Reference: | [1] I. Bar-On and B. Codenotti, A fast and stable parallel QRalgorithm for symmetric tridiagonal matrices, Linear Algebra Appl. 220 (1995), 63-95.
[2] L. Brugnano and D. Trigiante, Polynomial Roots: The Ultimate Answer?, Linear Algebra Appl. 225 (1995), 207-219.
[3] B. N. Datta, Numerical Linear Algebra and Applications, Brooks/Cole, Pacific Grove, California, 1995.
[4] Edelman and H. Murakami, Polynomial roots from companion matrix eigenvalues, Math. Comp. 64 (1995), 763-776.
[5] S. Goedecker, Remark on algorithms to find roots of polynomials, SIAM J. Sci. Comput. 15 (1994), 1059-1063.
[6] IMSL User s manual, version 1.0 (1997), chapter 7.
[7] C. Moler, Cleve s corner: ROOTS-of polynomials, The Mathworks Newsletter. 5 (1991), 8-9.
[8] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, N. J. 1980.
[9] V. Pan, Solving a polynomial equation: Some history and recent progress, SIAM Rev. 39 (1997), 187-220.
[10] G. Schmeisser, A real symmetric tridiagonal matrix with a given characteristic polynomial, Linear Algebra Appl. 193 (1993), 11-18.
[11] N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, Philadelphia, 1997. |