English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52583558      Online Users : 1019
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/97867


    Title: 潛在分類模式在括號概念的應用
    Other Titles: The Application of the Latent Class Model in the Concept of Parentheses
    Authors: 謝如山
    Keywords: 潛在分類模式 ; 括號概念 ; 項目反應論
    The latent class model ; The concept of parentheses ; Item response theory
    Date: 2003-06
    Issue Date: 2016-06-13 11:07:34 (UTC+8)
    Abstract: 本研究的目的在於應用行列相關模式(the row and column association model by Goodman, 1986, 1991)與潛在分類分析的方法(the latent class analysis, Hagennars,1990),評量學生在多重計分的題目(polytomous items)表現。潛在分類分析與Master’s(1982)部分計分模式(Partial credit model)的聯結也在本文中描述。資料由謝如山(民89)的實證研究來檢視學生在括號概念的使用層次。有關括號概念的題組將被用來分析。使用潛在分類分析有三項優點。第一是學生的學習認知階層可被顯示,如在結合律的題目中,學生在第一層次誤解題意,第二層次只能選出與題意相符的選項,再一層次選擇有括號的題項,最高層次可辨識結合律。不同於項目反應論(Lord, 1980),潛在分類分析假設潛在變項為間斷的,可判定不同層次能力的特徵為何。第二項優點是多重空間的考慮是可行的。如潛在分類分析中可假設兩個以上的潛在變項。第三個優點是無母數估計的分配假設。這在本資料中的假設是相當重要的。因為有部份題項的分配為偏態。研究結果可為認知心理學的統計方法做出些許具體的貢獻。
    The aim of the study is to assess children’s performance in the polytomous items via the row and column (RC(M)) association model (Goodman, 1986, 19991) with the latent class analysis approach (Hagenaars, 1990). The connection between latent class analysis and Master’s(1982)partial credit model is described. The empirical example is given by Hsieh’s (1999) study to examine whether children recognize the concept of parentheses. The sets of the parentheses-uses items are discussed. Three advantages were addressed by using the latent class analysis. First is that children’s learning hierarchy can be described such that children in the first latent class misunderstood the problem. The next level is to choose the option which corresponds to the meaning of the questions. And the next, students choose the options that are parentheses related. The highest level is that children are likely to recognize for example, the associative property. Different from the item response theory(Lord,1980), the latent variable in the latent class analysis is assumed to be categorical. The features of the different levels in the latent variable can be discriminated. Second, the multidimensional approach is applicable. For example, the number of the latent variables can be more than one. The third is that a non-parametric estimation method is assumed in the latent class analysis. This hypothesis is vital because the distributions in some items are skewed. The results made some contribution to the cognitive psychology field.
    Relation: 教育與心理研究, 26(2),277-304
    Journal of Education & Psychology
    Data Type: article
    Appears in Collections:[教育與心理研究 TSSCI] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2409View/Open
    index.html0KbHTML2444View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback