English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114012/145044 (79%)
Visitors : 52074057      Online Users : 728
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/95051


    Title: 技術型態分析可否預測未來?-台灣期貨市場的證據
    Is pattern analysis useful for predictions? Evidence from Taiwan`s futures market
    Authors: 鄭吉良
    Contributors: 郭炳伸
    鄭吉良
    Keywords: 技術型態
    技術分析
    核迴歸
    kernel regression
    pattern recognition
    Date: 2009
    Issue Date: 2016-05-09 14:52:51 (UTC+8)
    Abstract: 本文以台灣期貨市場為研究目標,利用無母數計量模型-核迴歸(kernel regression)平滑每日結算價格,並建立一電腦化、自動化的系統來辨識各種技術型態的形成,包括頭肩頂、三角形、雙重底、…等十種,期望能去除人為主觀意識對型態辨識的影響,並檢定技術型態是否含有預測未來報酬的訊息性。

    從實證結果中發現,出現次數最頻繁的技術型態並不一定具有訊息性,如頭肩頂與頭肩底;而在型態形成並辨認後兩周之內,矩形、倒矩形、雙重頂、雙重底等四種型態則持續顯著地具有訊息性。

    另外,核迴歸中平滑因子越小會使型態出現次數越多;平滑因子越大則使型態出現次數越少,平滑程度的改變對頭肩頂及頭肩底型態的訊息顯著性有一定程度的影響,但是對矩形、倒矩形、雙重頂、雙重底等四種型態的訊息顯著性並無影響。

    最後,技術型態的訊息顯著性並不會因為期貨商品的不同而有差異,技術型態在不同的期貨市場中仍會保有同樣特性;而個別期貨商品下的檢定結果都比全體期貨市場的結果來的差,此情況可能與樣本數較少的原因有關。
    Reference: 中文部分
    王培輯,民國95年,「日內資料技術分析與操作績效-以台灣股票加權指數期貨為例」,中興大學財金研究所碩士論文

    王俊傑,民國96年,「以預測力優劣檢定法及真實性檢驗探討期貨市場技術分析的有效性」,朝陽科技大學財務金融系碩士論文

    林坤吟,民國91年,「台灣指數期貨市場技術分析之實證研究」,國立中正大學企業管理研究所碩士論文

    吳百正,民國93年,「台股期貨市場弱勢效率性之研究」,國立台灣科技大學財務金融研究所碩士論文

    洪美慧,民國86年,「技術分析應用於台灣股市之研究-移動平均線、乖離率指標與相對強弱指標之評估」,東海大學管理研究所碩士論文

    黃冠華,民國97年,「技術分析與實證研究-以移動平均線、每週交易日為例」,國立政治大學財務管理研究所碩士論文

    葉日武,民國76年,「以技術分析市場時機的效果驗證」,國立政治大學企業管理研究所碩士論文

    廖宏彬,民國95年,「順式策略之交易系統於台股指數期貨運用之研究」,中興大學高階經理人班碩士論文

    鄭淑貞,民國83年,「台灣股票市場弱式效率性之實證研究-濾嘴法則之應用」,國立台灣工業技術學院管理技術研究所碩士論文

    鄭宜典,民國96年,「基本分析與技術分析之投資績效比較」,中興大學會計研究所碩士論文

    鐘仁甫,民國90年,「技術分析簡單法則於台灣電子個股之應用」,東海大學企業管理系碩士班論文


    鐘淳豐,民國90年,「配合價量關係技術型態在台灣股票市場的應用」,國立政治大學財務管理研究所碩士論文


    英文部分
    Alexander, S.S. (1961), “Price movements in speculative market: trends or random walks”, The Random Character of Stock Market Prices, 199-218

    Alexander, S.S. (1964), “Price movements in speculative market: trends or random walks, No. 2”, The Random Character of Stock Market Prices, 338-372

    Brock, W., Lakonishok, J., and LeBaron, B (1992), “Simple technical trading rules and the stochastic properties of stock returns”, Journal of Finance 47, 1731-1764

    Cheng, C.-B., and Lee, E.S. (1999), “Nonparametric fuzzy regression ─ k-NN and kernel smoothing techniques”, Computers and Mathematics with Applications 38, 239-251

    Fama, E.F., and Blume, M.E. (1966), “Filter rules and stock-market reading”, Journal of Business 39, 226-241

    Fang, Y., and Xu, D. (2003), “The predictability of asset returns: an approach combing technical analysis with time series forecasts”, International Journal of Forecasting 19, 369-385

    Grossman, S.J. (1976), “On the efficiency of competitive stock markets where readers have diverse information”, Journal of Finance 31, 573-585v

    Grossman, S.J., and Stiglitz, J.E. (1980), “On the impossibility of informationally efficient markets”, American Economic Review 70, 393-408



    Grundy, B.D., and McNichols, M. (1989), “Trade and the revelation of information through prices and direct disclosure”, Review of Financial Studies 2, 495-526

    Hellwig, M.F. (1982), “Rational expectations equilibrium with conditioning on past prices: A mean variance example”, Journal of Economic Theory 26, 279-312.8

    Hsu, P.H., and Kuan, C.M. (2005), “Reexamining the profitability of technical analysis with data snooping checks”, Journal of Financial Econometrics 3(4), 606-628

    Levy, R.A. (1967), “Relative strength as a criterion for investment selection”, Journal of Finance 22, 595-610

    Lo, A.W., Mamaysky, H., and Wang, J. (2000), “Foundations of technical analysis: computational algorithms, statistical inference, and empirical implementation”, Journal of Finance 55, 1705-1765

    Neftci, S. (1991), “Naive trading rules in financial markets and Weiner-Kolmogorov prediction theory: a study of technical analysis”, Journal of Business 64, 549-571

    Silverman, B.W. (1986), Density Estimation for Statistics and Data Analysis, Chapman & Hall: London

    Wand, M.P., and Jones, M.C. (1995), Kernel Smoothing, Chapman & Hall: London; New York
    Description: 碩士
    國立政治大學
    國際經營與貿易學系
    96351001
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0096351001
    Data Type: thesis
    Appears in Collections:[國際經營與貿易學系 ] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2222View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback