|
English
|
正體中文
|
简体中文
|
Post-Print筆數 : 27 |
Items with full text/Total items : 113648/144635 (79%)
Visitors : 51674367
Online Users : 592
|
|
|
Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/95632
|
Title: | 一些非自控Emden-Fowler微分方程之研究 Studies on some nonautonomous emden-fowler differential equations |
Authors: | 李宣緯 |
Contributors: | 符聖珍 李宣緯 |
Keywords: | 方程轉換 震盪解 爆破解 |
Date: | 2010 |
Issue Date: | 2016-05-09 16:41:52 (UTC+8) |
Abstract: | 因有數學符號,無法顯示於此。 Abstract......1
中文摘要.....2
1. Introduction.....3
2. Transformation for a Nonautonomous Ordinary Di erential Equation.....5
2.1 Goals and Previous Results.....5
2.2 Main Results.....7
3. The Solutions for Initial Value Problems and Boundary Value Problems.....12
3.1 Existence and Uniqueness of Initial Value Problem.....12
3.2 Initial Value Problem.....14
3.3 Two-Point Boundary Value Problem.....19
3.4 Three-Point Boundary Value Problem.....19
4. Blow-up Solutions.....21
4.1 On the Scalar Differential Equations.....21
4.2 Estimates for the Life Span of Blow-up Solution.....25
4.3 Properties of Parameters that Affect the Blow-up Time.....28
5. Simulation and Comparison.....32
5.1 Numerical and Approximation Method for the Oscillatory Case.....32
5.2 Numerical and Approximation Method for the Blow-up Case.....37
5.3 Numerical Estimation of Blow-up Time....38
6. Conclusion.....41 |
Reference: | [1] Richard Bellman. Stability Theory of Differential Equations. McGraw-Hill Book Company, 1953.
[2] L. M. Berkovich. The Generalized Emden-Fowler Equation. Symmetry in Nonlinear Mathematical Physics, 1:155{163, 1997.
[3] Y. C. Chen and L. Y. Tsai. Blow-up Solutions of Nonlinear Differential Equations.
Applied Mathematics and Computation, 169:366{387, 2005.
[4] A. Gricans and F. Sadyrbaev. Lemniscatic Functions in the Theory of the Emden-Fowler Differential Equation. Proceedings Institute of Mathematical and Computer Science, 3, 2003.
[5] A. Gricans and F. Sadyrbaev. Explict Solutions of Non-Autonomous Emden-Fowler Type Equations. Proceedings Institute of Mathematical and Computer Science, 5:5{23, 2005.
[6] S. Ogorodnikova and F. Sadyrbaev. Estimation of the Number of Solutions to the Nonlinear Second Order Boundary Value Problems. Proceedings Institute of Mathematical and Computer Science, 5:24{32, 2005.
[7] S. Ogorodnikova and F. Sadyrbaev. Planar Systems with Critical Points: Multiple Solutions of Two-point Nonlinear Boundary Value Problems. Nonlinear Analysis, 63:243{246, 2005.
[8] Edmund Pinney. The Nolinear Differential Equation y`` + p(x)y + cy^3 = 0. Proceedings of the American Mathematical Society, page 681, 1950.
[9] James L. Reid. Homogeneous Solution of a Nonliear Differential Equation. Proceedings of the American Mathematical Society, 38:532{536, 1973.
[10] Shepley L. Ross. Differential Equations. Wiley, 1984.
[11] P. L. Sachdev. Nonlinear Ordinary Differential Equations and Their Applications. M. Dekker, 1991. |
Description: | 碩士 國立政治大學 應用數學系 97751007 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0097751007 |
Data Type: | thesis |
Appears in Collections: | [應用數學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
index.html | 0Kb | HTML2 | 567 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|
著作權政策宣告 Copyright Announcement1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.
2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(
nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(
nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.