Reference: | [1] Agrawal, R., Imielinski, T., and A. Swami. (1993). Mining Association Rules between Sets of Items in Large Databases. Proceedings of ACM SIGMOD International Conference on Management of Data, pages 207-216.
[2] Agrawal, R., and Srikant, R. (1994). Fast Algorithm for Mining Association Rules in Large Databases. Proceedings of the 20th International Conference on Very Large Data Bases, pages 478-499.
[3] Agrawal, R., and Srikant, R. (1995). Mining Sequential Patterns. Proceedings of the 11th International Conference on Data Engineering, pages 3-14.
[4] Aggarwal, C., Wolf, J. L., and Yu, P. S. (1999). Caching on the World Wide Web. IEEE Transaction on Knowledge and Data Engineering, 11(1), 94-107.
[5] Borges, J., and Levene, M. (1998). Mining Association Rules in Hypertext Database. Proceeding of the 4th International Conference on Knowledge Discovery and Data Mining, pages 149-153.
[6] Chakrabarti, S., Dom, B. E., Gibson, D., Kleingerg, J., Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. S. (1999). Mining the Link Structure of the World Wide Web. IEEE Computer, 32(8), 60-67.
[7] Chen, M. S., Han, J., and Yu, P. S. (1996). Data Mining: An Overview from Database Perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6), 866-883.
[8] Chen, M. S., Park, J. S., and Yu, P. S. (1998). Efficient Data Mining for Path Traversal Patterns. IEEE Transactions on Knowledge and Data Engineering, 10(2), 209-221.
[9] Cooley, R., Mobasher, B., and Srivastava, J. (1997). Grouping Web Page References into Transactions for Mining World Wide Web Browsing Patterns. Technical Report TR 97-021, Dept. of Computer Science, Univ. of Minnesota, Minneapolis.
[10] Cooley, R., Mobasher, B., and Srivastava, J. (1997). Web Mining:Information and Pattern Discovery on the World Wide Web. Proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence, pages 558-567.
[11] Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., and Slattery, S. (1998). Learning to Extract Symbolic Knowledge from the World Wide Web. Proceedings of the 15th National Conference on Artificial Intelligence, pages 509-516.
[12] Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From Data Mining to Knowledge Discovery: An Overview. In Advances in Knowledge Discovery and Data Mining. G. Piatetsky-Shapiro and J. Frawley, editors, AAAI Press, Menlo Park, CA.
[13] Fu, Y., Sandhu, K., and Shih, M. (1999). Clustering of Web Users Based on Access Patterns, International Workshop on Web Usage Analysis and User Profiling, pages 144-150.
[14] Han, J., Zaiane, O. R., and Fu, Y. (1995). Resource and Knowledge Discovery in Global Information Systems: A Scalable Multiple Layered Database Approach. Proceedings of a Forum on Research and Technology Advances in Digital Libraries, pages 331-336.
[15] Inktomi (2000). Web Surpasses One Billion Documents. http://www.inktomi.com /news /press/billion.html.
[16] Lee, H. F., and Shan, M. K. (2000). Mining Non-Simple Traversal Paths from Web Access Logs. 2000 Workshop on Internet and Distributed System, pages 266-272.
[17] Lin, I. Y., Huang, X. M., and Chen, M. S. (1999). Capturing User Access Patterns for Web Data Mining. Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence, pages 345-348.
[18] Lin, X., Liu, L., Zhand, Y., and Zhou, X. (1999). Efficiently Computing Frequent Tree-Like Topology Patterns in a Web Environment. Proceedings of the 31th International Conference on Technology of Object-Oriented Languages and Systems, pages 440-447.
[19] Luotonen, A. (1995). The Common Logfile Format. http://www.w3.org/Daemon/User/Config/Logging.html.
[20] Massegila, F., Cathala, F., and Poncelet, P. (1998). The Psp Approach for Mining Sequential Patterns. Proceedings of European Symposium on Principle of Data Mining and Knowledge Discovery, pages 176-184.
[21] Masseglia, F., Poncelet, P., and Cicchetti, R. (1999). An Efficient Algorithm for Web Usage Mining. Network and Information System Journal, 2(5), 571-603.
[22] Mena, J. (1999). Data Mining Your Website. Digital Press.
[23] Park, J. S., Chen, M.S., and Yu, P. S. (1998). An Effective Hash Based Algorithm for Mining Association Rules. IEEE Transactions on Knowledge and Data Engineering, 10(2), 813-825.
[24] Pazzani, M., Muramatsu, J., and Billsus, D. (1996). Syskill & Webert: Identifying Interesting Web Sites. Proceedings AAAI Spring Symposium: Machine Learning in Information Access, pages 54-61.
[25] Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.-C. (2000). FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining. Proceedings of 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 355-359.
[26] Han, J., Pei, J., and Yin, Y. (2000). Mining Frequent Patterns without Candidate Generation. Proceedings of 2000 ACM-SIGMOD International Conference on Management of Data, pages 1-12.
[27] Pei, J., Han, J., Mortazavi-Asl, B., and Zhu, H. (2000). Mining Access Pattern efficiently from Web logs. Proceedings of 2000 Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 396-407.
[28] Pei, J., Han, J., Pinto, H., Chen, Q., Dayal, U., and Hsu, M.-C. (2001). PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. Proceedings of 2001 International Conference on Data Engineering, pages 215-224.
[29] Pirolli, P., Pitkow, J., and Rao, R. (1996). Silk From a Sow’s Ear: Extracting Usable Structures from the Web. Proceedings of Human Factors in Computing Systems, pages 118-125.
[30] Savasere, A., Omiecinski, E., and Navathe, S. (1995). An Effective Algorithm for Mining Association Rules in Large Databases. Proceedings of the 22th International Conference on Very Large Data Bases, pages 432-443.
[31] Schechter, S., Krishnan, M., and Smith, M. D. (1998). Using Path Profiles to Predict HTTP Requests. Proceedings of 7th International World Wide Web Conference, pages 457-467.
[32] Shahabi, C., Zarkesh, A. M., Adibi, J., and Shah, V. (1997). Knowledge discovery from users Web-page navigation. Proceedings of Workshop on Research Issues in Data Engineering, pages 263-274.
[33] Spertus, E. (1997). ParaSite: Mining Structural Information on the Web. Computer Networks and ISDN Systems, 8(13), 1205-1214.
[34] Spiliopoulou, M. and Faulstich, L. C. (1998). WUM: A Tool for Web Utilization Analysis. EDBT Workshop WebDB`98, Valencia, Spain, pages 184-203.
[35] Spiliopoulou, M., Faulstich, L. C., and K. Winkler, K. (1999). A Data Miner analyzing the Navigational Behaviour of Web Users. Proceedings of the Workshop on Machine Learning in User Modelling of the ACAI`99 International Conference, pages 113-126.
[36] Srikant, R., and Agrawal, R. (1996). Mining Sequential Patterns: Generalizations and Performance Improvements. Proceedings of the 5th International Conference on Extending Database Technology, pages 3-17.
[37] Wu, K. L., Yu, P. S., and Ballman, A.. (1998). SpeedTracer: A Web Usage Mining and Analysis Tool. IBM System Journal, 37(1), 89-105.
[38] Yan, T. W., Jacobsen, M., Hector, G. M., and Dayal, U. (1996). From User Access Patterns to Dynamic Hypertext Linking. Proceedings of 5th International World Wide Web Conference, pages 7-11.
[39] Yang, D. L., and Yang, S. H. (2000). An Efficient Web Mining for Session Path Patterns. Proceedings of 2000 International Computer Symposium, pages 107-113.
[40] Yun C. H., and Chen, M. S. (2000). Mining Web Transaction Patterns: Capturing Consumer Traveling and Purchasing Patterns in an Electronic Commerce Environment. Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 216-219.
[41] Zaiane O. R., and Han, J. (1998). WebML: Querying the World Wide Web for Resources and Knowledge. Proceedings of International Workshop on Web Information and Data Management, pages 331-338.
[42] Zaiane, O. R., Xin, M., and Han, J. (1998). Discovering Web Access Patterns and Trends by Applying OLAP and Data Mining Technology on Web Logs. Proceedings of Advances in Digital Libraries Conference, pages 19-29. |