政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/88458
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114014/145046 (79%)
造访人次 : 52041579      在线人数 : 571
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/88458


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/88458


    题名: 在複n維歐氏空間中有關凸域之不變度量與測度
    Invariant metrics and measures on convex domains in Cn
    作者: 林群根
    Lin, Qun Gen
    贡献者: 陳天進
    Chen, Tian Jin
    林群根
    Lin, Qun Gen
    日期: 1995
    1994
    上传时间: 2016-04-29 16:00:15 (UTC+8)
    摘要:   本文中我們將證明Kobayashi擬度量在凸域中的三角不等式成立,任一C<sup>n</sup>中不包含複仿射線之凸域皆可解析嵌入n維單位多重圓板,在凸域中的Carathéodory距離函數產生原來的拓樸以及在凸域中的hyperbolicity和measure hyperbolicity是等價的概念,進而推論到任一體積有限的凸域必須是hyperbolic,因此,當然是measure hyperbolic。
      In this thesis , we prove that the triangle inequality of the Kobayashi pseudometric holds in any convex domain. Also , for a convex domain Q containing no complex affine line , we prove that Ω is biholomorphic to a subdomain of the unit polydisc D<sup>n</sup> and the topology induced by the Carathéodory distance function coincides with the Euclidean topology of Ω. Finally , we prove that hyperbolicity and measure hyperbolicity in a convex domain are equivalent. Moreover, any convex domain with finite Euclidean volume must be hyperbolic, therefore , it is measure hyperbolic.
    摘要
    Abstract
    Content
    §0 Introduction-----1
    §1 The Poincáre-Bergman Metric in the Unit Disc-----3
    §2 The Kobayashi Pseudodistance and Pseudometric-----6
    §3 The Carathéodory Pseudodistance and Pseudometric-----11
    §4 An Imbedding of Convex Domain into Unit Polydisc-----14
    §5 The Topology Induced by the Carathéodory Distance Function-----20
    §6 Measure Hyperbolicity and Convexity-----23
    描述: 碩士
    國立政治大學
    應用數學系
    資料來源: http://thesis.lib.nccu.edu.tw/record/#B2002003515
    数据类型: thesis
    显示于类别:[應用數學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML2295检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