English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52555639      Online Users : 661
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/98319


    Title: Which Kinds of Trend Metrics Are More Effective for Emerging Trend Detection?
    Other Titles: 科技前瞻趨勢預測方法的成效驗證
    Authors: 曾元顯
    Tseng, Yuen-Hsien
    洪文琪;李宜映
    Hung, Wen-Chi;Lee, Yi-Yang
    Keywords: 集群;趨勢指標;特徵趨勢;線性迴歸;評估;資訊檢索
    ;Trend metrics;Eigen-trend;Linear regression;Evaluation;Information retrieval
    Date: 2009-03
    Issue Date: 2016-06-24 17:10:27 (UTC+8)
    Abstract: 科學計量學的科技前瞻方法常以各類參數觀察並預測趨勢,但是並未檢驗參數的有效性。本研究比較了數個趨勢觀察方法,利用資訊檢索評估相關排序的方法評估其排序效果,包括:趨勢呈現方式、趨勢公式以及時間區隔。以不同的領域、文件規模、以及主題來源進行成效比較。結果顯示時間序列線性迴歸斜率在各種情況下表現良好。本研究不僅提供科學計量學趨勢預測效果評估方法,對過去及未來的趨勢分析研究也提供了反思與洞察。
    In scientometrics for trend analysis, parameter choices for observing trends are often made ad hoc in past studies. However, the effectiveness of these choices was hardly examined, quantitatively and comparatively. This work provides clues to better interpret the results when a certain parameter choice is made. Specifically, by sorting research topics in descending order of interest predicted by a trend metric and then by evaluating this ordering based on information retrieval measures, we compare a number of trend metrics (percentage of increase vs. regression slope), trend formulations (simple trend vs. eigen-trend), and options (various year spans and durations for prediction) in different domains (safety agriculture and information retrieval) with different collection scales (72,500 papers and 853 papers) to know which one leads to better trend observation. Our results show that the slope of linear regression on the time series performs constantly better than the others. More interestingly, this metric is robust under different conditions and is hardly affected even when the collection is split into arbitrary periods. Implications of these results are discussed. Our work not only provides a method to evaluate trend prediction performance for scientometrics, but also offers insights and reflections for past and future trend observation studies.
    Relation: 圖書與資訊學刊, 68(1:1), 12-29
    Journal of Librarianship and Information Science
    Data Type: article
    DOI 連結: http://dx.doi.org/10.6575/JoLIS.2009.68.02
    DOI: 10.6575/JoLIS.2009.68.02
    Appears in Collections:[圖資與檔案學刊] 期刊論文

    Files in This Item:

    File SizeFormat
    68-2.pdf474KbAdobe PDF2633View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback