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Abstract

This study extends the mean-reversion dynamic framework of (Pilipovic, Energy risk: Valuing

and managing energy derivatives, 1997) and (Schwartz, The stochastic behavior of commodity

prices: Implications for pricing and hedging, Journal of Finance 52, 1997, 923) and focuses on

developing a variety of continuous-time commodity-pricing and hedging models by analyzing

the pricing and hedging errors found in an empirical investigation of options contracts on

light sweet crude oil traded on the New York Mercantile Exchange. Thus, this study contrib-

utes to furthering the applicability of the models developed. The inclusion of the benchmark

Black-Scholes pricing model generates systematic biases that are consistent with (Bakshi, Cao

and Chen, Handbook of Quantitative Finance and Risk Management, 2010). The mean-rever-

sion jump-diffusion and seasonality option-pricing model best describes the extreme price

volatility experienced during a financial collapse, but the mean-reversion and seasonality

option-pricing model offers the best pricing and hedging capability for other periods. The

performances of hedging models are generally consistent with pricing errors.

Keywords Mean-reversion; Jump-diffusion; Seasonality; Systematic biases

JEL Classification: C52, G13

1. Introduction

With the rise and fall of international crude oil prices and the increasing need for

hedging in the market, crude oil derivatives were rapidly developed to allow trad-

ers to avoid the volatility risks associated with energy prices. Most participants in
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the energy-commodity markets use futures and options to hedge against crude oil-

related risks.

Understanding the price dynamics of crude oil is essential to developing proper

pricing formulae and to executing an optimal hedging strategy. The pricing of the

oil market is complex. The price of crude oil is affected by seasonal and geopoliti-

cal factors (such as war), in addition to changes in its demand and supply. Because

crude oil prices are exposed to – and can be affected by – drastic structural

changes caused by external shocks, the highest crude oil price from the last five

years is five times higher than the lowest crude oil price during that same period.1

Price volatility increases the risk to participants in the crude oil markets, which

directly or indirectly destabilizes industry production and profit generation and, in

turn, can lead to increased levels of anxiety throughout the entire global economy.

The present study develops a variety of theoretical futures- and option-pricing for-

mulae by considering these stylized factors affecting the price of crude oil. With

the goal of constructing the best-fitting futures- and option-pricing models for

crude oil market participants, this empirical investigation is conducted using actual

market data.2

The option-pricing models proposed by Black and Scholes (1973) and Merton

(1973) (BS models) were derived by relying on the assumption that the price

dynamics of underlying assets are consistent with changes in the Brownian motion

process. However, the characteristics of energy derivatives are not identical to finan-

cial market derivatives. Consequently, the option-pricing model proposed by Black

and Scholes (1973) and Merton (1973) may not provide the most accurate pricing

for crude oil derivatives.

Schwartz (1997) argues that the long-run dynamics of spot prices on the com-

modities futures market will tend to return to their long-run averages (i.e., the

Mean-Reversion (MR) process), and applied a mean-reversion model in the explo-

ration of futures and option pricings of commodities such as oil, copper, and gold.

The results indicated that the price dynamics of commodities possess significant

MR characteristics. Since then, many studies – including Miltersen and Schwartz

(1998), Bjørk and Landen (2000), Jaillet et al. (2004), and Koekebakker and Lien

(2004) – also employed the MR model in their studies in developing evaluation

models for their research assets. Pilipovic (1997) analyzed the indexed options of

the S&P 500 and energy prices (using price or log-price distributions) and found

that the S&P 500 index option lognormal model corrects to the benchmark models,

whereas various other energy commodities – such as West Texas Intermediate

(WTI) crude oil (also known as light sweet crude oil on international markets),

heating oil, and natural gas – are better treated by the MR pricing model.

1Data source: Futures Industry Association website.
2The dataset consists of the daily futures and option prices of West Texas Intermediate

(WTI) crude oil that is also known as light sweet crude oil on the NYMEX from July 1, 2007

to April 30, 2012.
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After observing the effects of seasonality in the energy market, Pilipovic (1997)

found that energy commodity prices are related to the seasonal demand for energy.

For example, the demand for heating oil is higher in winter than in summer; thus,

the price of heating oil is comparatively higher in winter than in summer. Pilipovic

(1997) added this characteristic to the MR model using crude oil and electricity

prices as research data – assuming that seasonality is a trigonometric model – to

explain the trend in the long-run volatility of the price. Weron (2006) and Mayer

et al. (2011) believe that the time trends in long-run price changes should be

included because adding the time trend as a seasonal factor allows seasonality to be

more consistent with changes in reality.

Deng (1999) further combined both the commodity price characters of MR and

jump diffusion into a mean-reversion jump-diffusion (MRJD) model to describe the

price dynamics of energy – with electricity as an example – and applied a variety of

different jump models to describe the unique spike phenomenon in electricity prices.

In fact, as with changes in other energy prices, it is not difficult to show that dramatic

changes in crude oil prices are frequently affected by external factors, including an

increase or decrease in crude oil production, accidents in oil fields, and political wran-

gling or war involving oil-producing countries. These often result in drastic short-run

fluctuations in crude oil prices. Cartea and Figueroa (2005) also applied the MRJD

model to the energy market to analyze the dynamic process of spot price returns in

the electricity market in the United Kingdom. The analysis of the distribution of the

rate of return offered an explanation for the existence of jump phenomena in the mar-

ket price for electricity. Thus, embedding jump risks into the MR model transforms it

into a MRJD model for deriving the closed-form solution of the futures price.

From a financial perspective, crude oil is typically thought to be part of the

commodities market. However, crude oil spot prices have certain characteristics that

distinguish crude oil from most other financial products. In this study, we use an

assortment of pricing models to explore the pricing and hedging performance of

crude oil options contracts trading on the New York Mercantile Exchange (NY-

MEX);3 these models are themselves based on a variety of continuous-time models

of spot-price dynamics that have been successfully employed in other commodity

markets, including the BS, MR, MRJD, MRS (mean-reversion and seasonality), and

MRJDS (mean-reversion jump-diffusion and seasonality) pricing models. Moreover,

we analyze the pricing errors between the theoretical and actual prices of WTI

crude oil options in these five models with a moneyness-maturity categorization. A

continuous-time framework has the substantial advantage of allowing closed-form

valuation for options contracts. Furthermore, in exploring the performance of

options in hedging, this study employs a dynamic delta-hedging portfolio that repli-

cates options prices regardless of transaction costs and analyzes the effect of each

evaluation model and of the number of days per delta adjustment on the perfor-

mance of a particular hedging strategy.

3NYMEX merged into the CME group in 2008.
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Our empirical investigation sampled the Bloomberg dataset of the WTI light

sweet crude oil price, futures, and options that traded on the NYMEX between 1

July 2007 and 30 April 2012. To examine the fitness of the option-pricing formulae

that are developed, the sample data are divided into the financial collapse period

and the non-financial collapse period. The empirical results show that the MRJDS

model best describes the extreme price dynamics that characterize a financial col-

lapse. However, during other periods, the MRS model is more accurate because it

generates a smaller pricing error. The performance of the MR series model was

actually better than that of the Black-Scholes model, which indicates that the WTI

crude oil price dynamic has MR characteristics. This conclusion is consistent with

the findings by Schwartz (1997) that commodity price dynamics are more suited

for the theory of the mean-reversion model. In an analysis of hedging performance,

the pros and cons of the model are generally consistent with the pricing error.

Regardless of which period was considered, the hedging error associated with

adjusting delta for each 5-day period is approximately twice as large as that of the

daily delta adjustment. Furthermore, the study also compared various models to

show that a model to obtain a better price evaluation and hedging performance is

best chosen based on spot characteristics at different periods; this is contrary to the

position that a more complex model is better.

The contents of this paper are organized as follows. Section 2 introduces the

assumptions of the theoretical models. Section 3 introduces the development of the

model and hedging ratios. Section 4 conducts an empirical investigation. Section 5

draws conclusions.

2. Models and Hypotheses

This section reviews a variety of price dynamics and the model assumption for the

further development of European option-pricing formulae and their hedging ratios.

2.1. Black-Scholes Model

The option-pricing model proposed by Black and Scholes (1973) hypothesizes a

perfect market in which interest rate volatility remains constant and trades occur

continuously. Under such a framework, the dynamic process of the spot price

under a risk-neutral measure Q may be obtained through measurement conversion

as:

dSt
St

¼ rdt þ rdWQ
t ð1Þ

where St is the spot price; r is the instantaneous volatility of the spot price; WQ
t is

Geometric Brownian motion under a risk-neutral measure; and r is a risk-free rate,

which indicates that the instantaneous rate of return of the spot price is equal to a

risk-free rate under the risk-neutral Q measure.
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The dynamic process of the spot price assumed by the Black-Scholes model can

be employed to calculate the underlying asset price at a specific time in the future.

However, observations of energy market characteristics show that energy prices typ-

ically revert to the long-run average price. This feature cannot be presented in the

Black-Scholes model and the BS model may not be the best model for describing

energy price dynamics.

2.2. Mean-Reversion (MR) Model

According to the single-factor model in Schwartz (1997), if commodity prices are

assumed to possess MR characteristics, then, under the physical probability mea-

sure, P, the MR model for stock price dynamics is:

dSt ¼ a m� ln Stð ÞStdt þ rStdW
P
t ð2Þ

where St is the spot price; a represents the MR speed with which spot prices revert

back to the long-run level, which is a constant that is always greater than 0; m is the

long-run average parameter of the spot price, with long-run log-spot prices converg-

ing to this level; r represents the volatility level of the instantaneous rate of return of

the spot price; and WP
t is Brownian motion under the physical probability measure.

To achieve the price dynamic under the risk-neutral measure, we follow the

evaluation methods in Bjerksund and Ekern (1995) and Schwartz (1997) through

the adjustment of the market price of risk. Subtracting the market price of risk

from the spot price moving trend under the physical probability measure allows for

the transition of the dynamic process of spot pricing to a risk-neutral measure:

dSt ¼ a m� g� ln Stð ÞStdt þ rStdW
Q
t ð3Þ

where g is the market price of risk. The log-spot price Yt = ln St can be similarly

expressed as follows:

dYt ¼ a m�
MR � Yt

� �
dt þ rdWQ

t ð4Þ

where m�
MR ¼ m� g� r2

2a is a long-run average parameter of the log-spot price

under a risk-neutral measure.

Although Pilipovic (1997) notes that the MR model explains energy markets

better than the Black-Scholes model, its explanatory ability is inadequate when the

market incurs extreme price volatilities because of major events, such as policy

changes in energy-producing countries or natural disasters that can cause prices to

change substantially in the short-run. In such cases, the MR model does not pro-

vide good model fitness for the real price changes.

2.3. Mean-Reversion Jump-Diffusion (MRJD) Model

Merton (1976) divides stock price movements into two parts. First, there is the ran-

domness of supply and demand that guides the market itself; second, there is the
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dramatic change in price that is caused by an important piece of market informa-

tion that creates a jump phenomenon. If price-jump characteristics are embedded

in the MR model, the result is a MRJD model.

Clewlow and Strickland (2000) hypothesized that the dynamic process of adding

spot-price jumps to the MR model expressed under natural measures is as follows:

dSt ¼ aðm� ln St�ÞSt�dt þ rSt�dWP
t þ St�ðeJ � 1ÞdNt ð5Þ

where St is the spot price at time t, and St� is the spot price at t - time. If no jump

occurs in the underlying asset prices at time t, then St and St� are equal; J is the

jump amplitude parameter – which follows a normal distribution N(h, d2) – that is

used to describe changes in the price level during spot price jumps; and Nt is the

Poisson process at jump intensity k.
According to the MRJD hypothesis by Cartea and Figueroa (2005), price jumps

are a part of dispersible non-systematic risk and are independent of Brownian

motion for the underlying asset-price dynamics. Therefore, under a risk-neutral

assumption, only the mean of the compound Poisson distribution, k�J, must be

directly deducted, which is composed of the jump intensity, k, and the average

jump magnitude, �J;�J � EQ½eJ � 1� ¼ ðehþ1
2d

2 � 1Þ; there is no additional risk pre-

mium. The deduction of the market price of risk from the long-run average allows

for the transition of the dynamic process of the spot price from a physical-probabil-

ity measure to a risk-neutral measure:

dSt ¼ a m� g� k�J
a
� ln St�

� �
St�dt þ rSt�dWQ

t þ St�ðeJ � 1ÞdNt ð6Þ

The log-spot price dynamic under the risk-neutral measure can be written as:

dYt ¼ a m�
MRJD � Yt

� �
dt þ rdWQ

t þ JdNt ð7Þ

where m�
MRJD ¼ m� g� 1

a
r2
2 þ k�J
� �

:

This dynamic is used to characterize the process of price changes caused by the

addition of jump risks into the MR model. Consistent with the jump-diffusion

model proposed by Merton (1976), the jump events of the price are a non-systemic

risk that is dispersible, and the distribution of the jump process is independent of

the Brownian motion of the underlying assets. According to Dritschel and Protter

(1999) and Jensen (1999), such a jump-diffusion model is constructed under the

hypothesis of an incomplete market. According to the second fundamental theorem

of financial economics, in a complete market there is one and only one risk-neutral

measure. In an incomplete market, however, there may be more than one risk-neu-

tral measure that can be determined. Different preferential conditions and hedging

considerations may produce different risk-neutral equivalent measures. This study

adheres to the logic of Bakshi et al. (1997), Hilliard and Reis (1999), and Koekebak-

ker and Lien (2004), which estimate the market price of risk and the jump-diffusion
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parameters in obtaining the theoretical pricing of options implied under the risk-

neutral measure.

2.4. Mean-Reversion and Seasonality (MRS) Model

An analysis of the energy and stock markets reveals that both markets are cyclical.

For example, U.S. heating oil prices reach a relative peak each winter but remain

relatively low during the spring and fall, and demand for different goods in dif-

ferent seasons will affect price changes, such as the cyclical nature of the stock

market as it relates to taxes. Branch (1977), de Bondt and Thaler (1987), and

Chen et al. (2007) conducted relevant studies on the cyclical nature of stock mar-

kets and collectively refer to these types of cyclical behaviors as seasonality. Pilipo-

vic (1997) used a trigonometric function to express the impact of seasonality on

markets as:

ht ¼ a1 cosð2pðt � a3ÞÞ þ a2 cosð4pðt � a4ÞÞ ð8Þ

where ht represents the seasonality factor; a1 and a2 are coefficients, representing

the size of seasonality; a3 is the annualized location parameter used to indicate sea-

sonal peaks and troughs; and a4 is the semi-annualized location parameter. Pilipovic

used trigonometric functions to describe the cyclical nature of seasonality, but did

not consider the time trend of the spot price. Weron (2006) and Mayer et al.

(2011) further added a time trend to the seasonality model to obtain the mathemat-

ical expression as follows:

gt ¼ a1 þ a2t þ a3 cos
2pðt � a4Þ

250

� �
ð9Þ

where a1 is a constant; a2 is the term of the time trend designed to capture the

changing trend of energy prices over time; a3 is the size of seasonality that

describes the effect of seasonality on log-price; and a4 represents the position of

seasonality, which describes the peak and trough locations of energy prices during

the year.

By adding seasonal factors to the MR model, the model becomes known as the

mean-reversion model with seasonality. Assume that log-spot price Yt is divided

into the seasonality section gt and a non-seasonality log-spot price section Xt under

the MR model, the dynamic is as follows:

Yt ¼ gt þ Xt ð10Þ

dXt ¼ a m� r2

2a
� Xt

� �
dt þ rdWP

t ð11Þ

The spot price under a risk-neutral measure can be obtained by employing the

technique of change measure:
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dYt ¼ dgt þ dXt ¼ a m�
MRS þ

1

a
dgt
dt

� Xt

� �
dt þ rdWQ

t ð12Þ

Because Xt = Yt � gt, substituting this expression into equation (12) allows the

dynamic-process MRS with seasonal effects in the MR model under the risk-neutral

measure to be obtained:

dYt ¼ a m�
MRS þ gt þ 1

a
dgt
dt

� Yt

� �
dt þ rdWQ

t ð13Þ

where m�
MRS ¼ m� g� r2

2a is the long-run parameter excluding seasonality. This

process is comparable to adding seasonality to the MR model, as it relates to long-

run equilibrium and time. In other words, the long-run equilibrium is no longer

merely a constant term, but a variable that will change over time.

2.5. Mean-Reversion Jump-Diffusion and Seasonality (MRJDS) Model

If we assume that asset price movements obey the MR model while also taking into

account the characteristics of price-jump behavior and seasonality, then the model

becomes a mean-reversion jump-diffusion model with seasonality. The model

assumptions are the same as for the MRS model. The difference is that the log-spot

price Xt is an MR model that contains jump events. Therefore, the dynamic process

of spot price in a risk-neutral measure can be expressed as:

dYt ¼ a m�
MRJDS þ gt þ 1

a
dgt
dt

� Yt

� �
dt þ rdWQ

t þ JdNt ð14Þ

where m�
MRJDS ¼ m� g� 1

a
r2
2 þ k�J
� �

; J is the jump amplitude parameter, which fol-

lows a normal distribution N(h, d2) and is used to describe the changing price situ-

ation during jumps in the spot price; and Nt is the Poisson process with jump

intensity k.

3. Futures- and Option-Pricing Formulae and Hedging Ratio

Beginning with the Black-Scholes model as a reference model, this section develops a

variety of European energy option-pricing formulae and their delta hedges based on

MR-related price dynamics that were introduced in the second section. The details of

the derivation of each pricing and hedging formula may be found in the appendix.

3.1. Black-Scholes Model-Based Futures and Option-Pricing Formula

Following the Black-Scholes model, the futures price may be obtained by the

expected future spot price under a risk-neutral measure, Fðt;TÞ ¼ EQ½ST jF t �, in

which the F t is a right continuous information at time t. Despite the revenues from

storage cost, convenience yield, and asset-price changes, the rate of return of trad-
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able assets should be a risk-free rate. Thus, the futures price is FBS(t, T) = Ste
r(T�t);

otherwise, there would be arbitrage opportunities.

The European call-option-pricing formula that can be obtained using Black-

Scholes option-pricing process at time t is:

CBSðt;T;KÞ ¼ StNðd1Þ � Ke�rðT�tÞNðd2Þ ð15Þ

where

d1 ¼
ln St

K þ r þ 1
2r

2
� �ðT � tÞ
r
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p ; d2 ¼ d1 � r
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p

In the options market, issuers of options commonly use a delta-hedging ratio to

calculate the value of a holding asset when the spot price changes. Mathematically,

we write the delta hedge as follows:

@CBSðt;T;KÞ
@St

¼ Nðd1Þ ð16Þ

Equation (16) shows that the purchase of N(d1) units of an underlying asset

can reduce the risk of a price change caused by one unit of option issued. In a sub-

sequent empirical analysis, this study will employ replicating portfolio construction

and dynamic hedging to monitor the performance of the delta hedging parameters

of various models during the hedging of options.

3.2. Characteristic-Function and Futures-Pricing Formulae for

Mean-Reversion-Related Models

The characteristic function for the log-spot price is given as follows:

fMRðt;T;Yt ;/Þ � EQ½ei/YT Yt ¼ yj � ð17Þ

where t ≤ T and i ¼ ffiffiffiffiffiffiffi�1
p

. For the MR model and according to the price dynamic

in equation (4), the characteristic function can be solved as equation (18) (refer to

Appendix A for details):

fMRðt;T;Yt ;/Þ ¼ exp i/Yte
�aðT�tÞ þm�

MRi/ 1� e�a T�tð Þ
� �

� /2r2

4a
1� e�2a T�tð Þ
� �	 


ð18Þ

The futures price of the underlying St follows the MR model with maturity T

under the risk-neutral measure given by f (t, T, Yt; �i); that is:

FMRðt;TÞ ¼ Se
�aðT�tÞ
t exp m�

MR 1� e�aðT�tÞ
� �

þ r2

4a
1� e�2aðT�tÞ
� �	 


ð19Þ

where m�
MR ¼ m� g� r2

2a :
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The characteristic function for the log-spot price-adopted MRJD model can be

obtained by running equation (7) through the Ito-Doeblin formula, as in equa-

tion (20):

fMRJDðt;T;Yt ;/Þ ¼ exp i/Yte
�aðT�tÞ þm�

MRJDi/ 1� e�a T�tð Þ
� �n

�/2r2

4a
1� e�2a T�tð Þ
� �

� k
Z t

T

ei/e
�aðT�sÞhþ�1

2 /
2e�2aðT�sÞd2 � 1

� �
ds



ð20Þ

where m�
MRJD ¼ m� g� 1

a
r2
2 þ k�J
� �

is the long-run parameter of the spot price

under a risk-neutral measure. The characteristic function of the MRJD model can

be divided into two parts, with the first part generated by the MR character and the

other part generated by the effect of the jump-diffusion factor.

The futures price is arrived at by substituting / = �i in the characteristic func-

tion with fMRJD(t, T, Yt; �i):

FMRJDðt;TÞ ¼ Se
�a T�tð Þ
t exp m�

MRJD 1� e�a T�tð Þ
� �

þ r2
1� e�2a T�tð Þ

4a

� �	

þk
Z T

t

ee
�aðT�sÞhþd2

2 e
�2aðT�sÞ � 1

� �
ds


 ð21Þ

The log-spot price that follows the MRS model described in Section 2.4 can lead

to the corresponding characteristic function by running equation (13) through the

Ito-Doeblin formula, as in equation (22):

fMRSðt;T;Yt ;/Þ¼

exp i/ gT�gte�a T�tð Þ
� �

þi/Yte
�aðT�tÞþm�

MRSi/ 1�e�a T�tð Þ
� �

�/
2r2

4a
1�e�2a T�tð Þ
� �	 


ð22Þ

where Yt is the log-spot price with the seasonality-styled fact; gt is the seasonality

factor; and m�
MRS ¼ m� g� r2

2a is the long-run average parameter of the spot price

under a risk-neutral measure. Similarly, the futures price under the MRS model

may be obtained by the characteristic function and represented as equation (23):

FMRS t;Tð Þ¼ exp gT þ lnSt � gtð Þe�a T�tð Þ þm�
MRS 1� e�a T�tð Þ
� �

þr2

4a
1� e�2a T�tð Þ
� �	 


ð23Þ

The seasonality factor, gt, is a non-random time-trend function. Thus, the MRS

futures formula is similar to that based on the MR futures formula in equa-

tion (19). The only difference is whether the futures price is subject to an existing

seasonal factor.

C. C. Hsu et al.

326 © 2014 Korean Securities Association



According to the MRJDS model described in Section 2.5, the characteristic func-

tion for the spot log-price dynamic following equation (14) can be derived as:

fMRJDSðt;T;Yt ;/Þ ¼ exp i/ gT � gte
�a T�tð Þ

� �
þ iuYte

�aðT�tÞ þm�
MRJDi/ 1� e�a T�tð Þ

� �n
�/2r2

4a
1� e�2a T�tð Þ
� �

� k
Z t

T

ei/e
�aðT�sÞhþ�1

2 /
2e�2aðT�sÞd2 � 1

� �
ds



ð24Þ

where m�
MRJD ¼ m� g� 1

a
r2
2 þ k�J
� �

is the long-run average parameter of the

spot price under a risk-neutral measure. The corresponding MRJDS futures-price

formula includes styled facts of seasonality and jump risks, and can be obtained

as:

FMRJDS t;Tð Þ ¼ exp gT þ ln St � gtð Þe�a T�tð Þ þm�
MRJDS 1� e�a T�tð Þ

� �n
þ r2

4a
1� e�2a T�tð Þ
� �

þ k
Z T

t

ee
�aðT�sÞhþd2

2 e
�2aðT�sÞ � 1

� �
ds


 ð25Þ

3.3. Mean-Reversion-Related Model-Based Option-Pricing Formula and Delta

Hedge Ratio

To implement the option-pricing formula, we adopted the fast Fourier transform

(FFT) to compute call options based on the characteristic function method. Follow-

ing Carr and Madan (1999), let s = ln S be the log-spot price, k = ln K be the log-

strike price, q(t, st) denote the risk-neutral density of the log-spot price, and C(t,T,k)

represent the value of the call option. To ensure that the call option is an absolutely

integrable function for the Fourier transform, Carr and Madan consider the modi-

fied call price c(t,T,k) by multiplying the damping factor, exp(xk), with a proper real

number x. The modified call option is given by c(t, T, k) = exp (xk) C(t, T, k),

where Cðt;T; kÞ ¼ R1k e�rðT�tÞðesT � ekÞqðT; sTÞdsT . The damping factor allows the

Fourier transform of the modified call option, c(t,T,k), to exist:

wðt;T; nÞ ¼
Z 1

�1
einkcðt;T; kÞdk ¼ e�rðT�tÞf ðt;T;Yt ;/ ¼ n� ðxþ 1ÞiÞ

x2 þ x� n2 þ inð2xþ 1Þ ð26Þ

where f(t,T,Yt; /) is the characteristic function for the corresponding model in

equations (18), (20), (22), and (24). Thus, the call option prices can be numerically

obtained by the inverse transform:

Cðt;T; kÞ ¼ e�xk

2p

Z 1

�1
e�inkwðt;T; nÞdn ¼ e�xk

p
Re

Z 1

0

e�inkwðt;T; nÞdn
� �

ð27Þ

where Reð�Þ denotes the real part of a complex number. Use the Trapezoid rule to

integrate the call option price in equation (27), which is approximated as:
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Cðt;T; kÞ � e�xkg
2p

Re wðt;T; n1Þ þ e�inNkwðt;T; nNÞ
� �

þ e�xkg
p

Re
XN�1

j¼2

e�injkwðt;T; njÞ
 ! ð28Þ

where g, the grid points, are the step size in equal length, ξj = g (j � 1); and N is

the number of steps.

Given the option-pricing formula, the delta-hedging ratio may be obtained by

applying partial differentiation to equation (28) with respect to the spot price St, as

in (further details may be found in Appendix B):

@Cðt;T; kÞ
@St

¼ e�xkg
2p

Re wðt;T; n1Þ
iuðn1Þe�aðT�tÞ

St
þ e�inNkwðt;T; nNÞ

iuðnNÞe�aðT�tÞ

St

� �

þ e�xkg
p

Re
XN�1

j¼2

e�injkwðt;T; njÞ
iuðnjÞe�aðT�tÞ

St

 !
ð29Þ

where /ðnÞ ¼ nj � ðxþ 1Þi.
This section analytically derives a variety of formulae for European call options

and delta-hedging ratios. The next section will empirically investigate the fitness of

these developed models within different moneyness-maturity categories.

4. Empirical Analysis

4.1. Data Sampling

The NYMEX is currently the largest commodity futures exchange in which light sweet

crude oil (WTI) futures and options are the world’s most actively traded energy prod-

ucts. Based on FIA annual reports,4 both WTI futures and WTI options led the transac-

tion volume of energy futures and options contracts from 2007 to 2012. There are about

140 million WTI futures contracts and 32 million WTI options contracts (including

American and European options) traded per year. Both contracts represent 1000 barrels,

which is the standard quantity for physical crude oil delivery transactions: this provides

an instantaneous price convergence between the physical and derivatives markets.

The WTI contract is the most liquid benchmark for the global price of crude

oil, and these crude oil transactions are typically hedged by derivatives directly

derived from the price risk of WTI contracts. This shows our investigating targets

play an important role in managing risk and enable investors to make sound judg-

ments in the energy sector worldwide.

The sampled data consist of daily WTI crude oil spot prices, futures and options

prices from the Bloomberg dataset. The sampled period is from 1 July 2007 to 30

4Futures Industry Association (FIA) annual reports can be reached through the FIA official

website: http://www.futuresindustry.org/volume-.asp
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April 2012, which includes the financial collapse period from 1 July 2007 to 31

December 2008 and the non-financial collapse period from 1 January 2009 to 30

April 2012.

Trading in WTI options is fully automated. The exercise style of the WTI

options is European; thus, contracts can be exercised only on their maturity dates.

Moreover, liquidity is concentrated in the nearest expiration contract. A valuable

feature of the Bloomberg dataset is that for each option price, Cn, we have a record

of the contemporaneous spot WTI crude oil price, Sn. The combined time series

{Cn, Sn} is, therefore, synchronized.

To filter data, which is necessary for an empirical analysis, we refer to Kim

(2009) and Rhee et al. (2012) to apply the following principles. We focus on the

samples that are valid in one year. The last price of each options contract before

4:15 p.m. Central Time (CT) on each trading day are used in our empirical analy-

sis. We exclude only the last transacted option in the sample if the same option was

traded several times during any time period. Data are excluded when their time to

maturity is less than 3 days and when their prices are less than $0.02.

The remaining live exercise data were collected each transaction day. Thus, we

initiated effective investigative samples based on a range of strike prices from $20

to $160.5 Second, based on the spot price on the maturity day of the contract, we

added $3 and subtracted $3 sequentially so that the samples were effective for our

investigation until the price reached an upper bound of $160 (through sequential

addition) and a lower bound of $20 (through sequential subtraction). Finally, prices

that did not meet the arbitrage restriction were excluded.

To explore an appropriate crude oil pricing model for use in different periods,

the research period is divided into financial collapse and non-financial collapse peri-

ods, consistent with Campello et al. (2010). The sampled dataset from 1 July 2007

to 31 December 2008 is classified as the financial collapse period, and the sampled

dataset between 1 January 2009 and 30 April 2012 is classified as the non-financial

collapse period. During the financial collapse period, WTI crude oil prices followed

the economic recession and recovery and thus experienced periods of huge volatil-

ity, as depicted by the spot prices in Figure 1. Additionally, the U.S. Treasury bill

rates are selected as the risk-free rates (taken from the U.S. Treasury website).

4.2. Statistics and Parameter Estimation Method

4.2.1. Statistics

This study further divides the options data into three categories based on the status

of moneyness (S/K) consistent with the definition from Bakshi et al. (2010): when

0.95<S/K ≤ 1.05, it is at the money (ATM) call options; when S/K > 1.05, it is in

the money (ITM) call options; and when S/K ≤ 0.95 it is out of the money (OTM)

call options. In addition, the options are divided into the following five categories

5The historical spot WTI crude oil prices range from $20 to $160 over the period of our

investigation.
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based on different days to maturity: (1) less than 30 days left to maturity, extreme-

short-run; (2) 30–60 days, short-run; (3) 60–120 days, near-term; (4) 120–180 days,

middle-maturity; and (5) more than 180 days, long-run. Based on the above mon-

eyness-maturity category, the entire sample is divided into 15 sub-categories.

Table 1 shows the statistics of European call-option prices on WTI options dur-

ing the overall data period from 1 July 2007 to 30 April 2012, which describes the

average call-option price and sample size based on the moneyness-maturity level

category within the sample period. The total observations during this period are

246,162 call options. Among them, ITM and OTM call options accounted for 38%

and 50%6 of the total number of samples, respectively. Table 1 shows that the aver-

age price of OTM call options is 0.7830 in the extreme short-run; the average price

of ITM call options is 27.8451 in the long-run.

4.2.2. Parameter Estimation

The parameter estimation employs the method of minimizing the sum of squared

errors (minimize SSE) between actual and theoretical options and futures prices to

estimate the parameters in an options evaluation study. The price information of

futures for calibrating the model parameters are included because the WTI options

are futures options. The spot dynamic models affect both the futures and options

prices; therefore, they should be considered simultaneously for calibration. The

parameters that are estimated in this study include volatility (r), mean reverting

speed (a), long-run average (m*), jump amplitude parameters (h and d), jump

intensive parameter (k), and seasonality parameters (a1, a2, a3, and a4). The term Φ
(r, a, m*, h, d, k, a1, a2, a3, a4) is used to represent structure parameters that are

estimated. This estimation method is one of option-implied volatility based on the

model to minimize the sum of squared errors (minimized SSE) between the histori-

Figure 1 WTI crude oil price.
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The data of reported WTI crude oil price graph are sampled from the data set of Bloomberg. The sample

period extends from 1 July 2007 to 30 April 2012.

6These data are calculated by taking the sum of the observations in the moneyness (ITM,

OTM) divided by the total observations individually.
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cal and theoretical prices of options and futures. The details of the parameter esti-

mation process are as follows:

Step 1: We first screen out all the options on the same trading day, including

options with different strike prices and different times to maturity. Let

ĈðU; t;Ti;KjÞ represent the theoretical price of option and t denote the

current time. Ti represents the ith option maturity date and Kj is the jth

strike price; C(t,Ti,Kj) represents the observed market price of option corre-

sponding maturity, Ti, and the strike price, Kj. Similarly, define F(t,Ti) as

the market price of futures and F̂ðU; t;TiÞ as the theoretical price of futures

with ith maturity date. Let eCi;jðUÞ and eFi ðUÞ be the difference between the

theoretical price and the market price of options and futures, respectively,

and they become the functions of the model parameters:

eCi;jðUÞ ¼ Cðt;Ti;KjÞ � ĈðU; t;Ti;KjÞ ð30Þ
eFi ðUÞ ¼ Fðt;TiÞ � F̂ðU; t;TiÞ ð31Þ

Step 2: We use the minimize SSE method to estimate the parameters of each model

for all the options prices screened out on the same trading day. The mathe-

matical expression for the minimize SSE estimation method is as follows:

min
U

X
i;j2I

eCi;jðUÞ2 þ eFi ðUÞ2
� �

ð32Þ

where I is the set of the total options and futures in the same selected trading day, i

is the ith difference in maturity, and j is the jth difference in strike price. This step

results in an estimate of the model parameters. We return to Step 1 until the two

steps have been repeated for each day over the sample period; thus, we calculate the

average value of various parameters within the observed periods.

To achieve a stable estimated result, both control mechanics are employed to

stabilize the output of the parameter estimation in this study: one is the interaction

numbers and the other is the termination tolerance. By employing MATLAB soft-

ware to execute the calibration process (minimize SSE) through the built-in func-

tion “lsqnonlin”, the parameters estimation process will be stopped when either the

interactions reach setup times or the termination tolerance reaches the setup stan-

dard. In this study, we increase the iterations to 3000 times rather than the default

value, which is 400 times. Furthermore, the termination tolerance on the objective

function value is adapted to be 1e-10 rather than 1e-6, as the default to improve

the stability of the estimation of the parameters.

The parameters of various models determined according to the estimation

method described above are represented in Table 2 for the financial collapse period

(1 July 2007 to 31 December 2008) and Table 3 for the non-financial collapse per-

iod (1 January 2009 to 30 April 2012). Table 2 shows the average daily model
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parameters for each day estimated during the financial collapse period. The esti-

mated BS model’s average daily implied volatility is 24.98%; the MR model’s aver-

age daily implied volatility is 35.42%; the MRJD model’s average daily implied

volatility is 28.69%; the MRS model’s average daily implied volatility is 36.32%; and

the MRJDS model’s average daily implied volatility is 32.43%. The difference

between the largest and the smallest estimated volatility is 11.34%. The estimated

implied volatilities during the non-financial collapse period are shown in Table 3,

and are as follows. The BS model’s average daily implied volatility is 38.10%; the

MR model’s average daily implied volatility is 34.90%; the MRJD model’s average

daily implied volatility is 28.21%; the MRS model’s average daily implied volatility

is 33.91%; and the MRJDS model’s implied estimated average daily volatility is

27.94%. The difference between the largest and the smallest estimated volatility is

10.16%.

Analyzing the implied volatilities, the financial and non-financial collapse peri-

ods show that the volatilities estimated by the MRJD European energy-options

model are smaller than those estimated by the MR European energy-options model.

The likely reason for this difference is that the explanatory power of the model on

volatility is distributed to the volatility of jump events once jump risks are consid-

ered, which is in the middle of the same extreme price fluctuation. Price jumps can

be used to explain drastic changes in price instead of using volatility to explain all

price changes. Similarly, comparison of the MRJDS European energy options esti-

mated volatilities to the MRS European energy options estimated volatilities shows

that the considered MRJDS volatility in the jump-diffusion model is smaller than

that of the MRS model.

The decline of long-run average of MRS compared to MR is the result of the

scattering of long-run average value by the intercept (a1) caused by the effect of

seasonality. The size of seasonality (a3) is relatively higher in the non-financial col-

lapse period than in the financial collapse period, which shows that seasonality is

much more obvious after the financial collapse.

The estimated volatility parameter in the BS model is much higher during the

period of non-financial collapse than during the period of financial collapse; this

result is not intuitive. The explanation is that there is a steady growth trend of the

sampled WTI crude oil spot price from July 2007 to July 2008, but the trend is

reversed after that date. Although the price trend is reversed after July 2008, the

financial collapse period ends on December 2008. Based on the defined financial

collapse period (1 July 2007 to 31 December 2008), the volatility of sample data is

diminished. This result is also consistent with Salisu and Fasanya (2012), who dem-

onstrate that the standard derivation of the rate of return of WTI crude oil signifi-

cantly increases during the period ex post financial collapse.

Figure 2 shows the daily in-sample mean square errors (MSEs) of the developed

models adopted in this paper. From Figure 2, the MSEs of BS model are higher

than MR-related models over the sample period. The observed majority of MSEs

over MR-related models is less than 1 during the financial collapse period.
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Moreover, it is obvious that the estimated result in the non-financial collapse period

is stable and the observed majority of MSEs is less than 0.5. The results above dem-

onstrate that the developed models and parameters are reliable and good to be

employed to conduct further out-of-sample pricing and hedging performance analy-

ses.

4.3. Implied Volatility Graphs

The spot implied volatility generates a number of diagnostic pieces of information

that are useful in assessing the ability of the various dynamics to fit the market

data. Following Rubinstein (1985) and Bakshi et al. (1997), we use the subsample

data of moneyness (S/K), which ranges from 0.91 to 1.12 over the financial col-

lapse period and non-financial collapse period, respectively, to compare the spot

implied volatility patterns of each model across both moneyness and maturity cat-

egories. The basic procedure for backing out each model’s implied-volatility series

is as follows. First, we substitute the spot price and the interest rate of date t and

the model parameters calibrated form the previous date t�1 except the spot vola-

tility, such that the option price becomes the function of spot volatility. Thus, we

can obtain the spot implied volatility by equating the market option price and

the corresponding theoretical option price, which is the function of spot implied

volatility.

Both subsamples, during the financial collapse period and during the non-finan-

cial collapse period, are tested, and the implied volatility graph is shown in

Figure 3. The BS model is the most misspecified compared to the other models

because implied volatility has the largest “smile” with significant skewness. In gen-

eral, the patterns of MR and MRS are close to one another; in addition, the pat-

terns of MRJD and MRJDS are close to one another in a moneyness-maturity

category. The implied volatility of the MR and MRS models is relatively misspeci-

fied compared to that of the MRJD and the MRJDS models over the financial

Figure 2 In-sample MSEs graph.
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The tangled lines are daily in-sample mean square errors of BS, MR, MRJD, MRS, and MRJDS models

from 1 July 2007 to 30 April 2012.

C. C. Hsu et al.

336 © 2014 Korean Securities Association



collapse period. Furthermore, the implied volatility of the MR and MRS models is

persistently higher than the implied volatility of the MRJD and MRJDS models.

These results show that the models that include jump diffusion diversify the spot

implied-volatility in the Brownian term.

Regarding the diagnostic during the non-financial collapse period, the MR and

the MRS models are less misspecified than the other models, which reveals that the

model might have variant diagnostic information in different financial environ-

ments. Moreover, the implied volatility skewness of the BS model, the MRJD

model, and the MRJDS model in short-run options is slightly more volatile than

they are in the medium-run and long-run options. This result shows that the degree

of implied volatility skewness is negative related with maturity.

4.4. Option-Pricing Error

The pricing error of options is the most commonly used index to examine the pric-

ing performance of developed pricing formulae. The estimation processes of calcu-

lating pricing errors are shown as follows:

Figure 3 Implied volatility graphs.
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The left panels are implied volatility in the financial collapse period, from 1 July 2007 to 31 December

2008, and the right panels are the non-financial collapse period, from 1 January 2009 to 30 April 2012.

The implied volatility graphs are respectively the BS, MR, MRJD, MRS, and MRJDS pricing formulae, for

each moneyness-based category in different maturity category.
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Estimate the first set of parameters from the sampled options data on the first day;

these are used to calculate the theoretical option prices of the second day. Then,

subtract the second day theoretical price from the second day’s actual option price

to obtain the value of the pricing error. Following the above process, the second

day’s actual data are used to estimate the second set of parameters, which is then

used to calculate the third day’s theoretical price. The third day’s theoretical price

and actual price are used to generate a second set of pricing errors. Mathematically,

the aforementioned algorithm can be represented as follows:

eðt;Ti;KjÞ ¼ Cðt;Ti;KjÞ � ĈðUt�1; t;Ti;KjÞ ð33Þ
where e is the difference between the observed price and the theoretical price; C(t,

Ti,Kj) is the observed option price; and ĈðUt�1; t;Ti;KjÞ is the theoretical option

price calculated using the model parameters calibrated from the previous date.

Pricing error can be further computed as two indicators known as the relative

error percentage and absolute error. Both indicators can be expressed as follows:

Relative error percentage ¼ Cðt;Ti;KjÞ � ĈðUt�1; t;Ti;KjÞ
Cðt;Ti;KjÞ ð34Þ

Absolute error ¼ Cðt;Ti;KjÞ � ĈðUt�1; t;Ti;KjÞ
�� �� ð35Þ

To obtain the averaged and standard deviation of pricing errors in each interval,

the daily pricing error is calculated first, then the number of days to maturity and

the moneyness condition that one wishes to observe are screened and selected.

Based on the aforementioned algorithm, we are able to calculate the pricing

errors of five developed pricing formulae with various moneyness statuses and times

to maturity. The results are presented in Tables 4 and 5. For example, for OTM

options with a maturity of 0–30 days over the financial collapse period, the absolute

error values of the BS, MR, MRJD, MRS, and MRJDS models were $0.5393,

$0.2584, $0.2036, $0.2151, and $0.1813, respectively.

Table 4 reveals the complete analysis of absolute pricing errors during the finan-

cial collapse period. In the OTM scenario, The MRJDS pricing formula reveals the

smallest absolute pricing error with 0–90 days time to maturity, but the MRJD pric-

ing formula reveals the smallest absolute pricing error with more than 90 days time

to maturity. In the ATM scenario, the MRJDS pricing formula reveals the smallest

absolute pricing error with 0–90 days time to maturity, but the MRJD pricing for-

mula reveals the smallest absolute pricing error with 90–120 days time to maturity,

and with more than 180 days time to maturity.

In the ITM scenario, the MRJD pricing formula reveals the smallest absolute

pricing error with 0–60 days time to maturity, but the MRJDS pricing formula

reveals the smallest absolute pricing error with more than 60 days time to maturity.

The analysis of absolute pricing error shows that, although the MRJDS pricing for-
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mula does not have the smallest absolute pricing error, its pricing error is close to

the smallest for each period. Taking OTM options as an example, the absolute pric-

ing error of the MRJDS pricing formula is larger than the MRJD absolute pricing

error by approximately 0.005 in the 90- to 180-day time period. However, over the

time period of 0–90 days, the absolute pricing error of the MRJDS pricing formula

is smaller than the MRJD absolute pricing error, 0.0223 to 0.0365, respectively.

Therefore, the study infers that the MRJDS pricing formula has the best overall

results because it has the smallest pricing error during the financial collapse period.

Table 5 shows the complete analysis of absolute pricing errors during the non-

financial collapse period. In the OTM scenario, the MRS pricing formula reveals

the smallest absolute pricing error regardless of the time period. In the ATM sce-

nario, the MRS pricing formula reveals the smallest absolute pricing error with 0–
120 days time to maturity and more than 180 days to maturity, but the MR pricing

formula reveals the smallest absolute pricing error with 120–180 days time to matu-

rity. In the ITM scenario, the MR pricing formula reveals the smallest absolute pric-

ing error with 0–60 days time to maturity, but the MRS pricing formula reveals the

smallest absolute pricing error within the more than 60 days time to maturity. The

observations from the non-financial collapse period shows that the MR and MRS

pricing formulae without embedding jump events had smaller pricing errors, which

is straightforward and consistent with common sense. Overall, during the non-

financial collapse period, the MRS pricing formula generated better evaluation

results with smaller pricing errors.

Table 5 also shows the relative pricing errors during the non-financial collapse

period. In the OTM scenario, the pricing errors of Black-Scholes are negative, which

indicates that OTM options market prices are lower than the theoretical prices,

regardless of the time period. In the ATM scenario, the pricing errors are increas-

ingly smaller than the OTM options. In the ITM scenario, the pricing error values

are positive, which indicates that ITM options market prices are higher than the

theoretical prices. Bakshi et al. (2010) define the aforementioned phenomena as sys-

tematic biases. Observing the systematic biases, we find that the MR and MR-

related pricing formulae have much smaller biases than the BS model. This observa-

tion indicates that the MR and MR-related pricing formulae reveal a better fitness

for the European energy options markets. The results coincide with Schwartz

(1997) who found that changes in energy prices have an obvious MR-characteristic

component. Bakshi et al. (2010) believe that the phenomenon of systematic biases

in the stock market is related to the options volatility smile. Volatility smile is a

common phenomenon in the options market; it indicates that the volatilities of

OTM options are likely to be underestimated. At this point, the OTM market price

is lower than the theoretical price whereas volatilities of ITM options are likely to

be overestimated. Therefore, the market price is higher than the theoretical price.

This study finds that relative positive and negative pricing errors are consistent

with those addressed previously in the non-financial collapse period, as shown in

Table 5. These results demonstrate that systematic biases in the crude oil market
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during the non-financial collapse period coincide with similar findings in the stock

market. Table 4 shows that the situation with systematic biases during the financial

collapse period is the opposite of the normal market period, in which the OTM

option-pricing error is positive and the ITM option-pricing error is negative. This

study speculates that this phenomenon is the result of large price variations during the

financial collapse period, which caused market investors to believe that there was a

likelihood that an OTM call might morph into an ITM call. As a consequence, during

this period, OTM option prices became even more likely to be overestimated.

4.5. The Impact of Mean-Reversion and Seasonality Characteristics

Figure 4 shows the performance of mean-reversion and seasonality characters,

improving the absolute pricing error with respect to the BS model. BS-MR represents

the amount of improvement in the MR model’s absolute pricing error compared to

the BS model, and BS-MRS denotes the value of the BS model absolute pricing error

that is in excess of the MRS model. The graph indicates that mean-reversion and sea-

sonality effects are strictly positively correlated with days to maturity in the non-

financial collapse period regardless of the moneyness category. Thus, the developed

MR and MRS pricing formula reveals better long-run pricing performance than in

the short-run compared with the benchmark pricing formula. However, over the

financial collapse period, the MR and MRS reveals better pricing performances in the

ITM category but not in the OTM and ATM categories, particularly for the periods

that are more than 90 days to maturity, which indicates that, during the financial

collapse period, there are other dominant price factors that are causing the characters

of the model to violate its usual tendencies, such as jump risks.

4.6. Dynamic Hedging Error

This study refers to hedge methods found in Bakshi et al. (2010) for constructing a

self-financed hedging error – which contains spot pricing and cash positions – and

for observing the dynamic hedging error from the model’s delta-hedging ratio with

per-day and per-five-day adjustments. The mathematical expression is as follows:

Pt ¼ Xt þ DeltaðtÞSt ð36Þ

where Πt represents the replicating portfolio value at time t, which is used to repli-

cate the options market price; St represents the spot price at time t; Delta (t) is the

delta hedging ratio at time t; and Xt is the cash position, which is the difference

between the options market value and Delta (t) units of the underlying asset price.

If Xt < 0, this can be regarded as a cash lend out at a risk-free rate of r. If Xt > 0,

this can be regarded as cash deposited in a bank at a risk-free rate of r. The algo-

rithm for calculating dynamic hedging error in replicating portfolio is as follows:

First, screen out the options data for a specific data time series. Beginning from

the first day of trading, t, calculate, in sequence, the period delta at time t and
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substitute it into the replicating portfolio. Moreover, the replicating portfolio value

should be equal to the value calculated by equation (36).

When reaching the time t + Dt, the value of the replicating portfolio is:

PtþDt ¼ Xte
rDt þ DeltaðtÞStþDt ð37Þ

The price difference generated by hedging is expressed as:

HtþDt ¼ Cðt þ Dt;T;KÞ � Xte
rDt þ DeltaðtÞStþDt

� � ð38Þ
Repeat the procedure of replicating portfolio until each maturity date and strike

price of the options have been calculated. By using the every daily hedging error, we

are then able to calculate the mean and standard deviation of the hedging errors of all

the sample data with different statuses of moneyness and different days to maturity.

Figure 4 The impact of mean-reversion and seasonality characteristics.
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The left panels are the absolute pricing error of BS model minus the absolute pricing error of MR model and

MRS model respectively for various maturities in the financial collapse period, from 1 July 2007 to 31 Decem-

ber 2008 and the right panels are the non-financial collapse period, from 1 January 2009 to 30 April 2012.

The reported pricing error graphs from top to bottom are OTM, ATM, and ITM options respectively.

Pricing and Hedging European Energy Derivatives

© 2014 Korean Securities Association 345



This study used an average absolute hedging error for the average pricing error,

which takes the absolute value of the error value before taking the average. Tables 6

and 7 show the results of delta-neutral hedging errors under the per-day (Dt = 1)

adjusted delta and per-five-day (Dt = 5) adjusted delta of each model’s replicating

portfolio during the financial and non-financial collapse periods. Without taking into

account transaction costs or observing the same models, moneyness and maturity

dates, the hedging error from the per-day adjusted delta is smaller than that of the

per-five-day adjusted delta. The performances of the hedging models are generally

consistent with that of pricing errors. During the financial collapse period, the

option-pricing formulae with jump risks performed better, whereas the options-pric-

ing formulae without jump risks performed better during the non-financial collapse

period. If these periods are separately compared, we find that – regardless of per-day

or per-five-day adjusted hedging parameters – errors during the financial collapse

period are larger than errors during the non-financial collapse period. On average,

the hedging error of the every-five-day adjusted delta was twice as large as that of the

per-day adjustment. This result allows market hedgers to select the parameters during

an adjustment period that enhance risk-management efficiency by smart allocation of

funds.

5. Conclusion

With recent increases in energy-price variation, there has been an increasing demand

in the market to avoid price risk, which has been accompanied by an increase in

trading volumes for energy derivatives. The choice of an appropriate model for cal-

culating the price of derivatives depends in large part on the investment and hedging

performance of market participants. The literature indicates that long-term energy

prices are characterized by reversion to their averages; therefore, energy price dynam-

ics can be explained by using the MR model. When significant events occur in the

market, jump events are added to the MR model to capture the short-term com-

modity price change phenomenon. Finally, considering that commodity prices

change regularly over time, seasonality is added to capture such price characteristics.

Based on these considerations, this study integrated five pricing models – the

Black-Scholes, MR, MRJD, MRS, and MRJDS European option-pricing formulae –
to derive the closed-form options solution under each model assumption.

The study used these five models to analyze WTI crude oil options according to dif-

ferent moneyness levels, maturity dates, and pricing errors between theoretical and

actual prices. The results show that, with the extreme price variation that occurred

during the financial collapse period, the MRJDS model turned out to be the best

fit. Pricing errors generated by the MRJDS model during this period were smaller

than those of the other four models. However, during the non-financial collapse

period, the MRS model generated pricing errors that were smaller, which indicates

that it was sufficient to merely consider MR characteristics and seasonality because

price volatilities were not as severe during this period.
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To explore the dynamic hedging performance of options, we constructed a self-

financed portfolio. Without taking transaction costs into account, the study used an

option-price-replication hedging strategy to analyze the impact of each evaluation

model and the delta adjustment on the performance of hedging. The results show

that the performance of the models in terms of hedging were generally consistent

with those of pricing errors. In addition, regardless of which period was considered,

the hedging error from the delta adjustment that was performed every five days was

twice as large as that of the per-day adjustment. This result provides a reference for

hedgers based on their own transaction cost considerations to reset their dynamic

hedging parameter adjustment period for a more efficient risk-management strategy.

