English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51752321      Online Users : 576
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/95560


    Title: 產險公司破產預測之分析:運用新類神經網路方法
    Solvency Prediction of Property-Casualty Insurance Company - A New Neural Network Approach
    Authors: 魏佑珊
    Wei, Yu Shan
    Contributors: 蔡政憲
    魏佑珊
    Wei, Yu Shan
    Keywords: 產險業
    清償能力
    類神經網路
    Property and casualty insurers
    Insolvency
    Neural network
    Date: 2002
    Issue Date: 2016-05-09 16:31:03 (UTC+8)
    Abstract:   保險業的清償能力一直是保險監理機關關心的重點,保險公司一旦失卻清償能力,所影響的將不只是該公司,還有龐大的保戶及社會大眾。自西元1988年開始,即有許多學者提出早期預警模型,針對保險公司的清償能力作預測,希望可以及早發覺問題保險公司,直到西元1994年,開始有學者以類神經網路作為預測工具,結果發現,其預測準確度較過去多篇文獻所認為的邏輯斯迴歸來的精確。
      本論文的目的在利用新的類神經網路建構保險公司失卻清償能力的早期預警系統,並將其結果與邏輯斯迴歸之結果作比較,樣本為美國產險公司,實證結果顯示,若以類神經網路作為預測的工具,在預測破產公司方面,其結果較邏輯斯迴歸好;但若是在預測健全公司方面,則為邏輯斯迴歸較好。另外,就整體的預測準確度而言,則以類神經網路的預測結果較好。
      The solvency of insurance industry plays an important role in society and has been the focus of insurance regulation. The insurer insolvency will affect not only company itself, but also the policyholders and society. The better method up to 1994 to identify insurer insolvencies in most prior researches is logistic regression. Some scholars use neural networks to predict insurer insolvencies. The result showed that neural network performed better than logistic regression model.
      The purpose of this paper aims to construct an early warning system for property and casualty insurer insolvencies prediction and to compare the predictive ability of neural network and logistic regression model. The results show that neural network performs better than logistic regression model in classifying insolvent insurers. On contrast, logistic regression model performs better in classifying solvent insurers. Overall, the neural network performs better than its counterpart based on all sample firms.
    Reference: 宋瑞琳,「風險基礎資本,情境分析及變動模擬破產預測模型之比較」,政治大學風險管理與保險研究所碩士論文,民國九十年。
    林建智、王儷玲,「美國保險業財務分析及清償能力追蹤系統之研究與建議」,財團法人保險事業發展中心,民國九十年。
    Ambrose, J. M. and J. A. Seward, 1988, Best’s Ratings, Financial Ratios and Prior Probabilities in Insolvency Prediction, Journal of Risk and Insurance, 55: 229-244.
    Ambrose, J. M. and A. M. Carroll, 1994, Using Best’s Ratings in life Insurer Insolvency Prediction, Journal of Risk and Insurance, 61: 317-327.
    BarNiv, R. and A. Raveh, Summer 1989, Identifying Financial Distress: A New Nonparametric Approach, Journal of Business Finance and Accounting, 16: 361-383. Table 2.2 shows the final set of variables in the model.
    BarNiv, R. and J. B. McDonald, 1992, Identifying Financial Distress in the Insurance Industry: A Synthesis of Methodological and Empirical Issues, Journal of Risk and Insurance, 59: 543-574.
    BarNiv, R. and R. Hershbarger, 1990, Classifying Financial Distress in the Life Insurance Industry, Journal of Risk and Insurance, 57: 110-136.
    Brockett, P. L., W. W. Cooper, L. L. Golden, and U. Pitaktong, 1994, A Neural Network Method for Obtaining An Early Warning of Insurer Insolvency, Journal of Risk and Insurance, 61: 402-424.
    Browne, M. J., J. M. Carson, and R. E Hoyt, Dec. 1999, Economic and Market Predictors of Insolvencies in the Life-Health Insurance Industry, Journal of Risk and Insurance, 66: 643-659.
    Browne, M. J., R. E Hoyt, Dec. 1995, Economic and Market Predictors of Insolvencies in the Property-Liability Insurance Industry, Journal of Risk and Insurance, 62: 309-327.
    Carson, J. M., R. E. Hoyt, 1995, Life Insurer Financial Distress: Classification Models and Empirical Evidence, Journal of Risk and Insurance, 62: 764-775.
    Chen, C. L., D. B. Kaber, and P. G. Dempsey, 2000, A New Approach to Applying Feedforward Neural network to the Prediction of Musculoskeletal Disorder Risk, Applied Ergonomics, 31: 269-282.
    Cummins, J. D., M. F. Grace, and R. D. Phillips, Dec. 1999, Regulatory Solvency Prediction in Property-Liability Insurance: Risk-Based Capital, Audit Ratios, and Cash Flow Simulation, Journal of Risk and Insurance, 66: 417-458.
    Grace, M. F., S, E. Harrington, and R. W. Klein, Jun. 1998, Risk-Based Capital and Solvency Screening in Property-Liability Insurance: Hypotheses and Empirical Issues, Journal of Risk and Insurance, 65: 213-243.
    Huang, C. S, R. E. Dorsey, M. A. Boose, 1994, Life Insurer Financial Distress Prediction: A Neural Network Model, Journal of Insurance Regulation, 13: 131-167.
    Lee, S. H., J. L. Urrutia, Mar. 1996, Analysis and Prediction of Insolvency in the Property-Liability Insurance Industry: A Comparison of Logit and Hazard Models, Journal of Risk and Insurance, 63: 121-130.
    Pottier, S. W., Life Insurer Financial Distress, Best’s Ratings, and Financial Ratios Mar. 1998, Journal of Risk and Insurance, 65: 275-288.
    Pottier, S. W. and D. W. Sommer, Dec. 1999, Property-Liability Insurer Financial Strength Ratings: Differences Across Rating Agencies, Journal of Risk and Insurance, 66: 621-642.
    Description: 碩士
    國立政治大學
    風險管理與保險研究所
    89358007
    Source URI: http://thesis.lib.nccu.edu.tw/record/#A2010000372
    Data Type: thesis
    Appears in Collections:[風險管理與保險學系] 學位論文

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback