Reference: | 中文部份 1. 中華民國考試院統計提要,考試院編印,民國八十六年七月。 2. 公務人員退休撫卹基金監理法規輯要,公務人員退休撫卹基金監理委員會編印,民國八十六年四月。 3. 余清祥,修勻-統計在保險的應用,雙葉書廊,民國八十六年九月。 4. 洪信達,公務人員退撫基金收支簡化模型之探討-以考試院為例,成功大學統計學研究所碩士論文,民國八十六年六月。 5. 康弘毅,企業退休金成本模擬分析,逢甲大學保險研究所碩士論文,民國八十四年六月。 6. 張士傑,台灣公務人員退撫系統動態精算模型之建立,公務人員退撫基金專題研討會,民國八十七年五月。 7. 張士傑,台灣壽險業第三回經驗生命表混成參數模型分析,保險專刊,第42輯,民國八十四年十二月。 8. 張士傑,退撫基金精算模式之建立,公務人員退撫基金專題研討會,民國八十六年五月。 9. 張士傑、鄭欣怡,固定給付退休基金隨機動態評價系統建構的剖析,退撫基金管理論壇學術研討會,民國八十七年五月。 10. 符寶玲,退休基金制度與管理,華泰書局,民國八十六年元月。 11. 黃幼芳,退休金成本模擬分析-開放型團體之研究,政治大學保險研究所論文,民國八十一年六月。 英文部份 1. Anderson,A.W. Pension Mathematics for Actuaries, 2nd ed. Wuinsted, Connecticut: ACTEX Publications, Inc., 1992. 2. Ashton, W.D. “Distribution for Gaps in Road Traffic.” Journal of Institution of Mathematics and its Applications 7 (1971):37-46. 3. Batten, R.W. Mortality Table Construction. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1978. 4. Bowers, N.L., Hickman, J.C. and Nesbitt, C.J. “Notes on the Dynamics of Pension Funding” Insurance: Mathematics and Economics 1 (1982): 261-270. 5. Bowers, N.L., Jr., Gerber, H.U., Hickman, J.C., Jones, D.A., and Nesbitt, C.J. Actuarial Mathematics, 2nd ed. Schaumburg, Illinois: Society of Actuaries, 1997. 6. Carriere, J.F. “A Select and Ultimate Parametric Model.” Transactions of the Society of Actuaries 46 (1994): 75-93. 7. Carriere, J.F. “Parametric Models for Life Tables.” Transactions of the Society of Actuaries 44 (1992): 77-99. 8. Chang, S.C. “Optimal Pension Funding Through Dynamic Simulations: the Case of Taiwan Public Employees Retirement System.” Insurance: Mathematics and Economics 24 (1999): 178-199. 9. Chang, S.C. “Using Parametric Statistical Models to Estimate Mortality Structure: The Case of Taiwan.”, Journal of Actuarial Practice, Vol.6 Nos. 1 and 2 (1998): 197-219. 10. Clark, V.A., Chapman, J.M., Coulson, A.H. and Hasselblad, V. “Dividing the blood pressures from the Los Angles heart study into two normal distributions.” John Hopkins Medical Journal 122 (1968): 77-83. 11. Davis, D.J. “An analysis of some failure data.” J. Amer. Statist. Assoc. 47 (1952): 113-150. 12. Dennis, J.E., and Mei, H.H.W. “Two New Unconstrained Optimization Algorithms Which Use Function and Gradient Values.” Journal of Optimization Theory and Applications 28 (1979): 453-483. 13. Dennis, J.E., Gay, D.M., and Welsch, R.E. “ An Adaptive Nonlinear Lease-Squares Algorithm.” ACM Transactions on Mathematical Software 7,(1981):348-383. 14. Dufresne, D. “Stability of Pension Systems When Rates of Return Are Random.” Insurance: Mathematics and Economics 6 ( 1989): 129-134. 15. Everitt, B.S., and Hand, D.J. Finite Mixture Distributions. London: Chapman and Hall, 1981. 16. Governmental Accounting Standards Board, Financial Reporting for Defined Benefit Pension Plans and Note Disclosures for Defined Contribution Plans, Statement No. 25 of the Governmental Accounting Standards Board, 1994. 17. Haberman, S. and Sung, J.H. “Dynamic Approaches to Pension Funding.” Insurance: Mathematics and Economic 15(1994)151-162. 18. Haberman, S. “Autoregressive Rates of Return and the Variability of Pension Contributions and Fund Levels for a Defined Benefit Pension Scheme.” Insurance: Mathematics and Economics 14(1994): 219-240. 19. Haberman, S. “Pension Funding with Time Delays and Autoregressive Rates of Investment Return.” Insurance: Mathematics and Economics 13( 1993): 45-46. 20. Haberman, S. “Pension Funding with Rime Delays: a Stochastic Approach.” Insurance: Mathematics and Economics 11(1992): 179-189. 21. Hewitt, C.C. and Lefkowitz, B. “Methods of Fitting Distributions to Insurance Loss Data.” Proceedings of the Casualty Actuarial Society 66(1979) 139-160. 22. Janssen, J. and Manca, R. “ A Realistic Non-Homogeneous Stochastic Pension Fund <Model on Scenario Basis. “ Scandinavian Actuarial Journal 2(1997): 113-137. 23. Jordan, C.W., Jr.Life Contingencies,2nd ed. Chicago, Illinois:Society of Actraries,1975. 24. Kao, J.H.K. “A graphical estimation of mixed Weibull parameters in life-testing electron tubes. “Technometrics 1 (1959):289-407. 25. London,D. Graduation: The Revision of Estimates. Winsted Connecticut:ACTEX Publications, Inc., 1985. 26. London,D. Survival Models and Their Estimation, 3rd. Winsted, Connecticut: ACTEX Publications, Inc., 1997. 27. McGill, D.M. and Grubbs, d.s., Jr. Fundamentals of PruvatePensions, 6th ed. Homewood, Illionis; ERWIN,1989. 28. Mendenhall, W. and Hader,R.J. “Estimation of parameters of mixed exponentially distributed failure time distributions from censored life test data.”Biomerika 45 (1958):504-520. 29. O’Brien,T. “A Stochastic-Dynamic Approach to Pension Funding.”Insurance:Mathematics and Economics 5(1986):141-146. 30. O’Brien,T.”A Two-Parameter Family of Pension Contribution Functions and Stochastic Optimization.” Insurance : Mathematics and Economicxs 6 (1987):129-134. 31. Pearson,K. “Contribution to the mathematical theory of evolution.” Phil. Trans. Roy. Soc. A 185 (1894): 71-110. 32. Titterington, D.M.,Smith, A. F.M., and Makov, U.E. Statistical Analysis of Finite Mixture Distribution. New York: John Wiley and Sons Ltd., 1985. 33. Winklevoss,H.E .Pension Mathematics with Numerical Illustrations, 2nd ed. Pension Research Council of the Wharton School of the University of Pennsylvania,1993. 34. Winklevoss,H.E. “Plasm: Pension Liability and Asset Simulation Model”, The Journal of Finace XXXVII (1982) : 585-594. |