政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/99833
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113822/144841 (79%)
造访人次 : 51823890      在线人数 : 530
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/99833


    题名: 節能燈具選擇的行為效果模型
    Energy-saving of Lighting on choosing behavior
    作者: 林佳欣
    Lin, Chia Hsin
    贡献者: 蕭代基
    Shaw, Dai Gee
    林佳欣
    Lin, Chia Hsin
    关键词: 實驗設計
    離散選擇
    LED燈具
    隨機效用
    條件式羅吉特
    多項式羅吉特
    日期: 2016
    上传时间: 2016-08-09 11:59:17 (UTC+8)
    摘要: 為了節能減碳延緩暖化,在政策推行發展出多樣節能產品,然而失敗的產品不勝枚舉,令人困惑的是,節能產品能省下能源費用又能減少溫室氣體排放,有上述好處,為何普及性不高呢?其中原因可能來自代理問題、產品非完全替代或者新產品的未知風險等等。
    本研究用台灣節能照明市場為例子,運用離散選擇模型與問卷調查的方式,以台灣網路人口為母體,進行問卷,樣本大小為972份。分析結果發現選擇燈具的行為顯著的受價格、電費、壽命、光線效果影響,其中壽命對燈具的選擇最不具影響力,社經背景、LED燈具認知與環境態度對選擇的偏好都有顯著的影響,現在與未來不選用LED燈具者受光線效果影響。此外,所得高者與環境關心者採用LED燈具機率較高。光線效果的邊際願付價格約為194元,壽命為0.014元。當LED燈具價格下跌50%時,我們預測住宅照明每年溫室氣體可以減少排放量約2.21%(10,366,000公斤)。
    為了協助提升LED市場滲透率,提出下列政策建議:首先,鼓勵研發光線更柔和的LED燈罩;其次,廣宣LED燈的節能訊息。
    參考文獻: 一、中文文獻
    工業技術研究院,2015。家庭用電消費調查研究.
    台灣電力公司,2016 。「104年下半年台灣電力公司電價表」取自http://www.taipower.com.tw。
    台灣電力公司,2016 。「每月住宅及小商店實際用電情形」取自http://www.taipower.com.tw。
    飛利浦公司官網,2016。「Product Catalog」取自http://www.lighting.philips.com/main/prof。
    財團法人中華經濟研究院,2011。「台灣溫室氣體減量成本曲線」期末報告 。
    財團法人台灣綜合研究院,2010。「住商部門能源消費調查」 。
    財團法人台灣網路資訊中心,2015。「2015 年台灣寬頻網路使用調查報告」。
    高士欽,2013。「LED燈具光衰驗證技術介紹」,『量測資訊』。152(7),30-32。
    國家發展委員會,2015。「網路沉迷研究」報告。
    黃佳文、陳裕清、黃釋緯、楊豐碩、陳詩豪、林穎毅、林兩進,2010。「全面淘汰白熾燈政策對臺灣用電影響之研究」,『 台電工程月刊』。742 (6),96-117。
    經濟部能源局,2016。「103年我國電力排放係數」取自 http://web3.moeaboe.gov.tw。
    萬鍾汶、林妙瓀,2010。「消費者專業背景對基因改造產品願付價值之分析」,『生物產業科技管理叢刊』。1(2),63-91。
    簡育德,2012。「LED量測標準與民生安全專輯前言」,『量測資訊』。147(9)

    二、英文文獻
    Abrahamse, Wokje, & Steg, Linda. (2011). Factors related to household energy use and intention to reduce it: The role of psychological and socio-demographic variables. Human Ecology Review, 18(1), 30-40.
    Alpizar, Francisco, Carlsson, Fredrik, & Martinsson, Peter. (2003). Using choice experiments for non-market valuation. ECONOMIC ISSUES-STOKE ON TRENT-, 8(1), 83-110.
    Alvarez, R. Michael, & Nagler, Jonathan. (1998). When Politics and Models Collide: Estimating Models of Multiparty Elections. American Journal of Political Science, 42(1), 55-96. doi:10.2307/2991747
    Anderson, Simon P, De Palma, Andre, & Thisse, Jacques François. (1992). Discrete choice theory of product differentiation: MIT press.
    Auspurg, Katrin, & Hinz, Thomas. (2014). Factorial survey experiments (Vol. 175): Sage Publications.
    Batsell, Richard R. (1980). Consumer resource allocation models at the individual level. Journal of Consumer Research, 78-87.
    Batsell, Richard R, & Lodish, Leonard M. (1981). A model and measurement methodology for predicting individual consumer choice. Journal of Marketing Research, 1-12.
    Berry, Steven T. (1994). Estimating Discrete-Choice Models of Product Differentiation. The RAND Journal of Economics, 25(2), 242-262. doi:10.2307/2555829
    Bunch, David S, Louviere, Jordan J, & Anderson, Don. (1996). A comparison of experimental design strategies for multinomial logit models: The case of generic attributes. University of California Davis Graduate School of Management Working Paper, 11-96.
    Carías Vega, Dora, & Alpízar, Francisco. (2011). Choice Experiments in Enviromental Impact Assessment: The Toro 3 Hydroelectric Project and the Recreo Verde Tourist Center in Costa Rica. Retrieved from
    Carson, Richard T, Louviere, Jordan J, Anderson, Donald A, Arabie, Phipps, Bunch, David S, Hensher, David A, . . . Swait, Joffre. (1994). Experimental analysis of choice. Marketing letters, 5(4), 351-367.
    Cochran, William G. (1953). Sampling techniques. Oxford, England: John Wiley.
    Conroy, Ronán. (2006). Sample Size, A Rough Guide. www. beaumontethics. ie/docs/applications/samplesizecalculation. pdf.
    Cosmin Ticleanu, Paul Littlefair. (2015). A summary of LED lighting impacts on health. International Journal of Sustainable Lighting.
    Cunningham, William H, & Joseph, Brondel. (1978). Energy conservation, price increases and payback periods. NA-Advances in Consumer Research Volume 05.
    Curtin, Richard T. (1976). Consumer adaptation to energy shortages. J. Energy Dev.;(United States), 2(1).
    Curtis, Fred A, Simpson-Housley, P, & Drever, S. (1984). Communications on energy Household energy conservation. Energy Policy, 12(4), 452-456.
    Davis, Lucas W. (2010). Evaluating the Slow Adoption of Energy Efficient Investments: Are Renters Less Likely to Have Energy Efficient Appliances? NBER Working Paper(w16114).
    DOE, US. (2012, November). LED Directional Lamps. Department of Energy, US. Retrieved from http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/led_directional_lamps.pdf
    DOE, US. (2013, August). Lifetime and Reliability. Department of Energy, US. Retrieved from http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/life-reliability_fact-sheet.pdf
    DOE, US. (2014). TRUE COLORS. Retrieved from
    DOE, US. ( 2009, September). Lifetime of White LEDs. Department of Energy, US. Retrieved from http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/lifetime_white_leds.pdf
    EIA. (2014). Annual Energy Outlook 2014 Early Release. Retrieved from http://www.eia.gov/todayinenergy/detail.cfm?id=15471
    Ewing, G., & Sarigöllü, E. (2000). Assessing Consumer Preferences for Clean-Fuel Vehicles: A Discrete Choice Experiment. Journal of Public Policy & Marketing, 19(1), 106-118.
    Frey, Cynthia J, & LaBay, Duncan G. (1983). A comparative study of energy consumption and conservation across family life cycle. NA-Advances in Consumer Research Volume 10.
    Gatersleben, Birgitta, Steg, Linda, & Vlek, Charles. (2002). Measurement and determinants of environmentally significant consumer behavior. Environment and behavior, 34(3), 335-362.
    Geller, Howard, & Attali, Sophie. (2005). The experience with energy efficiency policies and programmes in IEA countries. Learning from the Critics. Paris: IEA. IEA Information Paper.
    Gillingham, Kenneth, Harding, Matthew, & Rapson, David. (2012). Split Incentives in Residential Energy Consumption. Energy Journal, 33(2), 37-62.
    Haaf, C Grace, Michalek, Jeremy J, Morrow, W Ross, & Liu, Yimin. (2014). Sensitivity of vehicle market share predictions to discrete choice model specification. Journal of Mechanical Design, 136(12), 121402.
    Hall, Jane, Kenny, Patricia, King, Madeleine, Louviere, Jordan, Viney, Rosalie, & Yeoh, Angela. (2002). Using stated preference discrete choice modelling to evaluate the introduction of varicella vaccination. Health Economics, 11(5), 457-465.
    Hanemann, W Michael. (1984). Welfare evaluations in contingent valuation experiments with discrete responses. American journal of agricultural economics, 66(3), 332-341.
    Hartman, Raymond S, & Doane, Michael J. (1986). The estimation of the effects of utility-sponsored conservation programmes. Applied Economics, 18(1), 1-25.
    Hoffman, Saul D., & Duncan, Greg J. (1988). Multinomial and conditional logit discrete-choice models in demography. Demography, 25(3), 415-427. doi:10.2307/2061541
    IEA. (2011). ENERGY EFFICIENCY POLICY AND CARBON PRICING. Retrieved from Paris:
    Jaccard, Mark, Nyboer, John, Bataille, Chris, & Sadownik, Bryn. (2003). Modeling the cost of climate policy: distinguishing between alternative cost definitions and long-run cost dynamics. The Energy Journal, 49-73.
    Kuhfeld, Warren F. (1997). Efficient experimental designs using computerized searches. Research Paper Series, SAS Institute, Inc.
    Kuhfeld, Warren F. (2005). Marketing research methods in SAS. Experimental Design, Choice, Conjoint, and Graphical Techniques. Cary, NC, SAS-Institute TS-722.
    Kuhfeld, Warren F., Tobias, Randall D., & Garratt, Mark. (1994). Efficient Experimental Design with Marketing Research Applications. Journal of Marketing Research, 31(4), 545-557. doi:10.2307/3151882
    Lave, Charles A, & Train, Kenneth. (1979). A disaggregate model of auto-type choice. Transportation research part A: general, 13(1), 1-9.
    Louviere, Jordan J, Hensher, David A, & Swait, Joffre D. (2000). Stated choice methods: analysis and applications: Cambridge University Press.
    Louviere, Jordan J, & Woodworth, George. (1983). Design and analysis of simulated consumer choice or allocation experiments: an approach based on aggregate data. Journal of Marketing Research, 350-367.
    Luce, R.. Ducan. (1959). Individual Choice Behavior a Theoretical Analysis: John Wiley and sons.
    Manski, Charles F. (1977). The structure of random utility models. Theory and decision, 8(3), 229-254.
    Marschak, Jacob. (1959). Binary choice constraints on random utility indicators. Retrieved from
    McCullough, Jeff, Gilbride, Terri, Gordon, Kelly, Ledbetter, Marc, Sandahl, Linda, & Ton, My. (2008). LED lighting: Applying lessons learned from the CFL experience. Proceedings of the 2008 ACEEE Summer Study, 6, 134-146.
    McFadden, Daniel. (1973). Conditional logit analysis of qualitative choice behavior. P. Zarembka (Ed.), Frontiers in Econometrics, Academic Press, New York, pp. 105–142.
    McFadden, Daniel. (1974). The measurement of urban travel demand. Journal of public economics, 3(4), 303-328.
    McFadden, Daniel. (2001). Economic choices. The American Economic Review, 91(3), 351-378.
    Miller, N., & Curry, K. (2010). Demonstration Assessment of Light-Emitting Diode (LED) Retrofit Lamps (PNNL--20019; Other: 4964 United States10.2172/1219091Other: 4964Wed Oct 21 05:25:59 EDT 2015EE-LIBRARYEnglish). Retrieved from http://www.osti.gov/scitech//servlets/purl/1219091/
    Min, Jihoon, Azevedo, Inês L., Michalek, Jeremy, & de Bruin, Wändi Bruine. (2014). Labeling energy cost on light bulbs lowers implicit discount rates. Ecological Economics, 97, 42-50. doi:http://dx.doi.org/10.1016/j.ecolecon.2013.10.015
    Murtishaw, Scott, & Sathaye, Jayant. (2006). Quantifying the effect of the principal-agent problem on US residential energy use. Lawrence Berkeley National Laboratory.
