
x n im

dtm n m nt dt k
k x

k m k m

a aDD a

ee k p v

β β

β
m d

β

m β d m d
β

β

→

−+ − + −− +

→
= =

+ + − +
= −

∫ −∫= − =∑ ∑
.        (17) 

Note the Equation (16) and (17) are also the duration of the reserve at time 0 with respect to 

α  and β , respectively, for the single premium of the m-year deferred and n-year temporary 

life annuity-due.  For the case of the level h-payment premium ( )m h≥ , the dollar duration 

of the reserve at time 0 is  

.. .. .. ..

:  :  :  :  0( ( ( | ))) ( | ) ( | ) ( )x n i x n i x n i x h ih m m h mDD R P a DD a P a DD aγ γ γ= − × ,    (18)
 

where ,  γ α β= , and 
.. .. ..

:  :  :  ( | ) | /x n i x n i x h ih m mP a a a= . 

For n-year endowment, we assume the death benefit is payable at the end of the year 

of death. Denote its net single premium as  

1
1

1:  :  
0
( ) 1

n
k n

k x k x n xx n i x n i
k

A p p v p v d a
−

+
+

=

= − × + × = − ×∑  ,          (19) 

where 1d v= − , which implies
..

:  :  
( ) ( )x n ix n iDD A d DD aγ γ= − × , ,γ α β= .  Setting n xω= −  
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yields
..

( ) ( )xxDD A d DD aγ γ= − × , a relation between the dollar durations of whole life 

insurance and whole life annuity. For n-year term life insurance, since its net single premium 

..
1

:1  :  :  | x inx n i x n iA A a= − , we have
.. ..

1
:  :1  :  

( ) ( ) ( | )x n i n x ix n iDD A d DD a DD aγ γ γ= − × − . 

We give some examples for illustration in the following.  Assume that 3%i = , 

45x = and ,  1, 2, , 20k xp k n= = are the out-of-sample forecasting mortality rates using our 

LHT with 2007A = and 40F = .  We calculate the DDα  and DDβ  of reserves at time 0 

for 10 products, and the results are placed in Table 7. 

[Insert Table 7 Here] 

We find that annuity products and pure endowment have positive mortality durations, 

implying exposures to the longevity risk.  For instance, ( DDα , DDβ ) of the reserve at time 0 

for single-payment 20-year deferred whole life annuity-due and 20-payment 20-year pure 

endowment are (3.16, 183.86) and (0.06, 5.48) respectively.  Whole life insurance, on the 

other hand, has negative mortality durations that implies exposures to the mortality 

deterioration risk.20  For example, the DDα  and DDβ  of the reserve at time 0 for the 

20-payment whole life insurance is -0.13 and -12.11, respectively.   

The DDβ s of reserves for life insurance and annuity products have much bigger 

magnitudes than the DDα s, which means that reserves are more sensitive to shocks/changes 

                                                 
20Following Wang et al. (2010), we define that a product is subject to the longevity risk if mortality 
improvements would increase the reserves of the product.  A product is subject to the mortality deterioration 
risk if increases in mortality rates would increase the product’s reserves.  The term “mortality rate risk” is used 
as a general term referring to the risks of reserve changes due to changes in mortality rates, and thus includes 
both the longevity risk and the mortality deterioration risk. 
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in β (parallel shift of the force-of-mortality curves) than in α (proportional shift).  The fact 

that DDβ is larger than DDα  further highlights the importance of our extension to Wang et 

al. (2010).  Their immunization strategies are based on the assumption that forces of 

mortality change proportionally and thus use only DDα .  Reserves of life insurance are 

however more sensitive to the constant changes in forces of mortality. 

Reserves of whole life annuities have the largest mortality duration figures, (3.16, 

183.86) and (2.84, 131.43),thus fluctuate more with shocks to mortality rates than other 

products and have larger mortality rate risk. Term life insurance has the second largest 

sensitivity to parallel shifts of forces of mortality ( -12.86 and -13.76DDβ = ) while whole life 

insurance has the second largest sensitivity to the proportional shifts ( -0.11 and -0.13DDa = ).  

The endowment is least sensitive to proportional shifts of forces of mortality 

( -0.02 and -0.05DDa = ). 

Internal Hedging 

After calculating the mortality durations of reserves for several life insurance products, 

we can measure the mortality rate risk of the portfolios consisting of these products and 

further construct the portfolios with minimal mortality risks.  The duration of reserves of a 

portfolio of life insurance and annuity products with respect to a mortality factor is simply the 

weighted average of the mortality durations of reserves of individual products, with the 

weights to be determined.  By combining products in different ways, we may find a 
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portfolio with zero mortality durations and is thus “immunized” from the mortality risk.  

Managing the mortality rate risk by carefully constructing product portfolios is called the 

natural hedging strategy in the literature (e.g., Cox and Lin, 2007; Wang et al., 2010).   

We construct some portfolios that have the minimal exposure to the mortality rate risk 

with regard to reserves at time 0.  Ideally, we want to be able to construct a portfolio with 

zero DDα  and DDβ .  This requires three products since we have three equations to solve 

as follows: 

3

1
0i

i
i

w DDα
=

× =∑ , 

3

1
0i

i
i

w DDβ
=

× =∑ ,       (20) 

3

1
1i

i
w

=

=∑ , and 0,  1,  2,  3iw i> = . 

The solutions to Equation system (20) are: 

2 3 3 1 1 2

1 2 32 3 3 1 1 2

   
/ , / , /

   

DD DD DD DD DD DD
w D w D w D

DD DD DD DD DD DD
α α α α α α

β β β β β β

= = = ,    (21) 

where
2 3 3 1 1 2

2 3 3 1 1 2

   

   

DD DD DD DD DD DD
D

DD DD DD DD DD DD
α α α α α α

β β β β β β

= + + . 

The key differences in generating an optimal portfolio between our method and the 

method of Wang et al. (2010) are the calculations of the mortality durations.  Our method 

involves calculating two mortality durations while they computed only one under an implicit 

assumption on how the mortality rate curve changes.  They also assumed that the force of 

mortality within each age interval ( ,  1)x x + is constant, and is changed by a certain equal 
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percentage (e.g., -10%); then the resulting changes in reserves are calculated to obtain the 

mortality duration (see Equation (15) with
0

lim
α→

removed). Thus, the numerical value of their 

mortality duration depends on the size and sign of the equal percentage.  The assumption of 

constant force of mortality is inconsistent with the observable mortality data.  Neither is the 

equal percentage change for all forces of mortality consistent with the observed behaviors of 

mortality rate curves.  This assumption is indeed equivalent to 0.1α = −  and 0β =  under 

our LHT.  Therefore, our method is more general with an extra benefit of having explicit 

formulas for the durations.   

Illustrations 

We form three portfolios with both weighted DDα  and DDβ equal to 0, as Table 8 

shows.  The weights are calculated using Equation (20).  Portfolio 1P consists of life 

insurance products: whole life, term life, and pure endowment (all 20-payment).  The pure 

endowment accounts for 69.51% while whole life insurance makes up 23.25%.  The term 

life insurance contributes 7.24% only.  Portfolios 2P (all single-payment) and 3P (a mixing 

of 20-payment and single-payment) are examples of the natural hedging between life 

insurance and annuity products.  The mortality deterioration risk of whole life insurance is 

hedged by the longevity risk of annuities and pure endowment.  The whole life insurance 

accounts for about two third of Portfolios 2P  and 3P  (66.61% and 60.32%, respectively), 

and pure endowment makes up thirty some percent (31.79% and 38.34%).  The weights of 
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annuities are low due to their large mortality durations.  These compositions show the 

substitution effect between annuities and pure endowment in the mortality rate risk, which is 

important for the countries with small annuity markets. 

[Insert Table 8 Here] 

Equation (20) might have no solutions.  It can be shown that all 1w , 2w , and 3w fall 

within the interval (0,1)  if and only if the three determinants in D  are either all positive or 

all negative.  The determinants might not have uniform signs because of close relations 

among the reserves of insurance and annuity products and the resulting bondages among the 

mortality durations.  We present two portfolios that have negative weights in Table 9.  

Portfolio 4P is formed by replacing the 20-payment and 20-year pure endowment of Portfolio 

1P with the 20-payment and 20-year deferred whole life annuity-due, and keeping the other 

two products unchanged. Portfolio 5P is constructed with only the single-payment and 20-year 

term life insurance being substituted for the single-payment whole life insurance of Portfolio

2P .One would probably expect natural hedging to be feasible.  However, the close relation 

1 1
:: |x x n xx n nA A A d a= + − ×  (where 1

:x nA  is the net single premium of n-year pure endowment) 

among the net single premiums of these three underlying products prevents all weights for 

each of Portfolios 4P and 5P from being positive.  The insurer has to “own” rather than “sell” 

the product with negative weight to hedge the mortality rate risk.  These examples did not 

show up in the literature like Wang et al. (2010) since they calculated only one mortality 
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duration; it needs only two products to hedge the sole duration, and the weights shall be 

positive as long as the durations of the reserves for these two products have different signs.  

When the mortality rate curve changes in more complex ways and thus demand more than 

one factor to model its dynamics, it takes at least three products for the immunization.  The 

all-positive weights will appear only when the mortality durations meet the aforementioned 

necessary and sufficient condition.  Therefore, life insurers may not be able to internally 

hedge the mortality rate risk to the full extent. 

[Insert Table 9 Here] 

External hedging arrangements are thus needed.  The negative weights mean that a 

life insurer may have to buy life insurance products from other issuers to achieve a better 

hedge for the mortality rate risk.  Life settlements seem to fit this demand, in addition to 

asset-side considerations (e.g., diversifications and/or high yields).  Other mortality 

securities like mortality bonds and derivatives may also render hedging benefits for life 

insurers to hedge the mortality rate risk externally and complement internal hedging.  The 

possible incompleteness of internal hedging found in this paper is new to the literature. 

 

CONCLUSIONS AND REMARKS 

Modeling and projecting mortality rates are essential to life insurers, social benefits 

programs, and the society as a whole.  Future mortality rates affect the pricing and reserving 
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of insurance/annuity products that in turn have impacts on the solvency of the insurer.  

Future mortality rates also affect the solvency and continuity of various social benefits 

programs (e.g., retirement plans and health care programs), through affecting the cash 

outflows as well as inflows.  The population structure of a society has widespread impacts 

on the demands and supplies of many industries, and it is shaped by mortality rates. 

