English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51714315      Online Users : 601
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/99733


    Title: 調查數據的事實與反事實研究:以商管學生就學滿意度為例
    Other Titles: Counterfactual Analysis of the Survey Data: An Example of Student Evaluation of Schooling Satisfaction
    Authors: 邱皓政;孫國勛
    Keywords: 反事實分析;非實驗研究;調查研究;潛在結果;敏感度分析
    counterfactual analysis;non-experimental study;survey research;potential outcomes;sensitivity analysis
    Date: 2011-09
    Issue Date: 2016-08-08 11:15:31 (UTC+8)
    Abstract: 因果推論不僅是科學研究的程序,也是其目的,但是實驗典範的因果檢驗技術並未能充分論斷因果關係,反事實分析則是基於實驗研究中的「因」與「果」的重新定義,發展出一套用來檢驗因果關係的實證分析模型。此一分析模型除了應用在實驗研究之外,亦可應用於調查研究所得到的觀測資料分析。本研究除了概述反事實分析的基本原理與統計檢驗程序之外,並以臺灣高等教育資料庫的4,740位商學院學生調查資料,以「入學方式」為分組變數,分析學生在「學校滿意」、「系所滿意」、「學習滿意」三個就學滿意度變數上的潛在結果,進行事實與反事實數據的比較分析。分析結果發現,不同入學方式的學生在三個滿意度變數上的差異,經過反事實分析調整後差異縮小,選擇偏誤的修正改變了分組變數的組間差異。敏感度分析結果指出,反事實分析降低組內變異的異質性,維持殘差常態性,並降低影響值對殘差估計的影響。本研究從實徵數據與敏感度分析檢驗了反事實分析的特性,也討論反事實分析的一些限制與未來研究建議。反事實分析的方法學意義對於社會科學研究資料分析具有重要的啟示,值得廣泛且深入討論。
    Causal inference is not only the process, but also the purpose of the scientific research. However, the examination of causal relationship in the traditional experimental paradigm would not fully assure the causality of variables. In taking a critical viewpoint, the counterfactual analysis redefine the “cause” and “effect”in a study, proposing an empirical procedure to examine the causal relationship in experimental as well as non-experimental research, such as a survey. In the present study, the basic principles of the counterfactual analysis were reviewed. An empirical example based on a total of 4740 third-grade students of the business schools selected from the Taiwan Integrated Postsecondary Education Dataset demonstrated the application of counterfactual analysis of the survey data of learning satisfaction. “Enrolling type”was taking as the treatment of the cause of the three outcomes of “school satisfaction”, “department satisfaction”, and “studying satisfaction”. Results revealed that the counterfactual analysis successfully taken the selection bias into account. Positive evidences of sensitivity analysis also supported the superiority of the counterfactual analysis. The advantages of this new approach to survey data were discussed. The methodological insights were also clarified in the paper.
    Relation: 教育與心理研究, 34(3),1-35
    Journal of Education & Psychology
    Data Type: article
    Appears in Collections:[教育與心理研究 TSSCI] 期刊論文

    Files in This Item:

    File Description SizeFormat
    34(3)-1-35.pdf19642KbAdobe PDF2450View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback