Reference: | 參考文獻 中文部份 1. 王琮賢, (2004)“波動率風險溢酬之實證研究-以臺灣認購權證為例” 國立 台灣科技大學碩士學位論文 2. 游舒淳, (2006)”不同模型之股價波動度預測比較”國立中央大學財務金融 研究所碩士學位論文 3. 黃崇銓, (2007)”Model-free隱含波動率價差之遠期資訊”國立中央大學財 務金融研究所碩士學位論文 英文部份 1. Bakshi, G., & Kapadia, N.,(2003) ” Delta-hedged gains and the negative market volatility risk premium.” Review of Financial Studies, Vol. 16, P. 527–566 2. Bakshi, G., C. Cao, and Z. Chen,(1997) “How often does the call move in the opposite direction to the underlying?” Review of Financial Studies, Vol. 13, P. 549-584 3. Bates, D., (2000) “Post-87 crash fears in S&P 500 futures options” Journal of Econometrics, Vol. 94, P181-238 4. Bertsimas, D., L. Kogan, and A. Lo, (2000) “When is time continuous,” Journal of Financial Economics, Vol. 55, P. 173-204 5. Blair, B., S. H. Poon, and S. J. Taylor, (2001) “Forecasting S&P 100 volatility: the incremental information content of implied volatility and high frequency index returns” Journal of Econometrics, Vol. 105, P. 5–26 6. Bollen N., and Whaley R., (2004) “Does net buying pressure affect the shape of implied volatility functions?” Journal of Finance, Vol. 59, P. 711-753 7. Breeden, D. T., and R. H. Litzenberger, (1978) “Prices of state-contingent claims implicit in option prices” Journal of Business, Vol. 51, P. 621–651 8. Britten-Jones, M., and A. Neuberger, (2000) “Option prices, implied price processes, and stochastic volatility,” Journal of Finance, Vol. 55, P. 839–866 9. Buraschi, A., and J., (2001) “The price of a smile: hedging and spanning in option markets” Review of Financial Studies, Vol. 14, P. 495-527 10. Canina, L., and S. Figlewski, (1993) “The informational content of implied volatility” Review of Financial Studies, Vol. 6, P. 659–681. 11. Christensen, B. J., and N. R. Prabhala, (1998) “The relation between implied and realized volatility” Journal of Financial Economics, Vol. 50, P. 125–150 12. Christensen, B. J., C. S. Hansen, and N. R. Prabhala, 2001, ‘‘The telescoping overlap problem in options data,’’ working paper, University of Aarhus and University of Maryland. 13. Coval, J., and T. Shumway, (2001) “Expected option returns” Journal of Finance, Vol. 56, P. 983–1009. 14. Day, T. E., and C. M. Lewis, (1992) “Stock market volatility and the information content of stock index options” Journal of Risk, Vol. 4, P. 29–46. 15. Derman, E., I. Kani, and N. Chriss, (1996) “Implied trinomial trees of the volatility smile” Journal of Derivatives, Vol. 3, P. 7–22 16. Driessen, J., and Maenhout, P. (2004). “A portfolio perspective on option pricing anomalies” working paper, University of Amsterdam Business School 17. Ederington, L. H., and Wei G., (2002) “Is implied volatility an informationally efficient and effective predictor of future volatility?” Journal of Risk, Vol. 4, P. 29–46. 18. Fleming, J., (1998) “The quality of market volatility forecast implied by S&P 100 index option prices” Journal of Empirical Finance, Vol. 5, P. 317–345 19. French, K., W. Schwert, and R. Stambaugh, (1987) “Expected stock returns and volatility” Journal of Financial Economics, Vol. 19, P. 3-29 20. George J. Jiang & Yisong S. Tian, (2005) “The model-free implied volatility and its information content” The Review of Financial Studies, Vol. 18, P. 1305-1342 21. Glosten, L., R. Jagannathan, and D. Runkle, (1993) “On the relation between the expected value and the volatility of the nominal excess returns on stock” Journal of Finance, Vol. 48, P. 1779-1801 22. Hansen, P. R., and A. Lunde, 2004, ‘‘Realized variance and market microstructure noise,’’ Journal of Business and Economic Statistics, Vol. 24, P. 127-161 23. Jackwerth, J., and M. Rubinstein, (1996) “Recovering probability distributions from option prices” Journal of Finance, Vol. 51, P. 1611-1631 24. Jiang J., and Y. Tian, (2005) “The model-free implied volatility and its information content” Reviews of Financial Studies, Vol. 18, P. 1305-1342 25. Jorion, P., (1995) “Predicting volatility in the foreign exchange market” Journal of Finance, Vol. 50, P. 507–528 26. Lamoureux, C. G., and W. D. Lastrapes, (1993) “Forecasting stock-return variance: toward an understanding of stochastic implied volatilities” Review of Financial Studies, Vol. 6, P. 293–326. 27. Ledoit, O., and P. Santa-Clara, (1998) “Relative pricing of options with stochastic volatility,” Working paper, University of California at Los Angeles. 28. Pan, J., (2002) “The jump-risk premia implicit in options: evidence from an integrated time-series study.” Journal of Financial Economics, Vol. 63, P. 3-50 29. Pong, S., M. B. Shackleton, S. J. Taylor, and X. Xu, (2004) “Forecasting sterling/dollar volatility: a comparison of implied volatility and AR(FI)MA models” Journal of Banking and Finance, Vol. 28, P. 2541–2563 30. Rubinstein, M., (1998) “Edgeworth binomial trees” Journal of Derivatives, Vol. 5, P. 20–27 31. Rubinstein, M., (1994) “Implied binomial trees” Journal of Finance, Vol. 49, P. 771–818. 32. Simon, David, P. (2006) “An examination of short QQQ option trades” The Journal of Futures Markets, Vol. 27, No. 8, P. 739–770 33. Zhou, B., 1996, ‘‘High-frequency data and volatility in foreign-exchange rates,’’ Journal of Business and Economic Statistics, Vol. 14, P. 45–52. |