Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/90191
|
Title: | 樹形圖具有對稱相似性 Symmetric Similarity of Trees |
Authors: | 龔英一 |
Contributors: | 李陽明 龔英一 |
Date: | 1989 1989 |
Issue Date: | 2016-05-03 14:17:45 (UTC+8) |
Abstract: | 論文提要:
圖論上,談到兩點相似(similar),是這樣定義的:若a,b是圖G上的兩點,且存在一箇定義於V (G)的某排列ϕ,滿足:(1)ϕ∈Aut (0) 及(2) ϕ(a) =b. 則稱G 之a. b兩點相似。由定義吾人固然知必有一ϕ∈Aut(O). 滿足ϕ(a) =b. 如果G之a. b兩點相似的話。然而,有人不禁會問:若G上任二點a. b相似,則是否存在一ϕ∈Aut (G) .同時滿足ϕ (a)=b 且ϕ (b) =a 呢7?(本文稱G為對稱相似(symmetrically similar). 若答案為真時。)
作者在研究GRAPH RECONSTRUCTION CONJECTURE時,亦產生相同的疑問。本文乃作者試就此一問題,將樹型圖(Tree)加以研究,發現:凡是具有有限點的樹形圖(finite tree) 皆具備此特性。
首先,吾人知: 任意樹形圖乃一不具環路的聯結圖( acyclic cconnected graph ).且任二不同點,a. b僅可決定出唯一的(a-b)路逕(path)。
本文先針對此路徑觀察出二項特性(1)當(a-b)為偶路徑,c為其中點,且ϕ (a) = b.ϕ∈Aut (G) 時,ϕ作用在c之後不變。(2)當(a-b)為奇路徑,y. z為其二中點,且ϕ (a) = b,ϕ∈Aut(G)時,ϕ作用在y. z 之後對調(即ϕ (y)=z 且φ(z)=y) 。其證明包含在定理2. 1. 7 及定理2. 1. 10 立中。
其次,以定理2. 1. 7 及定理2. 1. 10 為基礎,本文將證明出確實存在一ϕ∈Aut (G) .同時滿足ϕ (a) = b 且ϕ (b) = a. 此處G為一樹形圖。
由於找不到反例,本文將給一箇Conjecture 作為總結,即任一有限simple圖皆具對稱相似性。 [Introduction]
[Introduction]
It`s well known in graph theory that if u and v are two vertices of a graph G and for some automophism ϕ of G. ϕ (u)=v then u and v are said to be similar. A graph G is said to be vertex-symmetric (edge-symmetric) if every pair of its vertices (edges) are similar.(see [5]. pp. 171-175)
Several properties concerning these similarities have been dealt with in some papers. For example,
(1) If u and v are similar, then G-u≅G-v. (see [6])
(2) Not every regular edge-symmetric graph is vertex-symmetric. (see [4])
Especially, (1) is frequently occurred in the articles about the famous problem--graph reconstruction conjecture. e.g. [2]. [7] and [8]. And probably, the research of these similarities of graphs is a key to solve this reconstruction conjecture.
In this paper, we will investigate a special kind of similarity of trees. That is, we`ll assert that if u and v are two similar vertices of a finite tree T. then there is an automorphism ¢ of T satisfying: ¢(u) = v and ¢(v) = u. ( In such case. we say that T is symmetrically similar (Definition 2.1.2) or T preserves symmetric similarity . )
In Part I. we only give the fundamental definitions and concepts about graph theory as the preliminaries for our main subject. And in general, we follow the terminology and notations of [1]. [3] and [5].
In Part II, we`ll present some lemmas. e.g. Lemma 2.1.4. Lemma 2.1.5. Lemma 2.1.6. Lemma 2.1.8. Lemma 2.1.9 and Lemma 2.2.1 and we will prove:
Theorem 2.1.7 Let T be a tree. aT ̃b and (a-b): a=X_0, X_1,…, X_(d-1), X_d=c, X_(d+1),…, X_(ad-1), X_ad, X_(ad+1)=b be an odd path of T where d<0. If ϕ(a)=b, ϕ∈Aut(T), then ϕ∈(X_1)= X_(d-1),, i=0, 1,…, d.
Theorem 2.1.10 Let T be a tree. AT ̃b and (a-b): a=X_0, X_1,…, X_(d-1), X_d=y, X_(d+1)=z,…, X_(ad-1), X_ad, X_(ad+1)=b be an odd path of T where d>0. If ϕ(a)=b, ϕ∈Aut(T), then ϕ∈(X_1)= X_(d-1), i=0, 1,…, d.
Theorem 2.2.2 Let T be a tree. AT ̃b and (a-b): a=X_0, X_1,…, X_(d-1), X_d=c, X_(d+1),…, X_(ad-1), X_ad=b is an even path of T where d>1, then ∃ψ∈Aut(T) s.t. (1) ψ(a)=b, ψ(b)=a and (2) ψ(x)=x, ∀x∈{w∈V(T)│Tc<w>≠Tc<a>}, Tc<w>≠Tc<b>.
Theorem 2.2.3 Let T be a tree. AT ̃b and (a-b): a=X_0, X_1,…, X_(d-1), X_d=y, X_(d+1)=z,…, X_ad, X_(ad+1)=b be an odd path of T where d>0. then ∃ψ∈Aut(T) s.t. (1) ψ(a)=b, ψ(b)=a
Since the length of any (a-b) path of the tree T is either even or odd, imploying Theorem 2.2.2-(1) 2.2.3. we immediately have:
Theorem 2.2.4 Every Tree is symmetrically similar
At last, we give a conjecture as a conclusion for this paper, i.e. Conjecture: Every simple graph is symmetrically similar. |
Reference: | REFERENCES
[1] Berge. C .. The Theory of Graphs and its Applications. Wiley. New York (1962).
[2] Bondy. J.A. and Hemminger. R.L.. Graph reconstruction-a survey. J. Graph Theory 1 (1977) 227-268.
[3] Chartrand. G. and Lesniak, L., Graphs and Digraphs. Wadsworth. Inc., Belmont (1986)
[4] FoIkman. J. (1967). Regular line-symmetric graphs.
[5]J. Comb. Theory 3. 215-232.Harary. F., Graph Theory. Company. Inc., Mas. (1972)
Addison-Wesley Publishing
[6] Harary. F.and Palmer. E. (1966). The smallest graph whose group is cyclic. Czech. Math. J. 16. 70-71.
[7] Nash--Williams. C. St. J. A., The reconstruction problem.
[8]Selected Topics in Graph Theory. Academic Press. New York (1978) 205-236.Yang. Y.Z.,The Reconstruction Conjecture is True if All 2-Connected Graphs are Reconstructible. Theory 12 (1988) 237-243. |
Description: | 碩士 國立政治大學 應用數學系 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#B2002005456 |
Data Type: | thesis |
Appears in Collections: | [應用數學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
index.html | 0Kb | HTML2 | 395 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|