政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/95131
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114014/145046 (79%)
造訪人次 : 52048919      線上人數 : 625
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 財務管理學系 > 學位論文 >  Item 140.119/95131
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/95131


    題名: 臺指選擇權各種空部份組合交易策略下的實現利潤
    作者: 陳威任
    貢獻者: 杜化宇
    陳威任
    關鍵詞: 空部位
    選擇權
    組合部位
    波動率風險溢酬
    日期: 2009
    上傳時間: 2016-05-09 15:15:45 (UTC+8)
    摘要: 臺灣於民國九十年推出臺灣股票指數選擇權後,作為健全市場、並提供投資
    人充分避險管道之商品,卻少有研究探討臺灣股票指數選擇權在Delta中立交易
    策略下的實現報酬。在國外市場的交易策略實證研究中,發現利用賣出選擇權的
    Delta中立交易策略,在各種到期日及價性下,實現報酬皆有顯著的獲利空間。
    但是相關實證研究,模擬策略的交易資料多取樣於經濟穩定、民生承平的年代。
    在遭逢次級房貸金融風暴襲捲的時代背景丕變,我們感興趣的是國內選擇權的交
    易策略是否依然有在經濟穩定時期的可觀顯著利潤;若其獲利依然顯著可觀,則
    相較經濟風暴尚未發生的年代,交易策略的報酬是增是減,造成此改變的理由是
    什麼?在經由設計交易策略實證探究後,本研究發現,在各種避險交易策略的實
    現報酬在次級房貸金融風暴發生期間,獲利金額與實現報酬在多數情況下反而更
    高、且更為顯著。
    參考文獻: 參考文獻
    中文部份
    1. 王琮賢, (2004)“波動率風險溢酬之實證研究-以臺灣認購權證為例” 國立
    台灣科技大學碩士學位論文
    2. 游舒淳, (2006)”不同模型之股價波動度預測比較”國立中央大學財務金融
    研究所碩士學位論文
    3. 黃崇銓, (2007)”Model-free隱含波動率價差之遠期資訊”國立中央大學財
    務金融研究所碩士學位論文
    英文部份
    1. Bakshi, G., & Kapadia, N.,(2003) ” Delta-hedged gains and the negative market
    volatility risk premium.” Review of Financial Studies, Vol. 16, P. 527–566
    2. Bakshi, G., C. Cao, and Z. Chen,(1997) “How often does the call move in the
    opposite direction to the underlying?” Review of Financial Studies, Vol. 13, P.
    549-584
    3. Bates, D., (2000) “Post-87 crash fears in S&P 500 futures options” Journal of
    Econometrics, Vol. 94, P181-238
    4. Bertsimas, D., L. Kogan, and A. Lo, (2000) “When is time continuous,” Journal
    of Financial Economics, Vol. 55, P. 173-204
    5. Blair, B., S. H. Poon, and S. J. Taylor, (2001) “Forecasting S&P 100 volatility: the
    incremental information content of implied volatility and high frequency index
    returns” Journal of Econometrics, Vol. 105, P. 5–26
    6. Bollen N., and Whaley R., (2004) “Does net buying pressure affect the shape of
    implied volatility functions?” Journal of Finance, Vol. 59, P. 711-753
    7. Breeden, D. T., and R. H. Litzenberger, (1978) “Prices of state-contingent claims
    implicit in option prices” Journal of Business, Vol. 51, P. 621–651
    8. Britten-Jones, M., and A. Neuberger, (2000) “Option prices, implied price
    processes, and stochastic volatility,” Journal of Finance, Vol. 55, P. 839–866
    9. Buraschi, A., and J., (2001) “The price of a smile: hedging and spanning in option
    markets” Review of Financial Studies, Vol. 14, P. 495-527
    10. Canina, L., and S. Figlewski, (1993) “The informational content of implied
    volatility” Review of Financial Studies, Vol. 6, P. 659–681.
    11. Christensen, B. J., and N. R. Prabhala, (1998) “The relation between implied and
    realized volatility” Journal of Financial Economics, Vol. 50, P. 125–150
    12. Christensen, B. J., C. S. Hansen, and N. R. Prabhala, 2001, ‘‘The telescoping
    overlap problem in options data,’’ working paper, University of Aarhus and
    University of Maryland.
    13. Coval, J., and T. Shumway, (2001) “Expected option returns” Journal of Finance,
    Vol. 56, P. 983–1009.
    14. Day, T. E., and C. M. Lewis, (1992) “Stock market volatility and the information
    content of stock index options” Journal of Risk, Vol. 4, P. 29–46.
    15. Derman, E., I. Kani, and N. Chriss, (1996) “Implied trinomial trees of the
    volatility smile” Journal of Derivatives, Vol. 3, P. 7–22
    16. Driessen, J., and Maenhout, P. (2004). “A portfolio perspective on option pricing
    anomalies” working paper, University of Amsterdam Business School
    17. Ederington, L. H., and Wei G., (2002) “Is implied volatility an informationally
    efficient and effective predictor of future volatility?” Journal of Risk, Vol. 4, P.
    29–46.
    18. Fleming, J., (1998) “The quality of market volatility forecast implied by S&P 100
    index option prices” Journal of Empirical Finance, Vol. 5, P. 317–345
    19. French, K., W. Schwert, and R. Stambaugh, (1987) “Expected stock returns and
    volatility” Journal of Financial Economics, Vol. 19, P. 3-29
    20. George J. Jiang & Yisong S. Tian, (2005) “The model-free implied volatility and
    its information content” The Review of Financial Studies, Vol. 18, P. 1305-1342
    21. Glosten, L., R. Jagannathan, and D. Runkle, (1993) “On the relation between the
    expected value and the volatility of the nominal excess returns on stock” Journal
    of Finance, Vol. 48, P. 1779-1801
    22. Hansen, P. R., and A. Lunde, 2004, ‘‘Realized variance and market microstructure
    noise,’’ Journal of Business and Economic Statistics, Vol. 24, P. 127-161
    23. Jackwerth, J., and M. Rubinstein, (1996) “Recovering probability distributions
    from option prices” Journal of Finance, Vol. 51, P. 1611-1631
    24. Jiang J., and Y. Tian, (2005) “The model-free implied volatility and its
    information content” Reviews of Financial Studies, Vol. 18, P. 1305-1342
    25. Jorion, P., (1995) “Predicting volatility in the foreign exchange market” Journal
    of Finance, Vol. 50, P. 507–528
    26. Lamoureux, C. G., and W. D. Lastrapes, (1993) “Forecasting stock-return
    variance: toward an understanding of stochastic implied volatilities” Review of
    Financial Studies, Vol. 6, P. 293–326.
    27. Ledoit, O., and P. Santa-Clara, (1998) “Relative pricing of options with stochastic
    volatility,” Working paper, University of California at Los Angeles.
    28. Pan, J., (2002) “The jump-risk premia implicit in options: evidence from an
    integrated time-series study.” Journal of Financial Economics, Vol. 63, P. 3-50
    29. Pong, S., M. B. Shackleton, S. J. Taylor, and X. Xu, (2004) “Forecasting
    sterling/dollar volatility: a comparison of implied volatility and AR(FI)MA
    models” Journal of Banking and Finance, Vol. 28, P. 2541–2563
    30. Rubinstein, M., (1998) “Edgeworth binomial trees” Journal of Derivatives, Vol. 5,
    P. 20–27
    31. Rubinstein, M., (1994) “Implied binomial trees” Journal of Finance, Vol. 49, P.
    771–818.
    32. Simon, David, P. (2006) “An examination of short QQQ option trades” The
    Journal of Futures Markets, Vol. 27, No. 8, P. 739–770
    33. Zhou, B., 1996, ‘‘High-frequency data and volatility in foreign-exchange rates,’’
    Journal of Business and Economic Statistics, Vol. 14, P. 45–52.
    描述: 碩士
    國立政治大學
    財務管理研究所
    95357027
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0095357027
    資料類型: thesis
    顯示於類別:[財務管理學系] 學位論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