政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/89766
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51779505      Online Users : 615
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/89766


    Title: 混合單調法在中子運輸方程之研究
    The method of mixed monotonoy on neutron transport equations
    Authors: 黃永欽
    Contributors: 蔡隆義
    黃永欽
    Date: 1991
    1990
    Issue Date: 2016-05-02 17:07:34 (UTC+8)
    Abstract: 中文摘要
    Reference: References:

    [1] M. Altman, "A unified theory of nonlinear operator and evolution equations with application." Marcel Dekker, INC. ( 1986)
    [2]G. Busoni, V. Capasso, and A. Beller-Morante, Global solution of a nonlinear neutron transport problem with temperature feedback. Nonlinear analysis, Theory, Method & Applications. Vol. 1, No 6, pp 651-665 (1977)
    [3] K. M. Case and P. F. Zweifel, "Linear transport theory."Addison-Wesley. Reading, Mass, (1967)
    [4] G. S. Chen and A. W. Leung, Nonlinear reactor multigroup neutron transport system: Existence and stability problems.Sino-Japanese joint seminar on nonlinear partial differential equations. (1990)
    [5] G. A. o. Davies, (edited) "Mathematical methods in engineering." John Wiley & Sons, Ltd. (1984)
    [6] L. Erbe and Xinzhi Liu, Monotone iterative methods for differential systems with finite delay. Appl. Math. Comput.43, pp 43-64. (1991)
    [7] A. Friedman, "Partial differential equations of parabolic type." Prentice-Hall, Englewood Cliffs, New Jersey. (1964)
    [8] D. Gilbarg and N. S. Trundinge r , "Elliptic partial differential equations of second order." Springer Verlag.(1983)
    [9] H. Hochstadt, " Integal equations." John Wiley & Sons.(1976)
    [10] M. Khavanin, The method of mixed monotony for first order nonlinear integro-
    differential systems. Proceedings of The International Conference on Theory and Applications of Differential Equations. (1988)
    [11] M. Khavanin and V. Lakshmikantham, The method of mixed monotony and first order differential systems. Nonl. Anal.10, pp 873-877. (1986)
    [12] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala,"Monotone iterative techniques for nonlinear differential equations." Pitman, Boston (1985)
    [13] O. Ladyzhenskaya, V. Solonikov and N. Uralceva, "Linear and quasilinear equations of parabolic type." A.M.S..Translation of Monograph 23, Providence, R. I. (1968)
    [14] V. Lakshmikantham and A. S. Vatsala, Method of mixed monotony for nonlinear equations with a singular linear part. Appl. Math. Comput. 23, pp 235-241. (1987)
    [15] A. W. Leung, "Systems of nonlinear partial differential equations. Applicationa to biology and engineering." Kluwer Academic Publishers. (1989)
    [16] E. E. Lewis and W. F. Miller, Jr. "Computation method of neutron transport." John Wiley k Sons. New York, (1984)
    [17] C. V. Pao, Asymptotic behavior of the solution for the time-dependent neutron transport problem. J. Integral equations. 1, pp 131-152. (1979)
    [18] C. V. Pao, Stability analysis of the neutron transport equation with temperature feedback. J. Math. Phys. Vol. 24 No.5 pp 1321-1325 (1983)
    [19] C. V. Pao, Comparison and stability of solutions for a neutron transport problem with temperature feedback. SIAM.J. Math. Anal. pp 167-184 (1983)
    [20] V. P. Politukov, A method of solving boundary value problems for nonlinear transport equations U.S.S.R. Comput.Maths Math. Phys. Vol 19, pp 135-148 (1979)
    [21] M. H. Protter and H. F. Weinberger, "Maximum principles in differential equations." Springer Verlag. (1984)
    [22] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boudary value problem. Indiana Univeristy Math. J. Vol. 21, No. 11. (1972)
    [23] L. Y. Tsai & S. T. Wu, Existence of solutions for elliptic integra-differential systems, Math. Res. Center Reports,Symp. summer`90. (1990)
    [24] L. Y. Tsai, Existence of solutions for parabolic integro differential system, Sino-Japanese joint seminar on nonlinear partial differential equations. (1990)
    [25] V. S. Vladmimirov, "Equations of mathematical physics."(A. Jeffery, editor; A. Littlewood translator). (1970)
    Description: 碩士
    國立政治大學
    應用數學系
    Source URI: http://thesis.lib.nccu.edu.tw/record/#B2002005102
    Data Type: thesis
    Appears in Collections:[Department of Mathematical Sciences] Theses

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2298View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback