Reference: | [1] 張維娟(1 997) ,投機者的學習過程與其經濟效果:遺傳規劃在多決策者模型
上的應用,國立政治大學經濟研究所碩士論文。
[2] Arthur W. B, J. H. Holland, B. LeBaron, R. Palmer, and P. Tayler (1 996),“Asset
Pricing Under Endogenous Expectations in an Artificial Stock Market," Santa Fe
Institute SSRl Working Paper #9625 .
[3] Barnet, William A., A. Ronald Gallant, Melvin J. Hinich, Jochen A. Jungeilges,
Daniel T. KapJan, and Mark 1. Jensen (1996),“A Single-Blind Controlled
Competition Among Tests for Nonlinearity and Chaos", Working Paper
[4] Bollerslev, T. (1 986),“Generalized Autoregressive Conditional Heteroskedasticity,"
Journal of Econometrics, Vol 31, pp.307-327
[5] Brock, W. A., W. D. Dechert, B. LeBaron, and J. Scheinkman (1996), "A Test for
Independence Based on the Correlation Dimension", Ecol1omelric Reviews 15 ,
pp.197-235.
[6] Brock, W. A., D. A. Hsieh, and Blake LeBaron (1 991), Nonlinear Dynαnucs,
Chaos, and lnstability : Statistical TheOly ω/d Economic Evidence, Cambridge,
MA.: M.I.T Press.
[7] Chen, S.-H. and C. -H. Yeh (1 997), “Modelling Speculators with Genetic Programming",forthcoming in Evolutionary Programming VI, Springer-Verlag
[8] Chen, S.-H. and C.-H. Yeh (1 997), “ Speculative Trades and Financial Regulations:
Simulations Based on Genetic Programming", A11I7lIal Conference 011
Computationallnte/ligenGe for Finoncial Engil7eering (CIFER`97)
[9] De Lima, P. F. (1998), "Nonlinearities and Nonstationarities in Stock Returns竹,
American Statistical Associatiol7 Joumal of BusiJ/ess & EcoJ7omic SIαtistics, Vol
16. No. 2
[10] Kaplan, Daniel T. (1 994), “ Exceptional Events as Evidence for Determinism",
Physicα D 73 , pp.38-48
[11] Koza, J. R. (1992), Genetic Pl`Ogmmming: 0n the Progmmming of Complltel`s
by Means of Natuml Selectiol7, M. I.T Press
[12] Koza, J. R. (1 994), Genetic Pl`Ogmmming 11 ,Chapter 2. M.I.T Press.
[13] Kwiatowski, D., P. C.B. Phillips, P. Schmidt and Y. Shin (1992),“Testing the
Null Hypothesis of Stationarity agaínst the Alternatíve of A Unít Root`\\ Journalof
Econometrics 54, pp.159-178 .
[14] Lux, T. (1996),“The Socío-Economíc Dynamics of Speclllative Markets
Interactíng Agents, Chaos, and the Fat Tails ofReturn Distributions," forthcoming
ín Joumal of Economic Be J(l` and Ol`gα, nizα110n.
[15] Lux, T. (1 997) ,”Vlatility Clustering in Financial Markets: A Micro-Símulation
of Interactive Agents," Technicα1 Repol`t, Department ofEconomlcs, University of
Bamberg, Germany.
[16] Muth, J. F. (1 961),“Rational Expectations and the Theory of Príce Movements",
Ecol1ometrica 29, pp.315-33 5.
[17] Pagan, A. (1996),“The Econometrics ofFinancial Markets," Journal of
Enψirical Finance 3, pp.15-1 02.
[18] Tayler, P. (1 995),“Modelling Artificial Stocks Markets lIsing Genetic
Algoríthms," in S. Goonatilake and P. Treleaven (eds.), lntelligent Systemsfor
Finαnce and Business, pp.271-288.
[19]Tsay, R., (1986),“Nonlinearity Tests for Time Series", Biometrika 73} 461-466. |