The literature thus studied mortality rates extensively.  Early researches of 

demographers and sociologists developed cross-sectional, explanatory models.  Starting 

from the early 1990s, statisticians and actuarial scholars tried to model the dynamics of 

mortality rates.  Lee and Carter (1992) was the pioneer and stimulated many papers along 

this line.  Another line developed later was to use curve fitting for mortality rate curves and 

then built up time-series models of the function parameters to forecast mortality rates.  The 

latest line of the literature applied the interest rate modeling method developed in the finance 

field to the modeling of mortality rates.   

We propose a different method from the existing literature in this paper.  Instead of 

modeling the mortality rates themselves, we model the relation between two forces of 

mortality.  We assume that the force of mortality on a later curve is a linear transformation 

of one on an earlier curve.  Then we establish the time-series behaviors of the linear 

transformation parameters to project mortality rates.  This methodology might work because 

mortality rate curves changed in small and stable ways due to biological natures and/or the 



 
 

32 

rigidity of the changes in social systems. 

To investigate the potential of our new thought, we use empirical data to test the 

performance of the linear hazard transformation relative to that of the well-known Lee-Carter 

model.  We conduct both in-sample fitting tests and out-of-sample forecasting tests using 

the data of US and UK that cover both genders from 1950 to 2007.  The empirical results 

show that our LHT dominates the Lee-Carter model in both types of tests to significant 

extents.  The idea of regarding changes in mortality rates across time as transformation 

seemed to work well and have good potential. 

We further illustrate two advantages of our model in managing the mortality rate risk 

using product portfolios in this paper.  Since our model is parsimonious with two parameters, 

we need to calculate only two durations with respect to these two parameters to construct an 

immunized portfolio consisting of life insurance and annuity products.  Our model is more 

general than Wang et al. (2010) in which they had to assume constant forces of mortality 

within each age interval and proportional shifts of force of mortality to calculate a sole 

mortality duration.  Their model is indeed more restricted than our model due to more 

assumptions made.  Another advantage of our model is that we may have explicit formulas 

for the mortality durations, which facilitates the risk management.   

This paper points out a new way to model and forecast mortality rates.  The 

empirical results show that our LHT model outperforms the classic Lee-Carter model.  The 
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risk management resulting from the new method is more general, more accurate, and easier to 

implement than that proposed by Wang et al. (2010).  The potential of the LHT model is 

thus confirmed.  Our findings about the incompleteness of internal hedging have 

implications on the risk management strategies of life insurers and call for more active 

second markets of mortality securities. 

There is much to be explored along this line though.  For instance, how will the 

choices of a (the difference between the base year A  and the target year B ) and other 

forms of transformation affect the performance?  How can this method incorporate the 

cohort effect?  This paper initiates a first attempt to attract more research in the future. 
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TABLES 
Table 1: Summary Statistics of In-Sample Fitting Errors 

  RMSE 

  LHT Lee-Carter 

Country-Gender-Starting Age Mean Std. Deviation Median Min Max Mean Std. Deviation Median Min Max 

US-Male-25 0.00177571  0.00068953  0.00155900  0.00082463  0.00377734  0.00589731  0.00318861  0.00495500  0.00097021  0.01284675  

US-Fenmale-25 0.00124397  0.00054813  0.00109649  0.00040205  0.00317637  0.00480551  0.00274708  0.00453950  0.00077150  0.01077886  

US-Overall-25 0.00150984  0.00061883  0.00132775  0.00061334  0.00347685  0.00535141  0.00296784  0.00474725  0.00087086  0.01181281  

UK-Male-25 0.00296770  0.00089865  0.00277804  0.00163560  0.00573901  0.00699724  0.00314613  0.00625656  0.00229499  0.01619813  

UK-Female-25 0.00187019  0.00061562  0.00176119  0.00082951  0.00462851  0.00385473  0.00196059  0.00339774  0.00079847  0.00814878  

UK-Overall-25 0.00241895  0.00075714  0.00226962  0.00123256  0.00518376  0.00542598  0.00255336  0.00482715  0.00154673  0.01217346  

US-Male-45 0.00195973  0.00078344  0.00171994  0.00091554  0.00426869  0.00672145  0.00363200  0.00552952  0.00142728  0.01471459  

US-Fenmale-45 0.00138579  0.00061616  0.00118361  0.00044332  0.00362277  0.00547416  0.00323359  0.00482226  0.00090090  0.01299220  

US-Overall-45 0.00167276  0.00069980  0.00145178  0.00067943  0.00394573  0.00609781  0.00343280  0.00517589  0.00116409  0.01385340  

UK-Male-45 0.00333705  0.00102594  0.00313008  0.00186796  0.00643850  0.00835331  0.00405067  0.00730579  0.00284869  0.02179470  

UK-Female-45 0.00210745  0.00069433  0.00197899  0.00092464  0.00508577  0.00463653  0.00244948  0.00457057  0.00099154  0.00991423  

UK-Overall-45 0.00272225  0.00086014  0.00255454  0.00139630  0.00576213  0.00649492  0.00325008  0.00593818  0.00192011  0.01585447  

           

           

           

           

           

           

           

           



 
 

39 

Table 1 Continued           

 MAE 

  LHT Lee-Carter 

Country-Gender-Starting Age Mean Std. Deviation Median Min Max Mean Std. Deviation Median Min Max 

US-Male-25 0.00103666  0.00033670  0.00101881  0.00052527  0.00198526  0.00331025  0.00162196  0.00297684  0.00071368  0.00674417  

US-Fenmale-25 0.00070190  0.00027261  0.00065248  0.00028490  0.00144673  0.00258104  0.00133857  0.00255819  0.00049303  0.00527297  

US-Overall-25 0.00086928  0.00030465  0.00083565  0.00040508  0.00171600  0.00294564  0.00148026  0.00276752  0.00060336  0.00600857  

UK-Male-25 0.00159354  0.00047700  0.00149248  0.00089071  0.00306352  0.00402932  0.00173013  0.00377186  0.00132454  0.00955776  

UK-Female-25 0.00100769  0.00033373  0.00096951  0.00049886  0.00261748  0.00222125  0.00106616  0.00195894  0.00047803  0.00467101  

UK-Overall-25 0.00130061  0.00040537  0.00123099  0.00069479  0.00284050  0.00312529  0.00139814  0.00286540  0.00090128  0.00711439  

US-Male-45 0.00123166  0.00039592  0.00122610  0.00066729  0.00243652  0.00422664  0.00209149  0.00373474  0.00096228  0.00866937  

US-Fenmale-45 0.00085479  0.00032511  0.00081749  0.00032320  0.00165701  0.00331775  0.00181321  0.00313347  0.00061814  0.00725569  

US-Overall-45 0.00104323  0.00036051  0.00102180  0.00049524  0.00204676  0.00377220  0.00195235  0.00343410  0.00079021  0.00796253  

UK-Male-45 0.00194069  0.00056712  0.00181149  0.00112349  0.00394262  0.00536570  0.00248700  0.00487549  0.00181030  0.01415680  

UK-Female-45 0.00124411  0.00042643  0.00115642  0.00058448  0.00335352  0.00299605  0.00154390  0.00301799  0.00073237  0.00630859  

UK-Overall-45 0.00159240  0.00049677  0.00148396  0.00085399  0.00364807  0.00418088  0.00201545  0.00394674  0.00127134  0.01023270  
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Table 2: Fitting Errors by Periods 

  RMSE 

  LHT 

 1950s 1960s 1970s 1980s 1990s 2000s 

Country-Gender-Starting Age Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation 

US-Male-25 0.00268754  0.00064566  0.00515583  0.00042748  0.00225550  0.00078059  0.00138438  0.00027115  0.00134275  0.00031779  0.00132201  0.00018418  

US-Fenmale-25 0.00211962  0.00066297  0.00443231  0.00029799  0.00143025  0.00031388  0.00094679  0.00013096  0.00081379  0.00020780  0.00084312  0.00013173  

UK-Male-25 0.00443013  0.00100552  0.00679529  0.00055079  0.00306463  0.00054677  0.00240436  0.00045389  0.00240003  0.00044426  0.00277908  0.00055154  

UK-Female-25 0.00288823  0.00078172  0.00520569  0.00044678  0.00179600  0.00028044  0.00167294  0.00027971  0.00136491  0.00026368  0.00179609  0.00031272  

US-Male-45 0.00300354  0.00073127  0.00619016  0.00047905  0.00250387  0.00089529  0.00148009  0.00025140  0.00142683  0.00030627  0.00146076  0.00019117  

US-Fenmale-45 0.00238689  0.00075800  0.00534280  0.00033750  0.00155364  0.00029977  0.00104805  0.00012228  0.00089073  0.00021643  0.00093843  0.00014425  

UK-Male-45 0.00499497  0.00112205  0.00813900  0.00062479  0.00347206  0.00064987  0.00267390  0.00052128  0.00264352  0.00045235  0.00315087  0.00063995  

UK-Female-45 0.00324943  0.00084284  0.00624501  0.00053028  0.00202777  0.00032768  0.00188949  0.00031719  0.00151723  0.00029201  0.00203533  0.00035367  

  Lee-Carter 

 1950s 1960s 1970s 1980s 1990s 2000s 

Country-Gender-Starting Age Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation 

US-Male-25 0.00464334  0.00188334  0.01019004  0.00275932  0.00726749  0.00365147  0.00747126  0.00309644  0.00550242  0.00276870  0.00857318  0.00324581  

US-Fenmale-25 0.00420302  0.00144294  0.00961021  0.00192137  0.00490843  0.00280018  0.00555747  0.00272298  0.00500266  0.00277740  0.00768820  0.00335832  

UK-Male-25 0.01074944  0.00410495  0.01109237  0.00284157  0.00730927  0.00256439  0.00773218  0.00238643  0.00673635  0.00274530  0.00545388  0.00153993  

UK-Female-25 0.00513624  0.00113610  0.00978740  0.00198389  0.00334688  0.00158207  0.00328574  0.00135122  0.00428204  0.00203200  0.00340820  0.00175523  

US-Male-45 0.00520444  0.00216074  0.01196434  0.00315089  0.00832156  0.00423971  0.00852663  0.00347684  0.00627201  0.00299316  0.00987142  0.00365483  

US-Fenmale-45 0.00435189  0.00159538  0.01154532  0.00207994  0.00560418  0.00329449  0.00687731  0.00325584  0.00560810  0.00316702  0.00878131  0.00403268  

UK-Male-45 0.01375261  0.00533022  0.01315877  0.00313382  0.00871326  0.00299586  0.00968319  0.00341369  0.00769405  0.00303335  0.00600507  0.00182729  

UK-Female-45 0.00611162  0.00307967  0.01137970  0.00218446  0.00402800  0.00149553  0.00490052  0.00212041  0.00516479  0.00239665  0.00448972  0.00246475  
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Table 2 Continued             

  MAE 

  LHT 

 1950s 1960s 1970s 1980s 1990s 2000s 

Country-Gender-Initial Age Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation 

US-Male-25 0.00141422  0.00035433  0.00112557  0.00022536  0.00115627  0.00028635  0.00088070  0.00024106  0.00085518  0.00023842  0.00077308  0.00016624  

US-Fenmale-25 0.00100000  0.00026364  0.00082404  0.00014996  0.00086127  0.00025504  0.00054099  0.00011617  0.00048268  0.00015650  0.00048985  0.00008143  

UK-Male-25 0.04724530  0.00059162  0.04117325  0.00040339  0.03843510  0.00016149  0.03706781  0.00030059  0.03838141  0.00038810  0.03630768  0.00021781  

UK-Female-25 0.03771190  0.00046925  0.03397307  0.00024119  0.03065037  0.00015729  0.02970170  0.00017057  0.02856451  0.00021783  0.02898509  0.00016386  

US-Male-45 0.00169460  0.00045561  0.00138150  0.00025988  0.00136623  0.00030468  0.00101035  0.00023034  0.00098561  0.00024621  0.00093957  0.00016352  

US-Fenmale-45 0.00123268  0.00030287  0.00103524  0.00017397  0.00103068  0.00026267  0.00065545  0.00012306  0.00056940  0.00016915  0.00059014  0.00009786  

UK-Male-45 0.05250554  0.00073683  0.04549151  0.00041284  0.04249554  0.00021222  0.04057909  0.00028071  0.04183764  0.00039225  0.04044146  0.00028523  

UK-Female-45 0.04230551  0.00062303  0.03769576  0.00028870  0.03388070  0.00017950  0.03322851  0.00020560  0.03130549  0.00024508  0.03216362  0.00021298  

  Lee-Carter 

 1950s 1960s 1970s 1980s 1990s 2000s 

Country-Gender-Initial Age Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation 

US-Male-25 0.00248920  0.00094400  0.00316467  0.00146667  0.00349875  0.00189441  0.00373726  0.00155548  0.00276734  0.00147658  0.00432513  0.00153663  

US-Fenmale-25 0.00232526  0.00082070  0.00298914  0.00102999  0.00218867  0.00136300  0.00243990  0.00125657  0.00221144  0.00140743  0.00348757  0.00155525  

UK-Male-25 0.07553601  0.00227123  0.06091544  0.00175765  0.06241321  0.00144086  0.06482175  0.00113642  0.05959783  0.00133341  0.05558933  0.00084601  

UK-Female-25 0.05465173  0.00062246  0.05556498  0.00109078  0.04087144  0.00088888  0.04187274  0.00065759  0.04565214  0.00102129  0.04149722  0.00090610  

US-Male-45 0.00310509  0.00122126  0.00394438  0.00185011  0.00451858  0.00252206  0.00478638  0.00194419  0.00349709  0.00180472  0.00568853  0.00191000  

US-Fenmale-45 0.00264867  0.00104047  0.00391357  0.00123572  0.00276398  0.00186221  0.00351035  0.00177620  0.00277714  0.00181172  0.00445296  0.00221042  

UK-Male-45 0.08993610  0.00334641  0.06937412  0.00217169  0.07259969  0.00191749  0.07448426  0.00184732  0.06832124  0.00168497  0.06129493  0.00109244  

UK-Female-45 0.05759657  0.00211232  0.06167988  0.00132437  0.05007383  0.00093574  0.05412225  0.00136055  0.05405386  0.00140131  0.04910503  0.00152393  



 
 

42 

Table 3: Fitting Errors by Ages             

  RMSE 

  LHT Lee-Carter 

Country-Gender-Starting Age 25 ~ 34 35 ~ 44 45 ~ 64  65 ~ 74 75 ~ 84 85 ~  109 25 ~ 34 35 ~ 44 45 ~ 64  65 ~ 74 75 ~ 84 85 ~  109 

US-Male-25 0.00037056  0.00035783  0.00042377  0.00107242  0.00201703  0.00316229  0.00017284  0.00021223  0.00047790  0.00146537  0.00248598  0.01221766  

US-Fenmale-25 0.00022627  0.00020923  0.00029243  0.00070518  0.00139784  0.00227947  0.00004163  0.00008822  0.00033335  0.00084221  0.00186031  0.01011994  

UK-Male-25 0.00052814  0.00051438  0.00060431  0.00161901  0.00319225  0.00520155  0.00012918  0.00015740  0.00060470  0.00230320  0.00378444  0.01385506  

UK-Female-25 0.00027876  0.00026287  0.00035121  0.00086801  0.00216387  0.00329375  0.00007573  0.00009134  0.00049070  0.00110803  0.00224293  0.00780307  

US-Male-45 X x 0.00061608  0.00099171  0.00193298  0.00306426  x x 0.00040381  0.00137475  0.00240726  0.01218835  

US-Fenmale-45 X x 0.00040589  0.00066090  0.00134502  0.00222486  x x 0.00030581  0.00074458  0.00149008  0.01019382  

UK-Male-45 X x 0.00087920  0.00143764  0.00309423  0.00513956  x x 0.00049261  0.00173463  0.00327833  0.01477789  

UK-Female-45 X x 0.00049890  0.00080628  0.00211339  0.00324889  x x 0.00035550  0.00091194  0.00220263  0.00831377  

  MAE 

  LHT Lee-Carter 

Country-Gender-Starting Age 25 ~ 34 35 ~ 44 45 ~ 64  65 ~ 74 75 ~ 84 85 ~  109 25 ~ 34 35 ~ 44 45 ~ 64  65 ~ 74 75 ~ 84 85 ~  109 

US-Male-25 0.00031152  0.00030077  0.00029456  0.00075272  0.00155686  0.00212026  0.00013807  0.00016446  0.00035741  0.00114212  0.00198834  0.00959571  

US-Fenmale-25 0.00017501  0.00016529  0.00019008  0.00047158  0.00103575  0.00149536  0.00003324  0.00007079  0.00024297  0.00067023  0.00135086  0.00773112  

UK-Male-25 0.02021275  0.01992017  0.02066789  0.03394221  0.04776523  0.05814386  0.00993424  0.01131561  0.02003653  0.04268431  0.05601814  0.10631947  

UK-Female-25 0.01515646  0.01455873  0.01601711  0.02483213  0.03951501  0.04661543  0.00740704  0.00834367  0.01894369  0.02949906  0.04039952  0.07883175  

US-Male-45 X x 0.00048955  0.00067796  0.00147851  0.00194810  x x 0.00030283  0.00107183  0.00193951  0.00954246  

US-Fenmale-45 X x 0.00029635  0.00044640  0.00098429  0.00141309  x x 0.00022736  0.00057867  0.00108416  0.00777914  

UK-Male-45 X x 0.02571326  0.03161458  0.04656051  0.05700809  x x 0.01883131  0.03686940  0.05102390  0.10991818  

UK-Female-45 X x 0.01958455  0.02378631  0.03877623  0.04582668  x x 0.01621381  0.02692415  0.04145904  0.08125223  
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Table 4: Summary Statistics of Out-of-Sample Forecasting Errors 

  RMSE 

  LHT Lee-Carter 

Country-Gender-Initial Age Mean Std. Deviation Median Min Max Mean Std. Deviation Median Min Max 

US-Male-25 0.00131977  0.00026189  0.00130986  0.00086876  0.00187173  0.00944712  0.00390974  0.01049683  0.00262827  0.01573486  

US-Fenmale-25 0.00081411  0.00017132  0.00079987  0.00039897  0.00107138  0.00722970  0.00447274  0.00651801  0.00107692  0.01496187  

US-Overall-25 0.00106694  0.00021660  0.00105486  0.00063387  0.00147155  0.00833841  0.00419124  0.00850742  0.00185260  0.01534837  

UK-Male-25 0.00253301  0.00053011  0.00235133  0.00181341  0.00360328  0.00801532  0.00375362  0.00827227  0.00324610  0.01608440  

UK-Female-25 0.00156750  0.00036658  0.00149865  0.00090829  0.00242608  0.00435480  0.00237336  0.00396455  0.00149803  0.00974699  

UK-Overall-25 0.00205025  0.00044835  0.00192499  0.00136085  0.00301468  0.00618506  0.00306349  0.00611841  0.00237207  0.01291569  

US-Male-45 0.00143534  0.00025542  0.00147314  0.00099023  0.00193454  0.01101811  0.00418484  0.01247884  0.00343653  0.01754075  

US-Fenmale-45 0.00090639  0.00018944  0.00089841  0.00044615  0.00119418  0.00844427  0.00528367  0.00863630  0.00092319  0.01724894  

US-Overall-45 0.00117086  0.00022243  0.00118578  0.00071819  0.00156436  0.00973119  0.00473426  0.01055757  0.00217986  0.01739485  

UK-Male-45 0.00283971  0.00060005  0.00265904  0.00203238  0.00409812  0.00976611  0.00474127  0.00984962  0.00323957  0.02061898  

UK-Female-45 0.00177054  0.00041910  0.00169096  0.00105753  0.00275328  0.00546563  0.00361579  0.00486669  0.00179560  0.01284077  

UK-Overall-45 0.00230513  0.00050958  0.00217500  0.00154496  0.00342570  0.00761587  0.00417853  0.00735815  0.00251758  0.01672987  
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Table 4 Continued           

 MAE 

  LHT Lee-Carter 

Country-Gender-Initial Age Mean Std. Deviation Median Min Max Mean Std. Deviation Median Min Max 

US-Male-25 0.00082338  0.00020915  0.00077637  0.00050997  0.00125242  0.00510444  0.00189275  0.00557389  0.00154932  0.00808325  

US-Fenmale-25 0.00048637  0.00011784  0.00045770  0.00027456  0.00072229  0.00368249  0.00216130  0.00316540  0.00066841  0.00767814  

US-Overall-25 0.00065488  0.00016350  0.00061704  0.00039226  0.00098735  0.00439347  0.00202703  0.00436964  0.00110886  0.00788069  

UK-Male-25 0.00140392  0.00032258  0.00135094  0.00094716  0.00221483  0.00465403  0.00183162  0.00504375  0.00209264  0.00836900  

UK-Female-25 0.00084325  0.00018866  0.00083480  0.00051974  0.00129117  0.00251143  0.00116782  0.00228284  0.00100242  0.00504963  

UK-Overall-25 0.00112359  0.00025562  0.00109287  0.00073345  0.00175300  0.00358273  0.00149972  0.00366330  0.00154753  0.00670931  

US-Male-45 0.01432286  0.01466846  0.00901199  0.00064385  0.04392397  0.02181066  0.01616575  0.01724764  0.00233446  0.04414928  

US-Fenmale-45 0.01161907  0.01291383  0.00636685  0.00050780  0.03763328  0.01986005  0.01722995  0.01354592  0.00060508  0.05716010  

US-Overall-45 0.01297097  0.01379115  0.00768942  0.00057583  0.04077863  0.02083536  0.01669785  0.01539678  0.00146977  0.05065469  

UK-Male-45 0.00170481  0.00034429  0.00165091  0.00113107  0.00253036  0.00621366  0.00269946  0.00645344  0.00234979  0.01235919  

UK-Female-45 0.00103446  0.00022622  0.00098369  0.00066065  0.00151584  0.00358369  0.00222159  0.00324162  0.00127869  0.00836609  

UK-Overall-45 0.00136964  0.00028525  0.00131730  0.00089586  0.00202310  0.00489867  0.00246053  0.00484753  0.00181424  0.01036264  
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Table 5: Forecasting Errors by Periods 

  RMSE 

  LHT Lee-Carter 

 1990s 2000s 1990s 2000s 

Country-Gender-Initial Age Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation 

US-Male-25 0.00134595  0.00031484  0.00134494  0.00017338  0.01022495  0.00367282  0.01022326  0.00418403  

US-Fenmale-25 0.00081182  0.00019942  0.00085644  0.00011938  0.00737924  0.00411397  0.00972368  0.00452000  

UK-Male-25 0.00239812  0.00042241  0.00280711  0.00057069  0.00995249  0.00369596  0.00724146  0.00322537  

UK-Female-25 0.00141083  0.00028202  0.00182829  0.00032640  0.00575024  0.00245177  0.00374325  0.00177323  

US-Male-45 0.00143406  0.00029776  0.00148713  0.00018163  0.01184287  0.00382832  0.01171471  0.00458078  

US-Fenmale-45 0.00089960  0.00021589  0.00095792  0.00013932  0.00894143  0.00497786  0.01110474  0.00537895  

UK-Male-45 0.00265535  0.00043627  0.00318440  0.00065996  0.01265157  0.00437059  0.00806841  0.00377105  

UK-Female-45 0.00158400  0.00031923  0.00207659  0.00036451  0.00781925  0.00398794  0.00449500  0.00225171  

 MAE 

  LHT Lee-Carter 

 1990s 2000s 1990s 2000s 

Country-Gender-Initial Age Mean Std Deviation Mean Std Deviation Mean Std Deviation Mean Std Deviation 

US-Male-25 0.00085813  0.00023554  0.00077995  0.00016025  0.00511454  0.00175431  0.00509183  0.00205265  

US-Fenmale-25 0.00048127  0.00014443  0.00049274  0.00007139  0.00310153  0.00206093  0.00440871  0.00206196  

UK-Male-25 0.00146485  0.00036627  0.00132776  0.00023663  0.00515323  0.00163770  0.00403004  0.00186948  

UK-Female-25 0.00083891  0.00020270  0.00084869  0.00016933  0.00290413  0.00118665  0.00202056  0.00093525  

US-Male-45 0.02502240  0.01138836  0.00094842  0.00015554  0.03385726  0.01177892  0.00675242  0.00253291  

US-Fenmale-45 0.02043930  0.01118628  0.00059379  0.00008621  0.03124624  0.01535930  0.00562732  0.00290657  

UK-Male-45 0.00173940  0.00036430  0.00166157  0.00031215  0.00718523  0.00246287  0.00499921  0.00248173  

UK-Female-45 0.00101986  0.00022788  0.00105272  0.00022279  0.00432476  0.00247138  0.00265734  0.00138764  
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Table 6: Forecasting Errors by Ages 

 RMSE 

 LHT Lee-Carter 

Country-Gender-Initial Age 25 ~ 34 35 ~ 44 45 ~ 64 65 ~ 74 75 ~ 84 85 ~ 109 25 ~ 34 35 ~ 44 45 ~ 64 65 ~ 74 75 ~ 84 85 ~ 109 

US-Male-25 0.00031461 0.00031906 0.00034294 0.00056355 0.00163195 0.00218371 0.00024474 0.00030468 0.00050198 0.00171827 0.00336070 0.01869033 

US-Fenmale-25 0.00016673 0.00016764 0.00019556 0.00035520 0.00090657 0.00138349 0.00004773 0.00011021 0.00038728 0.00075875 0.00140693 0.01563917 

UK-Male-25 0.00044812 0.00044528 0.00040161 0.00129973 0.00406337 0.00386848 0.00012195 0.00015781 0.00073625 0.00249124 0.00548657 0.01584671 

UK-Female-25 0.00026870 0.00024465 0.00027270 0.00082585 0.00253423 0.00240452 0.00004842 0.00007553 0.00060348 0.00141923 0.00226151 0.00897249 

US-Male-45 X x 0.00055118 0.00050218 0.00153429 0.00205927 x x 0.00040536 0.001621946 0.003377216 0.018852706 

US-Fenmale-45 X x 0.00028538 0.00032312 0.00085439 0.00135292 x x 0.00032893 0.000689609 0.001372364 0.016029648 

UK-Male-45 X x 0.00072377 0.00139578 0.00399422 0.00378452 x x 0.00048011 0.001995892 0.004532016 0.017217237 

UK-Female-45 X x 0.00041873 0.00087162 0.00249283 0.00238273 x x 0.000460395 0.001273194 0.002491079 0.010409714 

 MAE 

 LHT Lee-Carter 

Country-Gender-Initial Age 25 ~ 34 35 ~ 44 45 ~ 64 65 ~ 74 75 ~ 84 85 ~ 109 25 ~ 34 35 ~ 44 45 ~ 64 65 ~ 74 75 ~ 84 85 ~ 109 

US-Male-25 0.00026117 0.00026281 0.00026141 0.00044836 0.00119329 0.00169612 0.00020534 0.00025161 0.00041244 0.00146271 0.00272219 0.01515009 

US-Fenmale-25 0.00013791 0.00013953 0.00015137 0.00028572 0.00061268 0.00103138 0.00003713 0.00009172 0.00029987 0.00060088 0.00103075 0.01154782 

UK-Male-25 0.00036627 0.00036617 0.00032164 0.00094374 0.00261908 0.00275347 0.00010386 0.00013600 0.00049979 0.00228007 0.00477788 0.01246228 

UK-Female-25 0.00021680 0.00019426 0.00020397 0.00061040 0.00157054 0.00163514 0.00003873 0.00006016 0.00042655 0.00116745 0.00167690 0.00697776 

US-Male-45 X x 0.03499706 0.00665531 0.00940330 0.00384197 x x 0.01474379 0.01808440 0.01435094 0.03235439 

US-Fenmale-45 X x 0.02762891 0.00741204 0.00734359 0.00303191 x x 0.01805985 0.01216922 0.01377453 0.02716240 

UK-Male-45 X x 0.00059343 0.00087172 0.00260868 0.00260558 x x 0.00033732 0.00176465 0.00377325 0.01369635 

UK-Female-45 X x 0.00033675 0.00058544 0.00156598 0.00158354 x x 0.00032118 0.00108722 0.00178873 0.00790184 
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Table 7: Dollar Durations of Reserves at time 0 

Products DDα  DDβ  

single-payment and n-year deferred whole life annuity-due 3.16 183.86 

single-payment whole life insurance -0.11 -8.87 

single-payment and n-year endowment -0.02 -3.51 

single-payment and n-year term life insurance -0.10 -12.86 

single-payment and n-year pure endowment 0.08 9.35 

n-payment and n-year deferred whole life annuity-due 2.84 131.43 

n-payment whole life insurance -0.13 -12.11 

n-payment and n-year endowment -0.05 -8.28 

n-payment and n-year term life insurance -0.11 -13.76 

n-payment and n-year pure endowment 0.06 5.48 

 
Table 8: Immunized Portfolios with All Weights Positive, 45x = , 20n =  and 3%i =  

Portfolio DDα  DDβ  Weight 

Portfolio 1P     

n-payment whole life insurance -0.13 -12.11 23.25% 

n-payment and n-year term life insurance -0.11 -13.76 7.24% 

n-payment and n-year pure endowment 0.06 5.48 69.51% 

Portfolio 2P     

single-payment and n-year deferred whole life annuity-due 3.16 183.86 1.59% 

single-payment whole life insurance -0.11 -8.87 66.61% 

single-payment and n-year pure endowment 0.08 9.35 31.79% 

Portfolio 3P     

n-payment and n-year deferred whole life annuity-due 2.84 131.43 1.34% 

single-payment whole life insurance -0.11 -8.87 60.32% 

single-payment and n-year pure endowment 0.08 9.35 38.34% 
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Table 9:Immunized Portfolios with Negative Weights, 45x = , 20n =  and 3%i =  

Portfolio DDα  DDβ  Weight 

Portfolio 4P     

n-payment whole life insurance -0.13  -12.11  285.26% 

n-payment and n-year term life insurance -0.11  -13.76  -191.48% 

n-payment and n-year deferred whole life annuity-due 2.84  131.43  6.23% 

Portfolio 5P     

single-payment and n-year deferred whole life annuity-due 3.16  183.86  -0.21% 

single-payment and n-year term life insurance -0.10 -12.86 40.45% 

single-payment and n-year pure endowment 0.08  9.35  59.76% 
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國科會補助專題研究計畫項下赴國外(或大陸地區)出差或研習

心得報告                                     

日期：101年 9月 

                                 

二、 國外研究過程 

個人於 6/30（六）搭乘中華航空的飛機出發。在香港轉機後，於

同一日傍晚抵達倫敦。 

7/3星期二早上先和 Professor David Blake及該系秘書 Jennifer 

Simeon碰面寒暄後，中午就開始和 Pablo Antolin of the OECD who 

is heading up a longevity risk project there正式會談。7/4

早上和該系博士 Ana會談，下午則是和 Professor Blake有深入

的互動，從個人的論文、長壽風險領域的發展、談到研討會的舉

計畫編

號 

NSC 99-2410-H-004 -063 -MY3 

計畫名

稱 

精算與財務方法在壽險保單定價、準備金估計、以及風險管

理之運用 

出國人

員姓名 
蔡政憲 

服務機

構及職

稱 

政治大學風險管理與保險學

系 

出國時

間 

101年 6月 30

日至 

101年 8月 3日 

出國地

點 

英國 London與德國 Munich 
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辦等。7/5和 Andrew Hunt會談。 

第二週先於 7/9（一）下午和該院的 Professor Steven Haberman, 

Deputy Dean of Cass at that time（如今已是院長）進行深度

的學術討論。7/12早上則是到 Government Actuary's Department

和 Martin Lunnon、Adrian Gallop、and Bill Rayner就英國以

及台灣的長壽風險進行討論與意見交換。 

這兩週週間的其餘時段，大多在該系給我的空間工作，主要是寫

論文（請參見研究成果），也會和文章的共同作者 Skype meetings. 

 

7/14清晨從倫敦飛往慕尼黑。星期一開始就「按表操課」： 

Visitor Schedule at Ludwig-Maximilians-Universität Munich 
Prepared by LMU 

 

 

 

Professor Chenghsien Tsai, PhD 

 

National Chengchi University, Taipei, Taiwan 

Department of Risk Management and Insurance 

 

Period: July 14 – July 27 

ctsai@nccu.edu.tw 

 

 

 

Itinerary 

 

Arrival: Saturday, July 14, 09:50 a.m., flight No: EZY 5381  

Departure: Friday, July 27, 04:00 p.m., flight No: HG 8389  

mailto:ctsai@nccu.edu.tw
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Accommodation: Pension Carolin, Kaulbachstr. 42, 80539 München 

 

 

Activities at the MRIC: 

  

July 27,  

09:00 – 10:30 a.m. 

M&M seminar: “Relational Modeling on Mortality 

Rates: International Tests and Hedging” 

 

 

  

Research talks with team members 

   

July 16, 12:00 p.m. 

 

July 16, 03:00 p.m. 

 

July 17, 09:00 a.m. 

 

Lunch with Richard Peter 

 

Coffee with Winnie Sun 

 

Breakfast with Johannes Jaspersen 

July 17, 12:00 p.m. 

 

July 17, 03:00 p.m. 

 

July 19, 03:00 p.m. 

 

July 20, 02:00 p.m. 

 

July 24, 12:00 p.m. 

 

July 24, 03:00 p.m. 

Lunch with Aihua Zhang 

 

Coffee with Stefan Neuß 

 

Coffee with Gunther Kraut 

 

Coffee with Christian Knoller 

 

Lunch with Christoph Lex 

 

Coffee with Vijay Aseervatham 

 

Further agenda items 

  

July 19 

 

 

Lunch with Andreas Richter 
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雖然表面上看起來都是在「吃吃喝喝」，但每一個會談都是在很簡短的寒暄

後就進入雙方研究成果討論與心得的交換，相當「硬」，充分顯示德國人的

認真。 

這兩週間的其餘時間，多在該研究中心給我的研究室寫論文，直到離開慕

尼黑為止。 
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三、 研究成果 

 
 
 
 

Relational Modeling on Mortality Rates:  
International Tests and Hedging 

 
 
 
 

Linus Fang-Shu Chan 
Assistant Professor, Department of Financial Engineering and Actuarial Mathematics 

Soochow University 
No. 56, Section 1, Kuei-Yang Street, Taipei City, Taiwan 10048 

(Tel) +886-2-2311-1531#3628; (Fax) +886-2-2381-2510; E-mail: linuschan@scu.edu.tw 
 
 

Cary Chi-Liang Tsai  
Associate Professor, Department of Statistics and Actuarial Science 

Simon Fraser University 
Burnaby, BC V5A1S6, Canada 

(Tel) +778-7827044; (Fax) +778-7824368; E-mail: cltsai@sfu.ca 
 
 

Chenghsien Tsai* 
Professor, Department of Risk Management and Insurance 

Director, Risk and Insurance Research Center 
National Chengchi University 

No. 64, Section 2, ZhiNan Road, Taipei City, Taiwan 11605 
(Tel) +886-2-2936-9647; (Fax) +886-2-2939-3864; E-mail: ctsai@nccu.edu.tw 

                                                 
* Corresponding author. The author is grateful to the Risk and Insurance Research Center of National Chengchi 
University and the National Science Council of Taiwan for their financial support (Project numbers NSC 
99-2410-H-004 -063 -MY3). 
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Relational Modeling on Mortality Rates:  
International Tests and Hedging 

 
 

ABSTRACT 
 

Modeling the changes/dynamics of mortality rates is important, and scholars have 
developed several types of methods/models to understand and/or forecast mortality rates.  
One of them is called relational model.  The virtues of relational modeling include that it 
takes full account of the information on the relations among the mortality rates of different 
ages and can be applied to cross-sectional fitting/forecasting in addition to time-series 
modeling.   

The contributions of this paper are twofold.  We are the first to conduct global tests 
on the fitting and forecasting capabilities of a relational model relative to two well-known, 
different types of models.  Our second contribution is investigating the efficacy of 
international mortality hedging using the LHT modeling.  Our empirical tests show that 
LHT possesses excellent fitting capabilities and outstanding forecasting accuracies.  Then 
we built several country-region LHT models to establish relevant hedging strategies.  We 
found that the longevity bond linked to a regional mortality index were able to complement 
internal hedging for non-international insurers and make complete hedging of mortality rate 
risk possible.   
 
 

Keywords: mortality rates, fitting, forecasting, hedging, duration 
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INTRODUCTION 

Modeling the changes/dynamics of mortality rates is important.  Mortality rates are a 

significant factor in determining the premiums and reserves of life insurance and annuity 

products, in determining the incomes and benefit outgoes of retirement programs and health 

care systems, and in shaping the population structure of a country.  Ignoring possible 

mortality rate changes may impair the profitability and solvency of a life insurer, jeopardize 

social benefit programs’ solvency and continuity, and produce wrong outlooks for many 

industries.  Therefore, modeling the dynamics of mortality rates is critical to life insurers, 

social benefit programs, and the society as a whole.  

Scholars recognized the importance of mortality rate dynamics and developed several 

types of methods/models to understand and/or forecast mortality rates.  The major ones 

include: explanatory models by demographers and sociologists (please see Stallard (2006) 

and the references therein), factor models started by Lee and Carter (1992) and extended by 

Renshaw and Haberman (2003) , Renshaw and Haberman (2006), Hyndman and Ullah 

(2007), and many others, curve/function fitting models (e.g., McNown and Rogers, 1989; 

Cairns, Blake and Dowd, 2006a; Plat, 2009; Blackburn and Sherris, 2011), financial-risk types 

of models (interest rates: Dahl, 2004; Dahl and Møller, 2005; Biffis, 2005; Cairns, Blake and 

Dowd, 2006b; credit risk: Biffis, 2005; Luciano and Vigna, 2005), and relational modeling 

such as Brass (1971), Zaba (1979), Ewbank, De Leon, and Stoto (1983), Murray et al. (2003), 
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Tsai and Jiang (2011), and Chan, Tsai, and Tsai (2011). 

Relational modeling has its virtues.  Firstly, it takes full account of the information 

on the relations among the mortality rates of different ages.1  These relations may result 

from biological reasons (e.g., older adults have higher mortality rates) or social reasons (e.g., 

the spiked mortality rates of young adults caused by speed driving).  Common-factor models 

did not incorporate such information on the other hand.  Secondly, relational modeling can 

be applied to cross-sectional fitting/forecasting in addition to time-series modeling.  For 

instance, mortality rates on the curve of a later year can be regarded as a transformation of 

those on the curve of an earlier year.  Two mortality rate curves from different regions could 

also be related to each other in terms of their survival probabilities.  This virtue can be 

useful for an insurer to hedge its mortality rate risk using the assets linked to foreign 

mortality. 

The contributions of this paper are twofold.  We are the first to conduct global tests 

on the fitting and forecasting capabilities of a relational model relative to two well-known, 

different types of models.  More specifically, we compare the linear hazard transform (LHT) 

model with the Lee-Carter (LC) and CBD (Cairns, Blake and Dowd, 2006a) models in regard 

to their fitting and forecasting accuracies using the empirical data of 22 countries of female 

and male populations from 1950 to 2007.2  These countries spread over Europe, North 

                                                 
1 The term “mortality rates” in this paper is used loosely to convey the general concept of mortality and survival.  
Similarly, the term “mortality rate curves” may encompass survival probability curves. 
2 The exact sampling periods may vary across countries.  We choose not to trim the sampling periods across 
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America, and Asia-Pacific with various economic status and mortality characteristics.  This 

paper hence greatly expands the scope of Chan, Tsai, and Tsai (2011) in which the samples 

are US and UK only and provides a conclusive assessment on the performance of the LHT 

modeling. 

Our second contribution is investigating the efficacy of international mortality 

hedging using the LHT modeling.  Current undertakers of mortality risk count on the 

so-called internal/natural hedging (Cox and Lin, 2007; Wang et al., 2010), but Chan, Tsai, and 

Tsai (2011) illustrated the deficiency of internal hedging.  Mortality-linked assets are thus 

needed.   Such assets are linked to several countries to date and expose hedgers to basis risk.  

The literature however has not yet provided guidance on how to construct the hedging 

strategies and quantify the associated basis risk.  Applying the LHT modeling to 

cross-country mortality rate curves, in addition to the aforementioned time-series applications 

to individual countries/regions, enables us to quantify the sensitivity of oversea 

mortality-linked assets to the changes of domestic mortality rates.  The hedging strategies 

can be established accordingly.  The statistics obtained from estimating the cross-country 

LHT models can further help us to assess the basis risk.  This paper may encourage the 

demands for mortality-linked assets from broader regions, therefore, and facilitate mortality 

risk management. 

                                                                                                                                                        
countries since the trimming involves deleting some country-year samples. 
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Our empirical tests show that LHT possesses outstanding fitting capabilities.  It 

renders the best fitting results in XX out of XX gender-countries.  When fitted to regional 

mortality indexes of Europe, North America, and Asia-Pacific, the results from LHT are even 

better.  LHT’s fitting errors are the smallest in all regions.  LHT is also best fitted to the 

global indexes that are population-weighted indexes of XX countries. 

The forecasting capabilities of LHT are equivalent to those of LC and CBD at the 

country-gender level.  LHT, LC, and CBD produce the smallest forecasting errors in XX, 

XX, and XX gender-countries respectively.  At the regional and global level that is more 

relevant to mortality-linked assets, LHT renders excellent forecasting results.  Its average 

errors over the 10-year forecasting period are the smallest in XX regions.  Its forecasting 

errors are also the smallest with respect to the global index.  We therefore may conclude that 

relational modeling performs well globally and deserve more attentions from academia and 

mortality risk stakeholders. 

We built several country-region LHT models to establish relevant hedging strategies.  

The hedging strategies are established using the two mortality durations of a longevity bond 

with respect to the parameters of the country-region LHT models.  We found that the 

longevity bond did complement internal hedging and make complete hedging of mortality 

rate risk possible.  The associated basis risk seems to be moderate since the error terms of 

the country-region LHT models have small variances.   
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LINEAR HAZARD TRANSFORM 

Chan, Tsai, and Tsai (2011) applied the concept of linear hazard transform to the 

changes of mortality rates across time and confirmed the success of the application to US and 

UK data.  More specifically, they assumed that there is a linear relation (plus an error term) 

between the forces of mortality (i.e., hazard rates) of two mortality rate curves from years A 

and B A a= + , where a N∈ .  One mathematical representation of such a relation is: 

, , ,
, , , , ,( ) (1 ) ( ) ( ),B A B A A B A B

x n x n x n x n x nt t tµ α µ β ε= + × + +  [0, ],t n∈          (1) 

𝜇𝑥𝐵(𝑡) = �1 + 𝛼𝑏,𝑙
𝐴,𝐵� × 𝑢𝑥𝐴(𝑡) + 𝛽𝑏,𝑙

𝐴,𝐵 + 𝜀𝑏,𝑙
𝐴,𝐵(𝑡) 

where µ denotes the forces of mortality, x b indicates the starting age of the mortality rate 

curve to be studied, l = ω - b, ω  represents the ending age of the studied curve section, α 

and β are constants to be estimated, and ε is the error term.  Parameter α reflects the 

proportional change of the forces of mortality across time while β represents the parallel 

shift. 

Equation (1) implies the following relation between A
k xp  and B

k xp : 

, , , ,, ,, , , , , ,, ,0 0 0 0 0
( ) (1 ) ( ) ( ) ( )1[ ]

k k k k kB A B A A B A B A BA B A Bx n x n x n x n x n x nx n x n
t dt t dt dt t dt t dtkB A

k x k xp e e p e e
µ α µ β ε εα β− − + × − − −+ − ×∫ ∫ ∫ ∫ ∫= = = × × ,  (2) 

where kpx denotes the probability that a person with age of x remains alive for k periods of 

time.  Taking the natural logarithm on both sides of Equation (2) yields: 

, , ,
, , ,0

( ln ) (1 ) ( ln ) ( )
kB A B A A B A B

k x x n k x x n x np p k t dtα β ε− = + × − + × + ∫ .              (3) 

Then the parameter pair ( , ,
, ,,A B A B

x n x nα β ) can be estimated by minimizing the sum of squared 
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integrated errors 
2

,
,0

1

( )
n k A B

x n
k

t dtε
=

 
  ∑ ∫  on the time-series sample set {( ln A

k xp− , ln B
k xp− ): 

1,2, ,k n=  }.   

GLOBAL TIME-SERIES TESTS 

Data, Benchmarks, and Measures 

We draw historical one-year death rates xq  from the Human Mortality Database 

(HMD).  The drawn data cover both genders of 23 countries3 for the age section from 45 to 

90.4  The sampling period starts from 1950 with slightly varying ending periods due to data 

availability.  The sampled countries with corresponding sampling periods are listed in Table 

1.    

[Insert Table 1 Here] 

We choose two well-known models as the benchmarks to be compared with the LHT 

model: the Lee-Carter model and the CBD model.  The Lee-Carter model is probably the 

most popular model.  It is essentially a one-factor, linear model assuming that: 

, ,log x A x x A x Aq a b K ε= + + ,           (4) 

where a and b are age-specific parameters, κ is the factor used to capture the time-varying 

component of mortality rates, and ε is the error term.5  We follow Lee and Carter (1992) to 

estimate and forecast the age-specific parameters.   

                                                 
3 Iceland was excluded from this study because it contained too many zero mortality rates. 
4 Choosing this section of the mortality rate curve is consistent with CBD (2006a), and this section covers the 
underlying populations’ ages of most mortality-linked assets (e.g., the longevity bonds issued by Swiss 
Reinsurance Company). 
5 The original Lee-Carter model was on the central death rate.  We substitute the one-year death rate for the 
central death rate to ensure that the LHT, Lee-Carter, and CBD models use the same raw data. 
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The other benchmark that we choose is the CBD model that is a good, popular 

representation of curve/function fitting models.  The model specification is: 

(1) (2)
, ,logit ( )x A A A x Aq K K x x ε= + − + ,                    (5) 

where , , ,logit / (1 )x A x A x Aq q q= − , and both parameters (1)
AK  and (2)

AK  are assumed to 

follow random walks with drifts (Cairns et al., 2009).   

We adopt two accuracy measures, RMSE and MAE, with definitions as follows: 



1

1

1
2

, ,
1

1 1 ( )
( )

I

A T

x A x A
A A x xI

RMSE q q
T x

ω

ω

+ −

= + =

= −
−∑ ∑                  (4) 

and 



1

1

1

, ,
1

1
( )

I

A T

x A x A
A A x xI

MAE q q
T x

ω

ω

+ −

= + =

= −
− ∑ ∑ ,                     (5) 

where q� represents the fitted/forecasted value, BI denotes the first tested target year, and T 

stands for the length of the tested period.   

In-Sample Fitting 

In-sample fitting is done by fitting Equation (3) onto the mortality rate curves of years 

A and B.  We first draw two series of xq  from our dataset and calculate corresponding  

A
k xp  and B

k xp .  Taking the natural log of these k xp  and then running the regular 

regression analysis on Equation (3) yields α  and β .  Combining the estimated α  and 

β  with A
k xp  produces 

 1
,, [ ] k

k x Ak x Bp p eα β+ − ×= × .  Since  

, ,1x B x Bq p= − , we are able to 

compute RMSE and MAE to measure fitting errors.  Repeating the steps for B from BI to 
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BI+T with a = 1, we obtain the following table.6   

[Insert Table 2 here] 

Table 2 shows that the LHT model produces better global fits than both benchmark 

models.  From Table 2a we count that LHT renders the smallest RMSE on females’ 

mortality rates in 14 out of 23 countries, followed by Lee-Carte’s 9 countries.  The gap is 

smaller in terms of MAE: 13 by LHT vs. 10 by Lee-Carter.  The LHT model performs 

similarly well on males’ mortality rates as we can see from Table 2b.  It generates the 

smallest RMSE and MAE in 14 and 12 countries respectively, with Lee-Carter wining in 6 

and 7 and CBD’s 3 and 4.   

In terms of the global average fitting errors, LHT’s improvements over Lee-Carter and 

CBD with regard to RMSE are 11.21% and 54.82% on females’ data.7  The improvement 

ratios in regard of MAE are 5.43% and 52.00% respectively.  On males’ data, LHT’s fitting 

errors on the basis of global average are smaller than those of Lee-Carter and CBD by 

14.49% and 19.84% when measured by RMSE and 9.53% and 15.28% in terms of MAE.  

The improvements are robust across regions.  All regional average improvement 

ratios of LHT over the benchmark models are positive on both genders with regard to both 

fitting error measures.  For instance, the improvement ratios of the LHT model relative to 

                                                 
6 For instance, Japan’s sampling period is from 1950 to 2008.  When a = 1, BI equals to 1950+a=1951 and T = 
2008-1951+1=58. 
7 The improvement percentage/ratio is defined as -(the error produced by LHT – that by a benchmark) / the 
error by the benchmark.  Therefore, a positive/negative improvement ratio implies that LHT produces a 
smaller/larger fitting error. 



 
 

63 

Lee-Carter in terms of RMSE on females’ data are 5.59%, 26.78%, and 32.62% in Europe, 

North America, and Asia-Pacific regions respectively.  The improvements of LHT relative to 

CBD on males’ data with regard to MAE are 13.58% in Europe, 27.36% in North America, 

and 12.91% in Asia-Pacific regions. 

At the country level, the LHT model performs particularly well (with improvement 

ratios of 25% and above by both fitness measures) on females’ mortality rates relative to the 

benchmark models in France, Spain, UK, US, and Japan.  Its performance is relatively bad 

(with negative improvement ratios of 10% and worse by both measures) to Lee-Carter in 

Czech Republic and Slovakia.  On males’ mortality rates, the LHT model performs 

particularly well in four countries: Netherlands, UK, US, and Japan.  The improvement 

ratios of LHT to the benchmark models are negative to some extent in terms of both fitness 

measures in Finland and New Zealand. 

Out-of-Sample Forecasting 

Following the practices of many papers including Lee-Carter (1992), Nelson and 

Siegel (1987), and Cairns et al. (2009), we model the dynamics of the two parameters in 

Equation (3) as random walks with drifts.  More specifically, we assume that: 

, 1 1,
, , , , ,

A A A A A
x n x n x n x n x n

γγ γ γ γ ε+ −− = ∆ = ∆ + ,     (6) 

where ,x nγ∆  denote the long-term mean change (i.e., drift) of γ, γ = α or β, and 

, ,~ (0, )x n x nNγ γε σ .  We estimate the drifts using the F-year data prior to a given year A with 
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the estimators being the average changes of parameter values during this F-year period:   

                          
 

11,

, ,
1

1
1

AA F i

x n x n
i A FF

γ γ
−−

= − +

∆ = ∆
− ∑  ,               (7) 

where , 1 1,
, , ,ˆ ˆ ˆi i i i i

x n x n x nγ γ γ+ −∆ = −  and 𝛾�b,l
𝑖−1,𝑖 is estimated during in-sample fitting.8  We set F = 40 

for out-of-sample forecasting tests, after weighting the tradeoff between the adequacy of 

in-sample sizes and the number of out-of-sample tests. 

The projected parameter , 1
,

A A
x nγ +
  is assumed to satisfy: 



1,
, 1 1,

, , ,ˆ
A F

A A A A
x n x n x nγ γ γ

−
+ −= + ∆ .        (8)9 

Combining the projected parameters with the mortality rates of year A  using Equation (3) 

could produce the projected mortality rates of the person aged x in year A+1 (i.e., 

1A

k xp
+

).  

Then we calculate RMSE and MAE in the same way as in the in-sample fitting section to 

measure the forecasting errors.  Repeating the above procedures for A from 1990 to the most 

recent year available produces the following table. 

[Insert Tables 3 Here] 

Table 3 demonstrates that the LHT model produces the most accurate forecasting 

among the tested models.  From Table 3a we see that the improvement ratios of LHT over 

Lee-Carter and CBD on RMSE when predicting females’ mortality rates are 28% and 66% 

respectively, in terms of the global average.  The improvement ratios with regard to MAE 

                                                 
8 For instance, A can be set as 1991 with F = 40.  This setup would mean that the first pair of years used to 
estimate “historical” γ is 1951-1952.  There would be 40 γ and 39 ∆γ. 
9 We use the top script   to indicate a projected value,   to denote an estimated value, and  for an 
averaged value. 
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are similarly significant: 33% and 59%.  In predicting males’ mortality rates, the global 

average improvement ratios of LHT upon Lee-Carter and CBD are 9% and 41% in terms of 

RMSE and 15% and 36% with regard to MAE, as we can see from Table 3b.   

Furthermore, the LHT model renders the smallest RMSE and MAE in 18 and 20 out 

of the 23 sampled countries when predicting females’ mortality rates, as we can count from 

Table 3a.  In 15 countries including UK, US, Australia and Japan, the improvement ratios of 

LHT over both benchmarks are more than 25% in terms of both accuracy measures.  From 

Table 3b we count that LHT wins 15 and 16 rounds in forecasting males’ mortality rates in 

terms of RMSE and MAE respectively.  It works particularly well in 9 countries including 

France, Italy, Sweden, Czech Republic, and Australia. 

The comparative advantage of the LHT model to the benchmark models are more 

significant in out-of-sample forecasting than in in-sample fitting tests.  The LHT model 

provides the most accurate results for more countries in forecasting tests than in fitting tests.  

More specifically, it stands out in 18 (female; RMSE), 20 (female; MAE), 15 (male; RMSE), 

16 (male; MAE) during forecasting tests while wins in 14 (female; RMSE), 13 (female; 

MAE), 14 (male; RMSE), 12 (male; MAE) for fitting tests.  The global-average 

improvement ratios of LHT upon benchmarks are also higher in forecasting than in fitting 

with one exception only:10 28% vs. 11% (female; RMSE; with respect to Lee-Carter), 66% 

                                                 
10 The exception happens when LHT is compared with Lee-Carter using males’ data judging by RMSE: 9% vs. 
14%.  The bad forecasting of LHT for the males of Ireland causes this exception.  The improvement ratio to 
Lee-Carter is -162% in forecasting versus -3% in fitting. 
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vs. 55% (female; RMSE; to CBD), 33% vs. 5% (female; MAE; Lee-Carter), 59% vs. 52% 

(female; MAE; CBD), 41% vs. 20% (male; RMSE; CBD), 15% vs. 10% (male; MAE; 

Lee-Carter), and 36% vs. 15% (male; MAE; CBD).   

Out of the solid performance of the LHT model as depicted in the above, we observe 

that LHT exhibits better forecasting results on females’ mortality rates than on males’.  The 

improvement ratios of LHT upon two benchmarks, on the basis of the global average with 

regard to both accuracy measures, are higher when predicting females’ mortality rates than in 

predicting males’.  Furthermore, all 12 regional improvement ratios11 in predicting females’ 

mortality rates are all positive and noteworthy (21% to 72%) while one is negative and one 

shows immaterial improvement (4%) when predicting males’. 

Table 3 also displays some weak spots of the LHT model.  For instance, it works 

particularly badly, compared to both benchmarks, in Ireland for both females’ and males’ 

mortality forecasting with regard to both accuracy measures.  It does not work well in 

Bulgaria and Hungary relative to the Lee-Carter model when forecasting females’ mortality 

rates.  In forecasting males’ mortality rates, LHT is inferior to CBD in Hungary and to 

Lee-Carter in Bulgaria, Netherlands, Norway, and Canada.   

Fitting and Forecasting on Multi-Country Index 

                                                 
11 The 12 regional improvement ratios are from comparing with two benchmark models by two accuracy 
measures in three regions. 
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Observing that many mortality-linked assets link to multi-country indexes rather than 

single-country mortality rates, we conduct in-sample fitting and out-of-sample forecasting 

tests on multi-country indexes.  We establish equally weighted mortality indexes for 

European, North America, and Asia-Pacific regions and for the 23 sampled countries as a 

whole.  The tests results are shown in Table 4. 

[Insert Table 4 Here] 

Table 4 demonstrates that the LHT model produces the most accurate results among 

the three tested models in both fitting and forecasting tests.  In the fitting tests, all but one 

improvement ratios are positive and 24 out of 32 ratios are larger than 25%.12  The 

performance of LHT is even better in forecasting.  Every improvement ratio is positive, and 

only two of the 32 ratios are smaller than 25%.   

We notice that LHT works particurlarly well for the European and global indexes.  

All fitting improvement ratios are larger than 20% and all forecasting ones are larger than 

59%.  We speculate that the cross-country averaing makes the mortality rate curve 

smoothier with more stable changes across time.  The relations between two cross-country 

mortality rate curves thus come closer to linear, which gives the LHT model more edges in 

tests.  

CROSS-COUNTRY HEDGING 

                                                 
12 The exception is the case when LHT is compared with Lee-Carter in fitting the Asia-Pacific region index 
judged by MAE.  There are 32 cases in total: comparing LHT with two benchmark models on both genders’ 4 
multi-country indexes with two accuracy measures. 
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Managing mortality rate risk will most likely involves cross-country hedging.  Chan, 

Tsai, and Tsai (2011) demonstrated the deficiency of internal hedging and called on the 

development of mortality-linked assets.  Mortality-linked assets are however scarce and 

usually tie to a multi-country mortality index.  Therefore, it may be necessary for life 

insurers and/or social benefits programs to resort to the assets that link to foreign mortality 

rates.   

Few papers addressed the issue of the cross-country hedging.  Zhou, Li, and Tan (2011) 

studied the impact of population basis risk, i.e., the risk due to the mismatch in the 

populations of the exposure and the hedge, on prices of mortality-linked securities.  We in 

this section demonstrate how relational modeling can be applied to such hedging. 

Suppose that there is an insurer selling life insurance and annuity products in country C.  

The associated reserves will depend on future survival probabilities and can be expressed in a 

functional form by V({ 𝑝𝑥,𝑌
𝐶

𝑘 }) in which { 𝑝𝑥,𝑌
𝐶

𝑘 } indicates the forecasted one-year survival 

probabilities that take possible mortality improvements into account for age x in country d .  

Assume that there exists an asset linked to the mortality rates of another country / region r .  

The value function of this asset is expressed by ({ })r
xA q .  How can the insurer utilize the 

asset to hedge its mortality risk? 

Applying LHT to the time-series mortality rates of country d  and to the 

cross-section mortality rates between country d  and region r  will help.  We can calculate 
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the mortality durations of both reserves and assets and then employ the strategy of mortality 

duration matching that is commonly seen in interes rate risk management to hedge the 

insurer’s mortality risk.  To see this, assume that the linear relationship between the forces 

of mortality of two mortality rate curves for country d  and region r  has been obtained 

from (6): 

, ,
, , , ,

ˆˆˆ ( ) (1 ) ( ) ,r d r d d r
x n x n x n x nt tµ α µ β= + × +  [0, ].t n∈                  (6) 

The associated relationship for the k-year survival probaobilties is 
, ,
, ,

ˆˆ1ˆ ( )
d r d r
x n x n kr d

k x k xp p eα β+ − ×= × . 

In other words, we take the mortality rate curves of some countries as bases and regard the 

curves implied by the indexes composed of the mortality rates of the countries in the same 

regions as targets.  The base countries tested are Canada, United Kingdom, and Japan with 

the target indexes of North America, Europe, and Asia-Pacific respectively.   

The above concept can be applied to the relations of mortality rates across countries as 

well.  Later in the paper we will assume that the forces of mortality of a particular mortality 

rate curve in region r is a linear transform of those in country d.  More specifically, we will 

implement the above procedure on forecasted survival probabilities {( ln d
k xp− , ln r

k xp− ): 

1,2, ,k n=  } to estimate the parameter pair ( , ,
, ,,d r d r

x n x nα β ) that reflect the relations between the 

two mortality rate curves of countries d  and r .  For instance, the transformation 

decomposes the relations between the forces of mortality of countries d  (domestic) and r  

(other region) into two components: a proportional relation reflected by ,d rα  and a parallel 
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difference determined by ,d rβ .  Assuming ,d rβ  = 0 implies that the force-of-mortality 

curves of the two countries relate to each other proportionally.  Assuming ,d rα  = 0 

corresponds to the case of a constant difference between the two curves of the countries. 

The fitting results on the sampling period from 1950 to 2007 are presented in Table 6. 

[Insert Table 6 Here] 

Denote ,ˆ( )r
x nA µ  as the value of a longevity bond based on the fitted force of mortality 

,ˆ r
x nµ  for region r .  Then  

   , ,
, 0

ˆ ˆ((1 ) ) ( )
ˆ( ( )) limr r

r r r
r x n x n
x n r

A A
DD A

α α

α mm
m

α→

+ × −
= −                (7) 

and 

, ,
, 0

ˆ ˆ( ) ( )
ˆ( ( )) limr r

r r r
r x n x n
x n r

A A
DD A

β β

m β m
m

β→

+ −
= −                    (8) 

are the mortality durations with respect to a proportional change and a parallel shift in the 

forces of mortality ,ˆ r
x nµ  for region r  (see Chan, Tsai, and Tsai, 2011).  Similarly, the 

mortality durations with respect to a proportional movement and a parallel change in the 

forces of mortality ,
d
x nµ  for country d  are 

, , , ,
, , , , , ,

, 0

ˆ ˆˆ ˆ((1 ) (1 ) ) ((1 ) )
ˆ( ( )) limd d

d r d d d r d r d d r
r x n x n x n x n x n x n
x n d

A A
DD A

α α

α α m β α m β
m

α→

+ × + × + − + × +
= −   (9) 

and 

, , , ,
, , , , , ,

, 0

ˆ ˆˆ ˆ((1 ) ( ) ) ((1 ) )
ˆ( ( )) limd d

d r d d d r d r d d r
r x n x n x n x n x n x n
x n d

A A
DD A

β β

α m β β α m β
m

β→

+ × + + − + × +
= −  , (10) 

respectively.  

Future Work 
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We will complete the above time-series and cross-section estimations by the conference.  

The global, time-series analyses on fitting and forecasting capabilities of the LHT, LC, and 

CBD models will render conclusions on their relative performance.  Furthermore, we plan to 

calculate the mortality durations of the mortality bond designed in Lin and Cox (2005) under 

various combinations of the tested base countries and target regions.  The statistics obtained 

from estimating ,d rα  and ,d rβ  will be used to quantify the basis risk of using an asset 

linked to different mortality rates as a hedging tool.  The calculation and estimation results 

will be of interest to the literature and to the undertakers of mortality risk. 
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Table 1   Sampled countries from the Human Mortality Database 
 

Geographical Region                   
(Number of Countries) 

Country Sampling Period 

Asia-Pacific (3) 
Australia 1950-2007 
New Zealand 1950-2008 
Japan 1950-2009 

Europe (18) 

Hungary;  Ireland;  Spain 1950-2006 

France;  Italy;  Switzerland 1950-2007 

Austria;  Denmark;  Netherlands; 
Norway;  Sweden;   1950-2008 

Belgium;  Bulgaria;  Czech 
Republic;  Finland;  Portugal;  
Slovakia;  United Kingdom 

1950-2009 

North America (2) Canada;  United States 1950-2007 

 
 
Table 2:  Descriptive Statistics on the Fitting Improvement Ratios of the LHT Model with 
respect to the Lee-Carter and CBD Models across 22 Countries of Male Populations 
(a) Performance Relative to Lee-Carter 

 

No. of 

Samples 
Mean (%) Median (%) S.D. (%)      Max. (%) Min. (%) 

Improvement 

Ratio in RMSE 
22 36.91 37.45 16.53 69.89 8.02 

Improvement 

Ratio in MAE 
22 43.15 43.12 14.41 68.68 20.06 

(b) Performance Relative to CBD 

 

No. of 

Samples 
Mean (%) Median (%) S.D. (%)      Max. (%) Min. (%) 

Improvement 

Ratio in RMSE 
22 68.86 66.61 9.46 85.59 54.46 

Improvement 

Ratio in MAE 
22 69.78 68.42 9.10 84.86 54.68 
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Table 3:  In-Sample Fitting Results 

 
RMSE MAE 

Country  LHT LC 

Improvement 

Ratio to LC 

(%) 

CBD 

Improvement 

Ratio to 

CBD (%) 

LHT LC 

Improvement 

Ratio to LC 

(%) 

CBD 

Improvement 

Ratio to CBD 

(%) 

Euro 
          

Austria 0.0059 0.0071 17.81 0.0167 64.83 0.0030 0.0040 26.29 0.0091 67.29 

Belgium 0.0061 0.0088 31.29 0.0174 65.01 0.0029 0.0050 41.41 0.0092 68.23 

Bulgaria 0.0082 0.0090 9.04 0.0210 60.89 0.0041 0.0051 20.06 0.0114 63.95 

Czech Republic 0.0069 0.0075 8.02 0.0201 65.48 0.0034 0.0043 20.81 0.0103 66.72 

Denmark 0.0059 0.0107 45.49 0.0146 59.88 0.0029 0.0061 52.12 0.0074 60.47 

Finland 0.0067 0.0096 30.42 0.0154 56.33 0.0037 0.0056 33.91 0.0082 55.06 

France 0.0036 0.0059 38.37 0.0158 77.19 0.0019 0.0034 44.82 0.0090 79.24 

Hungary 0.0074 0.0135 45.13 0.0163 54.67 0.0037 0.0081 54.53 0.0089 58.83 

Ireland 0.0068 0.0082 17.53 0.0202 66.37 0.0037 0.0050 27.24 0.0108 66.16 

Italy 0.0039 0.0068 41.84 0.0158 75.11 0.0020 0.0040 50.49 0.0084 76.44 

Netherlands 0.0039 0.0102 62.20 0.0176 78.10 0.0020 0.0058 65.37 0.0088 77.32 

Norway 0.0067 0.0095 28.90 0.0167 59.61 0.0038 0.0055 31.23 0.0089 57.69 

Portugal 0.0061 0.0078 21.80 0.0171 64.53 0.0032 0.0045 29.58 0.0102 68.61 

Sweden 0.0047 0.0082 42.25 0.0171 72.30 0.0025 0.0046 45.34 0.0090 72.47 

Switzerland 0.0057 0.0074 23.27 0.0172 66.86 0.0029 0.0042 31.45 0.0092 68.94 

Slovakia 0.0075 0.0109 31.50 0.0164 54.46 0.0040 0.0066 38.96 0.0089 54.68 

United Kingdom 0.0030 0.0070 57.59 0.0206 85.59 0.0016 0.0040 60.45 0.0105 84.86 

Average 0.0058 0.0087 32.50 0.0174 66.31 0.0030 0.0051 39.65 0.0093 67.47 

North America 
          

Canada 0.0030 0.0070 57.59 0.0206 85.59 0.0016 0.0040 60.45 0.0105 84.86 

United States 0.0018 0.0059 69.89 0.0118 84.99 0.0010 0.0033 68.68 0.0063 83.60 

Average 0.0024 0.0064 63.74 0.0162 85.29 0.0013 0.0037 64.57 0.0084 84.23 

Asia-Pacific 
          

Australia 0.0047 0.0082 42.25 0.0171 72.30 0.0025 0.0046 45.34 0.0090 72.47 

Japan 0.0037 0.0078 53.33 0.0158 76.81 0.0018 0.0049 62.67 0.0090 79.86 

New Zealand 0.0050 0.0078 36.53 0.0156 68.00 0.0027 0.0044 38.10 0.0083 67.31 

Average 0.0045 0.0080 44.04 0.0161 72.37 0.0023 0.0046 48.70 0.0088 73.21 
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Table 4:  Descriptive Statistics on the Forecasting Improvement Ratios of the LHT Model 
with respect to the Lee-Carter and CBD Models across 22 Countries of Male Populations 
(a) Performance Relative to Lee-Carter 

 

No. of 

Samples 
Mean (%) Median (%) S.D. (%)      Max. (%) Min. (%) 

Improvement Ratio in 

RMSE 
22 10.57 12.81 42.74 66.93 -72.38 

Improvement Ratio in 

MAE 
22 12.15 19.17 41.78 70.69 -70.48 

(b) Performance Relative to CBD 

 

No. of 

Samples 
Mean (%) Median (%) S.D. (%)      Max. (%) Min. (%) 

Improvement Ratio in 

RMSE 
22 30.09 44.22 33.73 77.85 -56.01 

Improvement Ratio in 

MAE 
22 24.02 34.19 39.45 78.72 -89.04 
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Table 5:  Out-of-Sample 5-Year Forecasting Results 
  RMSE MAE 

Country LHT LC 

Improvement 

Ratio to LC 

(%) 

CBD 

Improvement 

Ratio to 

CBD (%) 

LHT LC 

Improvement 

Ratio to LC 

(%) 

CBD 

Improvement 

Ratio to 

CBD (%) 

Euro 
    

  
     

Austria 0.0118  0.0080  -48.78 0.0129  8.63 0.0079  0.0049  -60.61 0.0081  3.06 

Belgium 0.0086  0.0196  55.99 0.0177  51.29 0.0051  0.0109  53.83 0.0100  49.47 

Bulgaria 0.0371  0.0215  -72.38 0.0313  -18.70 0.0230  0.0135  -70.48 0.0178  -29.33 

Czech Republic 0.0079  0.0098  19.20 0.0141  44.04 0.0046  0.0066  31.40 0.0074  38.51 

Denmark 0.0056  0.0078  28.07 0.0118  52.13 0.0035  0.0058  40.06 0.0066  47.35 

Finland 0.0091  0.0231  60.43 0.0202  54.90 0.0058  0.0124  53.48 0.0113  48.68 

France 0.0045  0.0100  54.65 0.0204  77.85 0.0026  0.0052  49.35 0.0124  78.72 

Hungary 0.0083  0.0222  62.47 0.0168  50.39 0.0043  0.0148  70.69 0.0103  58.17 

Ireland 0.0119  0.0114  -4.65 0.0159  25.30 0.0074  0.0080  6.93 0.0078  4.69 

Italy 0.0111  0.0094  -17.85 0.0111  0.02 0.0073  0.0060  -21.48 0.0070  -4.45 

Netherlands 0.0114  0.0191  40.24 0.0158  27.74 0.0064  0.0110  41.79 0.0088  27.72 

Norway 0.0286  0.0232  -23.30 0.0271  -5.51 0.0154  0.0132  -17.07 0.0152  -1.77 

Portugal 0.0080  0.0057  -41.21 0.0239  66.26 0.0048  0.0040  -21.57 0.0143  66.09 

Sweden 0.0112  0.0111  -0.49 0.0200  44.22 0.0064  0.0067  3.22 0.0117  45.06 

Switzerland  0.0141  0.0086  -64.29 0.0130  -8.54 0.0087  0.0051  -69.39 0.0081  -6.53 

Slovakia 0.0269  0.0212  -27.09 0.0232  -15.86 0.0158  0.0136  -15.75 0.0116  -36.29 

United Kingdom 0.0062  0.0104  40.32 0.0114  45.59 0.0042  0.0065  34.82 0.0060  29.86 

Average 0.0131  0.0142  3.61 0.0180  29.40 0.0078  0.0087  6.43 0.0103  24.65 

North America 
    

  
     

Canada 0.0062  0.0104  40.32 0.0114  45.59 0.0042  0.0065  34.82 0.0060  29.86 

United States 0.0066  0.0201  66.93 0.0204  67.49 0.0043  0.0103  58.04 0.0117  63.17 

Average 0.0064  0.0152  53.63 0.0159  56.54 0.0043  0.0084  46.43 0.0089  46.51 

Asia-Pacific 
    

  
     

Australia 0.0112  0.0111  -0.49 0.0200  44.22 0.0064  0.0067  3.22 0.0117  45.06 

Japan 0.0130  0.0139  6.42 0.0084  -56.01 0.0082  0.0086  4.54 0.0043  -89.04 

New Zealand 0.0070  0.0168  58.00 0.0180  60.89 0.0041  0.0096  57.57 0.0103  60.29 

Average 0.0104  0.0139  21.31 0.0155  16.37 0.0062  0.0083  21.77 0.0088  5.44 
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Table 6:  In-Sample Fitting Errors of Country to Region Index 
  

Country / Region RMSE MAE 

Canada / North American 0.002196 0.001438 

United Kingdom / Europe 0.005409 0.003908 

Japan / Asia-Pacific 0.008017 0.005669 
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