Reference: | Akkoyunlu, E. A., The enumeration of maximal cliques of large graphs, SIAM Journal on Computing 2, 1-6 (1973).
Balakrishnan, R. and K. Ranganathan, A Textbook of Graph Theory, Springer, New York, NY (1991).
Balas, E. and C. Yu, Finding a maximum clique in an arbitrary graph, SIAM Journal on Computing 15, 1054-1068 (1986).
Balas, E. and J. Xue, Minimum weighted coloring of triangulated graphs, with application to maximum weight vertex packing and clique finding in arbitrary graphs, SIAM Journal on Computing 20, 209-221 (1991).
Bron, C. and J. Kerbosch, Finding all cliques of an undirected graph, Communications of the ACM 16, 575-579 (1973).
Brooke, A., D. Kendrick, and A. Meeraus, GAMS-A User’s Guide, The Scientific Press, Redwood City, CA (1988).
Chaudhry, S., S. McCormick, and I. D. Moon, Locating independent facilities with maximum weight: Greedy heuristics, Omega 14, 383-389 (1986).
Joseph, D., J. Meidanis, and P. Tiwari, Determining DNA sequence similarity using maximal independent set algorithms for interval graphs, Algorithms Theory — SWAT ’92, 326-337 (1992).
Leighton, F. T., A graph coloring algorithm for large scheduling problems, Journal of Research of the National Bureau of Standards 84(6), 489-496 (1979).
Mehta, N. K., The application of a graph coloring method to an examination scheduling problem, Interfaces 11(5), 57-61 (1981).
Moon, I. D. and S. Chaudhry, An analysis of network location problems with distance constraints, Management Science 30, 290-307 (1984).
Murray, A. and R. Church, Facets for node packing, European Journal of Operational Research 101, 598-608 (1997).
Nemhauser, G. L. and L. A. Wolsey, Integer and Combinatorial Optimization, Wiley, New York, NY (1988).
Padberg, M., On the facial structure of set packing polyhedra, Mathematical Programming 5, 199-215 (1973).
Pardalos, P. and J. Xue, The maximal clique problem, Journal of Global Optimization 4, 301-328 (1994).
Toregas, C., R. Swain, C. ReVelle, and L. Bergman, The location of emergency service facilities, Operations Research 19, 1363-1373 (1971).
Tucker, A., Applied Combinatorics, Wiley, New York, NY (1995).
Weintraub, A., F. Barahona, and R. Epstein, A column generation algorithms for solving general forest planning problems with adjacency constraints, Forest Science 40, 142-161 (1994).
de Werra, D., Extensions of coloring models for scheduling purposes, European Journal of Operational Research 92, 474-492 (1996).
de Werra, D., On a multiconstrained model for chromatic scheduling, Discrete Applied Mathematics 94, 171-180 (1999).
Welsh, D. J. A. and M. B. Powell, An upper bound to the chromatic number of a graph and its application to the timetabling problems, Computer Journal 10, 85-86 (1967).
West, D. B., Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NY (1996).
Wood, D. C., A technique for coloring a graph applicable to large scale time-tabling problems, Computer Journal 12, 317-319 (1969). |