The study demonstrated that, regardless of the period, the MR-related European

option-pricing formulae show better pricing and hedging abilities in the WTI crude

oil options market than the Black-Scholes model, which indicates that the WTI

crude oil price dynamic possesses MR characteristics. This conclusion is in response

to findings by Schwartz (1997) and is consistent with his theory that commodity

price dynamics are more receptive to the application of the MR model. In addition,

by comparing multiple models, this study showed that a more complex model is

not necessarily better; instead, it showed that the appropriate model must be

selected based on spot price characteristics over different periods to obtain better

valuation and hedging performance.
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Appendix A: The derivation of characteristic function of MRJDS model

The characteristic function of log-spot price corresponding to the MR, MRS, and

MRJD models are specific cases of the MRJDS model. This study derived the more

complicated characteristic function of the MRJDS model instead. Because the char-

acteristic function of the dynamic of WTI crude oil under the MRJDS model is

available, the option-pricing formula can be implemented with characteristic func-

tion by fast Fourier transformation.

The log-spot price, Yt = ln St, can be divided into the seasonality section, gt,

and a non-seasonality log-spot price section, Xt. The log-spot price dynamic under

a risk-neutral measure is described as:

dYt ¼ a m�
MRJDS þ gt þ 1

a
dgt
dt

� Yt

� �
dt þ rdWQ

t þ JdNt ðA:1Þ

where m�
MRJDS ¼ m� g� 1

a
r2
2 þ k�J
� �

:

Given the dynamic process in the MRJDS model, the characteristic function can

be written as:

f ðt;T;Yt ;/Þ � EQ½expði/YTÞ Yt ¼ yj � ðA:2Þ

where i ¼ ffiffiffiffiffiffiffi�1
p

, / is the Fourier transform parameter.

Ito-Doeblin formula for jump processes gives the following partial integro- dif-

ferential equation (PIDE) for the characteristic function:

@f

@t
þ aðm�

MRJDS þ gt þ 1

a
dg

dt
� YtÞ @f

@Yt
þ r2

2

@2f

@Y2
t

þ k
Z
R

f ðt;T;Yt þ JÞ � f ðt;T;YtÞð ÞwðJÞdJ ¼ 0
ðA:3Þ

where w(J) denotes the probability density function of random variable J. In the

MRJDS model, w(J) is set as the lognormal distribution.

Consider the exponential affine form for solving the characteristic function:

f ðt;T;Yt ;/Þ ¼ expfi/Yt þ AðT � tÞ þ YtBðT � tÞg ðA:4Þ

with boundary condition A (T – t = 0) = B (T – t = 0) = 0.

Substituting s = T � t and the characteristic function into equation (A.3)

yields:

� @AðsÞ
@s

þ @BðsÞ
@s

Yt

� �
þ a m�

MRJDS þ gt � 1

a
dg

ds
� Yt

� �
i/þ BðsÞð Þ þ r2

2
i/þ BðsÞð Þ2

þ k
Z 1

�1
eði/þBðsÞÞJ 1ffiffiffiffiffiffiffiffiffiffi

2pd2
p e

ðJ�hÞ2
�2d2 dJ � 1

� �
¼ 0

ðA:5Þ
The PIDE (A.5) leads to the following system of ODEs:
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@AðsÞ
@s ¼ a m�

MRJDS þ gt � 1
a
dg
ds

� �
i/þ BðsÞð Þ þ r2

2 i/þ BðsÞð Þ2

þk
R1
�1 eði/þBðsÞÞJ 1ffiffiffiffiffiffiffi

2pd2
p e

ðJ�hÞ2
�2d2 dJ � 1

� �
@BðsÞ
@s ¼ �a i/þ BðsÞð Þ

8>>>><
>>>>:

ðA:6Þ

It is simple to verify that B(s) = i/ (1 � e�as), and the jump component of the

first ODE becomes:

k
Z 1

�1
eði/þBðsÞÞJ 1ffiffiffiffiffiffiffiffiffiffi

2pd2
p e

ðJ�hÞ2
�2d2 dJ � 1

� �
¼ k ei/e

�ashþ�1
2 /

2e�2asd2 � 1
� �

ðA:7Þ

Thus, the first ODE in (A.6) can be represented as:

@AðsÞ
@s

¼ a m�
MRJDS þ gt � 1

a
dg

ds

� �
i/e�as � r2/2e�2s

2
þ k ei/e

�ashþ�1
2 /

2e�2asd2 � 1
� �

ðA:8Þ

Integrate both sides of (A.8) to obtain A(s):

AðsÞ ¼
Z s

0

a gt � 1

a
dg

ds

� �
i/e�asdsþ

Z s

0

am�
MRJDSi/e

�asds�
Z s

0

r2/2e�2s

2
ds

þ k
Z s

0

ei/e
�ashþ�1

2 /
2e�2asd2 � 1

� �
ds

ðA:9Þ

As a result, we obtain the following characteristic function:

f ðt;T;Yt ;/Þ ¼ expfi/Yt þ AðT � tÞ þ YtBðT � tÞg ðA:10Þ

AðT � tÞ ¼i/ðgT � gte
�aðT�tÞÞ þm�

MRJDSi/ð1� e�aðT�tÞÞ � /2r2

4a
ð1� e�2aðT�tÞÞ

� k
Z t

T

ei/e
�aðT�sÞhþ�1

2 /
2e�2aðT�sÞd2 � 1

� �
ds

BðT � tÞ ¼ � i/ð1� e�aðT�tÞÞ ðA:10Þ
Appendix B: Delta-hedging ratio

The delta-hedging ratio can be obtained by taking the partial differential of the

closed-form option-pricing formula. An options strategy aims to reduce (hedge) the

risk associated with price movements in the underlying asset by offsetting long and

short positions. This strategy is based on the change in option price caused by a

change in the price of the underlying security. The delta-hedging ratio in the frame-

work of MRJDS dynamics is derived by taking a differential to the closed-form

option-pricing model.
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First, we rearrange the characteristic function (A.10), and then we take a differ-

ential with respect to the spot price:

f ðt;T; yt ;/Þ ¼ expfði/þ BðT � tÞÞ ln St þ AðT � tÞg ¼ S
i/þBðT�tÞ
t eAðT�tÞ ðB:1Þ

and:

@f ðt;T; yt ;/Þ
@St

¼ i/þ BðT � tÞð ÞSi/þBðT�tÞ�1
t eAðT�tÞ ¼ i/e�aðT�tÞ

St
f ðt;T; yt ;/Þ ðB:2Þ

Next, according to equations (28) and (B.2), the deviation of option price based

on inverse Fourier transform can be derived as follows:

@Ct

@St
� e�xkg

2p
Re

@wðt;T; n1Þ
@f

@f

@St
þ e�inNk

@wðt;T; nNÞ
@f

@f

@St

� �

þ e�xkg
p

Re
XN�1

j¼2

e�injk
@wðt;T; njÞ

@f

@f

@St

 !
¼ e�xkg

2p

Re wðt;T; n1Þ
iuðn1Þe�aðT�tÞ

St
þ e�inNkwðt;T; nNÞ

iuðnNÞe�aðT�tÞ

St

� �

þ e�xkg
p

Re
XN�1

j¼2

e�injkwðt;T; njÞ
iuðnjÞe�aðT�tÞ

St

 !
ðB:3Þ

where φ(ξj) = ξj � (x + 1)i.

The aforementioned derivation process demonstrates the derivation of the delta-

hedging rate to the European call option-pricing formula in the framework of the

MRJDS dynamic. It maintains the same delta-hedge formula for the MR, MRS, and

MRJD models with a corresponding characteristic function. Additionally, we know

that the delta-hedge ratio for BS model is N (d1). Thus, we complete the derivation

of hedge ratios for the models adopted in this study.
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