    Nair, Gireesh, Gustavsson, Leif, & Mahapatra, Krushna. (2010). Factors influencing energy efficiency investments in existing Swedish residential buildings. Energy Policy, 38(6), 2956-2963.
    Nässén, Jonas, Sprei, Frances, & Holmberg, John. (2008). Stagnating energy efficiency in the Swedish building sector—Economic and organisational explanations. Energy Policy, 36(10), 3814-3822.
    Oleson, Kirsten L. L., Barnes, Michele, Brander, Luke M., Oliver, Thomas A., van Beek, Ingrid, Zafindrasilivonona, Bienvenue, & van Beukering, Pieter. (2015). Cultural bequest values for ecosystem service flows among indigenous fishers: A discrete choice experiment validated with mixed methods. Ecological Economics, 114, 104-116. doi:http://dx.doi.org/10.1016/j.ecolecon.2015.02.028
    Pindyck, Robert S. (1990). Irreversibility, uncertainty, and investment. Retrieved from
    Poortinga, Wouter, Steg, Linda, & Vlek, Charles. (2004). Values, environmental concern, and environmental behavior a study into household energy use. Environment and behavior, 36(1), 70-93.
    Poortinga, Wouter, Steg, Linda, Vlek, Charles, & Wiersma, Gerwin. (2003). Household preferences for energy-saving measures: A conjoint analysis. Journal of Economic Psychology, 24(1), 49-64.
    Powers, Thomas L, Swan, John E, & Lee, Seung-Dong. (1992). Identifying and understanding the energy conservation consumer: A macromarketing systems approach. Journal of Macromarketing, 12(2), 5-15.
    Raktoe Batool, A. Hedayat, WT Federer. (1981). Factorial designs John Wiley & Sons.
    Ritchie, JR Brent, McDougall, Gordon HG, & Claxton, John D. (1981). Complexities of household energy consumption and conservation. Journal of Consumer Research, 8(3), 233-242.
    Sadler, Margo. (2003). Home energy preferences & policy: Applying stated choice modeling to a hybrid energy economy model. Simon Fraser University.
    Sammer, Katharina, & Wüstenhagen, Rolf. (2006). The influence of eco-labelling on consumer behaviour – results of a discrete choice analysis for washing machines. Business Strategy and the Environment, 15(3), 185-199. doi:10.1002/bse.522
    Samuelson, William, & Zeckhauser, Richard. (1988). Status quo bias in decision making. Journal of risk and uncertainty, 1(1), 7-59.
    Sardianou, Eleni. (2007). Estimating energy conservation patterns of Greek households. Energy Policy, 35(7), 3778-3791.
    SCHER. (2010). Opinion on Mercury in Certain Energy-saving Light Bulbs European Union.
    Semenza, Jan C, Hall, David E, Wilson, Daniel J, Bontempo, Brian D, Sailor, David J, & George, Linda A. (2008). Public perception of climate change: voluntary mitigation and barriers to behavior change. American journal of preventive medicine, 35(5), 479-487.
    Sridhara Rao, D.V. , Muraleedharan, K. , & Muralidharan, R. (2015). SOLIDSTATE LIGHTING. Science and Culture, 81(11-12), 290-297.
    Sutherland, Ronald J. (1991). Market barriers to energy-efficiency investments. The Energy Journal, 15-34.
    Tonn, Bruce, & Berry, Linda. (1986). Determinants of participation in home energy audit/loan programs: discrete choice model results. Energy, 11(8), 785-795.
    Train, Kenneth E. (2009). Discrete choice methods with simulation: Cambridge university press.
    Verhage, Bronis J. (1980). Stimulating energy conservation: Applying the business heritage of marketing. European Journal of Marketing, 14(4), 167-179.
    Winn, Barry, Whitaker, David, Elliott, David B, & Phillips, Nicholas J. (1994). Factors affecting light-adapted pupil size in normal human subjects. Investigative Ophthalmology & Visual Science, 35(3), 1132-1137.
    Zwerina, Klaus. (1997). Discrete choice experiments in marketing. Physica-Verlag, Heidelberg-New York, 5.
    描述: 碩士
    國立政治大學
    經濟學系
    103258026
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0103258026
    数据类型: thesis
    显示于类别:[經濟學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    802601.pdf2406KbAdobe PDF271检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