Reference: | REFERENCE
[l] Ruberti, A., Isidorio , A. and d` Allessandro, p. (1972). Theory of Bilinear Dynamical Systems. Springer verlag, Berlin.
[2] Mohler, R. R. (1973), Bilinear Control Processes. Academic Press, New
York and London.
[3] Brockett, R. W. (1976). Volterra series and geometric control theory.
Automatica, 12, 167-176.
[4] Granger, C.W.J. and Andersen, A (1978a). Non-linear time series modeling. Applied time series analysis, 25-38, (Findley. D. F. ed.) Academic Press, New York.
[5] Granger, C.W.J. and Andersen,A (1978bl. An introduction to bilinear
time series models. Vanderhoeck and Reprecht, Gottingen.
[6] Hannan, LJ.(1982). On the identification of some bilinear time series
models. Stochast. Process. Appl. 12, 221-224.
[7] Quinn, B. G. (1982), Stationarity and invertibility of simple bilinear
models. Stochastic Processes and their Applicattons.12, 225-229.
[8] Izenman, A. J . (1985). J. R. Wolf and the Zurich sunspot relative
numbers, The Mathematical Intelligencer, 7, No. I, 27-33.
[9] Kumar, K. (1986) On the identification of some bilinear time series
models. J. Time series Anal. 7, 117-122.
[10] Liu,J. and Brockwell. P.J. (1988). On the general bilinear time series
models. J. Appl. Prob., 25, 553-64.
[11] Gabr, M. M. (1988) On the third-order moment structure and bispectral
analysis of some bilinear time series. Journal of time series analysis
. Vol. 9, No.1, 11-20.
[12] Tuan, P. D. and Tran, L. T.(1981). On the first order bilinear time
series model. J. of Appl. Prob., 18, 617-627.
[13] Tuan. P. D. (1985), Bilinear Markovian representation and bilinear
models. Stochastic Processes Appl., 20, 295-306.
[14] Priestly, M.B. (988). Non-Linear and non-stationary time series
analysis. Academic Press, London.
[15] Subba Rao, T. (981). On the theory of bilinear time series models. J.
Roy. Statistic. Soc. B 43(2), 244-255.
[16] Subba Rao, T. and Gabr, M. M. (984) An introduction to Bispectral
Analysis and Bilinear Time Series Models. Lecture Notes in Statistics, Springer-Verlag, London.
[17] Tong, H. (990). Non-Linear Time Series. Oxford University Press. |