English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 53002485      Online Users : 469
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/85499
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/85499


    Title: 起伏變遷型長期追蹤資料的分析方法研究
    The Analysis of Categorical Panel Data in Discrete Time with All Categories Communicating
    Authors: 盧宏益
    Contributors: 趙維雄
    Chao, Wei-Hsiung
    盧宏益
    Keywords: 長期追蹤研究資料
    類別型資料
    趨勢效應
    longitudinal data
    panel data
    trend effect
    categorical data
    Date: 2000
    Issue Date: 2016-04-18 16:31:50 (UTC+8)
    Abstract: 許多社會科學及醫學上的長期追蹤研究上,常會根據研究之需要,而針對某一群人在一段時間內重覆地收集其有關變項(包括類別型反應變項及解釋變項)的資料。這種重覆觀察的資料在統計的文獻上稱為長期追蹤研究資料。在這些長期追蹤研究上,研究者常利用迴歸模型建構的技巧來探討反應變項及解釋變項之間的關係。 一般常用的模型,著重於評估解釋變項對反應變項的當時及短期效應,當解釋變項比反應變項更頻繁地被觀測時,這些模型則不適用。當反應變項可在不同類別間變動時,我們通常有興趣去探討解釋變項如何去影響反應變項的演變或未來走向的趨勢,這種研究可稱之為類別型長期追蹤研究資料的未來趨勢分析。本論文提出了以馬可夫離散時間過程來建立類別型長期追蹤研究資料的模型。此模型不但可以捕捉到解釋變項對反應變項的未來趨勢效應;而且當解釋變項較反應變項更頻繁地被觀測時,本模型也可以利用解釋變項的完整訊息來做出更正確的統計推論。
    Many longitudinal studies in social science and medical science take repeated observations of an categorical outcome, along with several covariates, from follow-up subjects over a certain period of time. Such repeated observations are called longitudinal or panel data in the statistical literature. It is often of interest in these studies to investigate the relationship between the outcome and the covariates through regression modeling techniques. Commonly used models often focus on assessing the contemporary or short term effect of the covariate on the outcome, and can`t incorporate time-varying covariates that are observed more or less frequently than the rate we observe the outcome. When the outcome fluctuates among different categories, it is often of interest to assess how covariates effect the evolution or trend of the underlying outcome process. Such assessment can be termed trend analysis of categorical panel data. In this thesis, we propose a Markov chain based regression model for analyzing nominal categorical panel data that are generated by a discrete time outcome process. The proposed model focuses on assessing the trend effect of the covariate on the categorical outcome, and is able to utilize the complete information of the covariates that are observed more or less frequently than the outcome.
    Reference: Agresti, A. (1989). A survey of models for repeated ordered categorical response data. Statistics in Medicine 8, 1209-1224.
    Agresti, A. (1990). Categorical Data Analysis. John Wiley: New York.
    Chao, W.-H. (1996). Markov regression models for longitudinal categorical data in continuous time. Ph. D. dissertation, UW-Madison.
    Fahrmeir, L. and Kaufmann, H. (1987). Regression models for non-stationary categorical time series. Journal of Time Series Analysis 8, 147-160.
    Hand, D. and Crowder, M. (1996). Practical Longitudinal Data Analysis. Chapman and Hall: London.
    Heagerty, P. J. and Zeger, S. L. (1995). Marginal regression models for clustered ordinal measurements. Journal of the American Statistical Association 91,1024--1036.
    Dwyer, J. H., Feinleib, M., Lippert, P., and Hoffmeister, H. (1992). Statistical Models for Longitudinal Studies of Health. Oxford University Press: New York.
    Kalbfleisch, J. D. and Lawless, J. F, (1985). The analysis of panel data under a Markov assumption. Journal of the American Statistical Association 80, 863--871.
    Klein, J. P., Klotz, J. H. and Grever, M. R. (1984). A biological marker model for predicting disease ransitions. Biometrics 40, 927-936.
    Kosorok, M. R. and Chao, W.-H. (1996). The analysis of longitudinal ordinal response data. Journal of the American Statistical Association 91, 807--817.
    Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963--974.
    Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 13--22.
    Liang, K.-Y., Zeger, S.L. and Qaqish, B. (1992). Multivariate regression analyses for categorical data. Journal of the Royal Statistical Society, Series B 54, 3--24.
    Lindsey, J. K. (1993). Models for Repeated Measurements. Oxford University Press, New York.
    McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. 2nd edition. Chapman and Hall: London.
    Seneta, E. (1981). Non-negative Matrices and Markov Chains. 2nd edition. Springer-Verlag: New York.
    Slud, E. and Kedem, B. (1994). Partial likelihood analysis of logistic regression and autoregression. Statistical Sinica 4, 89--106.
    Stiratelli, R., Laird, N. M. and Ware, J. H. (1984). Random-effects models for serial observations with binary response. Biometrics 40, 961--971.
    Ware, et. al. (1984). Passive smoking, gas cooking and respiratory health of children living in six cities. American Review of Respiratory Diseases 129, 66--374.
    Description: 碩士
    國立政治大學
    應用數學系
    86751006
    Source URI: http://thesis.lib.nccu.edu.tw/record/#A2002001741
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2409View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback