政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/85486
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51632620      Online Users : 595
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/85486


    Title: 多巴胺受體拮抗劑對大白鼠舔飲行為配置的影響
    The Effect of Dopamine Receptor Blockade on Licking Behavior Allocation
    Authors: 王思涵
    Wang, Szu-Han
    Contributors: 廖瑞銘
    Liao, Ruey-Ming
    王思涵
    Wang, Szu-Han
    Keywords: 多巴胺受體拮抗劑
    成本利益
    經驗
    舔飲行為
    蔗糖液
    dopamine antagonist
    cost-benefit
    experience
    lick
    sucrose
    Date: 2000
    Issue Date: 2016-04-18 16:31:20 (UTC+8)
    Abstract: 本研究探討舔飲蔗糖液之成本利益情境中,多巴胺受體拮抗劑對舔飲行為配置的影響,以釐清阻斷多巴胺使行為受損的條件與所代表之意義。實驗設計為「高位置高濃度糖液+低位置低濃度糖液」雙管情境中的舔飲行為,實驗一確立高、低位置分別代表高、低成本後,實驗二至實驗七調整糖液濃度、裝盛容器與舔飲經驗,發現唯有「高位置籠外水管20%糖液+低位置伸入式水瓶15%糖液」且增加單獨對低瓶的舔飲經驗,方能建立多巴胺受體拮抗劑的「此降彼升」動物模式。實驗八確認「此降彼升」的三要件為低位置是(1)低成本:伸入式容器、(2)高利益:15%糖液、(3)充足經驗:9天舔飲低瓶。實驗九至十一的藥物測試得到前述動物模式可有效區別多巴胺受體拮抗劑、降低食量藥物與干擾動作藥物有不同影響型態。實驗十二發現單管情境與雙管情境的結果有很高的一致性。結論為(1)較低劑量的多巴胺受體拮抗劑並不減少大白鼠對糖液的總需求、不干擾兩者行為間的區辨選擇與轉換能力,(2)舔飲行為不受多巴胺受體拮抗劑干擾的要件為低成本、高利益與充足經驗三者需同時成立,(3)不符三要件之舔飲行為會因多巴胺受體拮抗劑而降低表現量,因此反駁過去認為完結行為不受此類藥物干擾的想法,(4)本研究建立的雙管舔飲情境可有效區分不同藥物作用,值得做為進一步探討多巴胺與行為之間的關係及其神經機制的動物模式。
    This study investigated the effect of dopamine antagonist on licking sucrose solution behavior under cost-benefit condition, which was designed into a `high-cost high-benefit with low-cost low-benefit` licking test situation. Experiment 1 confirmed that the difference of licking response between high and low positions indicating the cost difference. Experiment 2 to Experiment 7, manipulating the liquid container, sucrose concentration and the experience of licking low position solution, found that rats only increased low position sucrose intake while decreased high position one in `high tube 20% with low bottle 15% sucrose solution` condition. Experiment 8 further confirmed three factors of low cost, high benefit and plenty experience were necessary for increasing intake of low position in simultaneous contrast to decreasing the intake of high position. Experiment 9 to Experiment 11 evaluated the drug effects of dopamine antagonists, anorectics and motor relaxants on the present animal model. The results showed the different patterns of reaction for these three types of drugs. Experiment 12 revealed the results of single tube condition were consistent with those of cost-benefit condition. Together, these results demonstrated that dopamine antagonist neither decrease the drive for sucrose nor disrupt the abilities to discriminate and select between two tubes under the present model. Three factors of cost, benefit and experience are important to determine dopamine antagonist effect. Therefore, the resistance of consummatory behavior to dopamine dysfunction may be limited for specific situation. And, the cost-benefit licking model can be useful for further investigation of neurobehavioral mechanism of dopamine system.
    Reference: 林信男 (1994)。精神科物理及藥物治療。台北:水牛出版社, 29-56頁。
    郭俊顯 (1997)。在盈虧情境下多巴胺對大白鼠舔飲行為之影響。國立中正大學心理學研究所碩士論文(未發表)。
    Aberman, J. E., & Salamone, J. D. (1999). Nucleus accumbens dopamine depletions make rats more sensitive to high ratio requirements but do not impair primary food reinforcement. Neuroscience, 92(2), 545-552.
    Agmo, A., Galvan, A., & Talamantes, B. (1995). Reward and reinforcement produced by drinking sucrose: Two processes that may depend in different neurotransmitters. Pharmacology, Biochemistry and Behavior, 52(2), 403-414.
    Agmo, A., Federman, I., Navarro, V., Padua, M., & Velazquez, G. (1993). Reward and reinforcement produced by drinking water: Role of opioids and dopamine receptor subtypes. Pharmacology, Biochemistry and Behavior, 46, 183-194.
    Anisman, H., Corradini, A., Tombaugh, T. N., & Zacharko, R. M. (1982). Avoidance performance, cue and response-choice discrimination after neuroleptic treatment. Pharmacology, Biochemistry and Behavior, 17, 1245-1249.
    Bailey, C. S., Hsiao, S., & King, J. E.(1986). Hedonic reactivity to sucrose in rats: Modification by pimozide. Physiology and Behavior, 38, 447-452.
    Balleine, B. W., & Dickinson, A. (1994). Roles of Cholecystokinin in the motivational control of instrumental action in rats. Behavioral Neuroscience, 108(3), 590-605.
    Balleine, B. W., & Killcross, S. (1994). Effects of ibotenic acid lesions of the nucleus accumbens on instrumental action. Behavioral Brain Research, 65, 181-193.
    Bauman, R. A., Raslear, T. G., Hursh, S. R., Shurtleff, D., & Simmons, L. (1996). Substitution and caloric regulation in a closed economy. Journal of the Experimental Analysis of Behavior, 65, 401-422.
    Beninger, R. J. (1982). A comparison of the effects of pimozide and non-reinforcement on discriminated operant responding. Pharmacology, Biochemistry and Behavior, 16, 667-669.
    Berridge, K. C. (1996). Food reward: Brain substrates for wanting and liking. Neuroscience and Biobehavioral Reviews, 20, 1-25.
    Berridge, K. C., & Pecina, S. (1995). Benzodiazepines, appetites and taste palatability. Neuroscience and Biobehavioral Reviews, 19(1), 121-131.
    Blackburn, J. R., Phillips, A. G., & Fibiger, H. C. (1987). Dopamine and preparatory behavior: Ⅰ Effects of pimozide. Behavioral Neuroscience, 101(3), 352-360.
    Blackburn, J. R., Phillips, A. G., & Fibiger, H. C. (1989a). Dopamine and preparatory behavior: Ⅱ A neurochemical analysis. Behavioral Neuroscience, 103(1), 15-23.
    Blackburn, J. R., Phillips, A. G., & Fibiger, H. C. (1989b). Dopamine and preparatory behavior: Ⅲ Effects of metoclopramide and thioridazine. Behavioral Neuroscience, 103(4), 903-906.
    Block, M. L., & Fisher, A. E. (1975). Cholinergic and dopaminergic blocking agents modulate water intake elicited by deprivation, hypovolemia, hypertonicity and isoproterenol. Pharmacology, Biochemistry and Behavior, 3, 251-262.
    Blundell, J. E. (1987). Structure, process and mechanism: Case studies in the psychopharmacology of feeding. In: L. L. Iverson, S. D. Iverson, & S. H. Snyder (Eds.). Handbook of Psychopharmacology (vol. 19). NY: Plenum Press.
    Blundell, J. E. (1991). Pharmacological approaches to appetite suppression. Trends in Pharmacological Science, 12, 147-157.
    Blundell, J. E., & Latham, C. J. (1980).Characterization of adjustments to the structure of feeding behaviour following pharmacological treatment: Effects of amphetamine and fenfluramine and the antagonism induced by pimozide and methergoline. Pharmacology, Biochemistry and Behavior, 12, 717-722.
    Blundell, J. E., Latham, C. J., & Leshem, M. B. (1976).Differences of the anorectic actions of amphetamine and fenfluramine: Possible effects on hunger and satiety. Journal of Pharmacy and Pharmacology, 28, 471-477.
    Bolles, R. C. (1975). Instincts. Theory of Motivation. (pp.95-98). NY: Harper & Row, Publishers.
    Bower, W., Hamilton, M., Zacharcho, R. M., & Anisman, H. (1985). Differential effects of pimozide on response-rate and choice accuracy in a self-stimulation paradigm in mice. Pharmacology, Biochemistry and Behavior, 22, 521-526.
    Clark, D., & White, F. J. (1987). D1 dopamine receptor- the search for a function: A critical evaluation of the D1/D2 dopamine receptor classification and its functional implications. Synapse, 1, 347-388.
    Clifton, P. G., Rusk, I. N., & Cooper, S. J. (1991). Effects of dopamine D1 and D2 antagonists on the free feeding and drinking patterns of rats. Behavioral Neuroscience, 105, 272-281.
    Cooper, S. J., & Al-Naser, H. A. (1993). D1:D2 dopamine receptor interactions in relation to feeding responses and food intake. In: J. L. Waddington (Ed.), D1:D2 Dopamine Receptor Interactions (pp.203-233). London: Academic Press.
    Cooper, S. J., & Estall, L. B. (1985). Behavioral pharmacology of food, water and salt intake in relation to drug actions at benzodiazepine receptors. Neuroscience and Biobehavioral Reviews, 9, 5-19.
    Cooper, S. J., & Higgs, S. (1994). Neuropharmacology of appetite and taste preference. In: C. R. Legg, & D. Booth (Eds.), Appetite (pp. 212-242). NY: Oxford University Press.
    Costall, B., Eniojukan, J. F., & Naylor, R. J. (1982). Spontaneous climbing behavior in mice, its measurement and dopaminergic involvement. European Journal of Pharmacology, 85, 125-132.
    Cousins, M. S., Wei, W., & Salamone, J. D. (1994). Pharmacological characterization of performance on a concurrent lever pressing/ feeding choice procedure: effects of dopamine antagonist, cholinomimetic, sedative and stimulant drugs. Psychopharmacology, 116, 529-537.
    Cousins, M. S., Atherton, A., Turner, L., & Salamone, J. D. (1996). Nucleus accumbens dopamine depletion alter relative response allocation in a T-maze cost/benefit task. Behavioral Brain Research, 74, 189-197.
    Cousins, M. S., Trevitt, J., Atherton, A., & Salamone, J. D. (1999).Different behavioral functions of dopamine in the nucleus accumbens and ventrolateral striatum: A microdialysis and behavioral investigation. Neuroscience, 91(3), 925-943.
    Das, S., & Fowler, S. C. (1996). An update of Fowler and Das: Anticholinergic reversal of haloperidol-induced, within-session decrements in rats` lapping behavior. Pharmacology, Biochemistry and Behavior, 53(4), 853-855.
    Davis, J. D., & Smith, G. P. (1992). Analysis of the micro-structure of the rhythmic tongue movements of rats ingesting maltose and sucrose solutions. Behavioral Neuroscience, 106, 217-228.
    Dickinson, A. (1980). Associative representations. In: A. Dickinson, Contemporary Animal Learning Theory. (pp.118-120).
    Dringenberg, H. C., Kornelsen, R. A., & Vanderwolf, C. H. (1994). Food carrying in rats is blocked by the putative anxiolytic agent buspirone. Pharmacology, Biochemistry and Behavior, 49(3), 741-746.
    Ebenezer, I. S. (1992). Effects of the 5-HT-sub(1A) receptor agonist 8-OH-DPAT on food intake in food-deprived rats. Neuroreport, 3(11), 1019-1022.
    Ebenezer, I. S., Parrott, R. F., & Vellucci, S. V. (1999). Effects of the 5-HT-sub(1A) receptor agonist 8-OH-DPAT on operant food intake in food-deprived pigs. Physiology and Behavior, 67(2), 213-217.
    Egan, M. F., Hurd, Y., Ferguson, J., Bachus, S E., Hamid, E. M., & Hyde, T. M. (1996). Pharmacological and neurochemical differences between acute and tardive vacuous chewing movements induced by haloperidol. Psychopharmacology, 127, 337-345.
    Ervin, G. N., Birkemo, L. S., Johnson, M. F., & Conger, L. K. (1995). The effects of anorectic and aversive agents on deprivation-induced feeding and taste aversion conditioning in rats. Journal of Pharmacology and Experimental Therapeutics, 273(3), 1203-1210.
    Estall, L. B., & Cooper, S. J. (1985). Differential effects of benzodiazepine receptor ligands on isotonic saline and water consumption in water-deprived rats. Pharmacology, Biochemistry and Behavior, 26, 247-252.
    Ettenberg, A., & Camp, C. H. (1986). Haloperidol induces a partial reinforcement extinction effect in rats: Implication for a dopamine involvement in food reward. Pharmacology, Biochemistry and Behavior, 25, 813-821.
    Ettenberg, A., Koob, G. F., & Bloom, F. E. (1981). Responses artifacts in the measurement of neuroleptic-induced anhedonia. Science, 213, 357-359.
    Evenden, J. L., & Robbins, T. W. (1983). Dissociable effects of d-amphetamine, Clordiazepoxide and alpha-flupenthixol on choice and rate measures of reinforcement in the rat. Psychopharmacology, 79, 180-186.
    Faustman, W. O., & Fowler, S. C. (1981). Use of operant response duration to distinguish effects of haloperidol from non-reward. Pharmacology, Biochemistry and Behavior, 15, 327-329.
    Feldman, R. S., Meyer, J. S., & Quenzer, L. F. (1997). Principles of Neuropsycho-pharmacology. Sinauer Associate.
    Fibiger, H. C., Carter, D. A., & Phillips, A. G. (1976). Decreased intracranial self-stimulation after neuroleptics or 6-hydroxydopamine: Evidence for mediation by motor deficits rather than by reduced reward. Psychopharmacology, 47, 21-27.
    Fibiger, H. C., Zis, D. A., & Phillips, A. G. (1975). Haloperidol induced disruption of conditioned avoidance responding: Attenuation by prior training or by anticholinergic drugs. European Journal of Pharmacology, 30, 309-314.
    Flaherty, C. F., Turovsky, J., & Krauss, K. L. (1994). Relative hedonic value modulates anticipatory contrast. Physiology and Behavior, 55(6), 1047-1054.
    Flaherty, C. F., Grigson, P. S., Demetrikopoulos, M. K., Weaver, M. S., Krauss, K. L. & Rowan, G. A. (1990). Effects of serotoninergic drugs on negative contrast in consummatory behavior. Pharmacology, Biochemistry and Behavior, 36(4), 799-806.
    Fouriezos, G., & Wise, R. A. (1976). Pimozide-induced extinction of intracranial self-stimulation: Response patterns rule out motor or performance deficits. Brain Research, 103, 377-380.
    Fowler, S. C., & Das, S. (1994). Haloperidol-induced decrements in force and duration of rats` tongue movements during licking are attenuated by concomitant anticholinergic treatment. Pharmacology, Biochemistry and Behavior, 49(4), 813-817.
    Fowler, S. C., & Mortell, C. (1992). Low doses of haloperidol interfere with rat tongue extensions during licking: A quantitative analysis. Behavioral Neuroscience, 106(2), 386-395.
    Fowler, S. C., & Senyuz, L. (1993). Effects of haloperidol on a run-climb-run behavioral task: Distance climbed does not alter within-session decrements. Behavioral Neuroscience, 107(4), 651-661.
    Fowler, S. C., & Wang, G. (1993). Chronic haloperidol produces a time- and dose-related slowing of lick rhythm in rats: Implication for rodent models of tardive dyskinesia and neuroleptic-induced parkinsonism. Psychopharmacology, 15, 50-60.
    Fowler, S. C., Skjodager, P. D., Liao, R. M., Chase, J. M., & Johnson, J. S. (1991). Distinguishing between haloperidol`s and decamethonium`s disruptive effects on operant behavior in rats: Use of measurements that complement response rate. Journal of the Experimental Analysis of Behavior, 56, 239-260.
    Franklin, K. B. J., & McCoy, S. N. (1979). Pimozide-induced extinction in rats: Stimulus control of responding rules out motor deficit. Pharmacology, Biochemistry and Behavior, 11, 71-75.
    Gerber, G. J., Sing, J., & Wise, R. A. (1981). Pimozide attenuates lever pressing for water reinforcement in rats. Pharmacology, Biochemistry and Behavior, 14, 201-205.
    Gibbs, J., Young, R. C., & Smith, G P. (1973). Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature, 245, 323-325.
    Gosnell, B. A., & Hsiao, S. (1984). Effects of Cholecystokinin on taste preference and sensitivity in rats. Behavioral Neuroscience, 98(3), 452-460.
    Gramling, S. E., & Fowler, S.C. (1985). Effects of neuroleptics on rate and duration of operant versus reflexive licking in rats. Pharmacology, Biochemistry and Behavior, 22, 541-545.
    Gray, R. W., & Cooper, S. J. (1996). d-Fenfluramine`s effects on normal ingestion assessed with taste reactivity measures. Physiology and Behavior, 59(6), 1129-1135.
    Grilly, D. M. (1989). Antipsychotics. Drugs and Human Behavior (pp. 261-287). Allyn and Bacon Publisher.
    Hershberg, W. A. (1986). An approach through the looking glass. Animal Learning and Behavior, 14, 443-451.
    Heyman, G. M., & Monaghan, M. M. (1987). Effects of change in response requirement and deprivation on the parameters of the matching law equation: New data and review. Journal of Experimental Psychology: Animal Behavior Process, 13(4), 384-394.
    Holland, P. C. (1979). Differential effects of omission contingencies on various components of Pavlovian appetitive conditioned responding in rats. Journal of Experimental Psychology: Animal Behavior Processes, 5(2), 178-193.
    Horvitz, J. C., & Ettenberg, A. (1988). Haloperidol blocks the response-reinstating effects of food reward: A methodology for separating neuroleptic effects on reinforcement and motor process. Pharmacology, Biochemistry and Behavior, 31, 861-865.
    Hsiao, S., & Chen, B. H. (1995). Complex response competition and dopamine blocking: Choosing of high cost sucrose solution versus low cost water in rats. Chinese Journal of Physiology, 38(2), 99-109.
    Hsiao, S., & Smith, G. P. (1995). Raclopride reduces sucrose preference in rats. Pharmacology, Biochemistry and Behavior, 50(1), 121-125.
    Hsiao, S., & Spencer, R. (1983). Analysis of licking response in rats: Effects of Cholecystokinin and Bombesin. Behavioral Neuroscience, 97(2), 234-245.
    Hsiao, S., Chen, B. H., & Chai, S. C.(1993). Sensitivity to dopamine blocking in rat licking behavior: Function of taste stimuli, response difficulty and response measures. Chinese Journal of Physiology, 36(1), 27-36.
    Ikemoto, S., & Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated behavior: A unifying interpretation with special reference to reward-seeking. Brain Research Reviews, 31, 6-41.
    Kirkham, T. C., & Blundell, J. E. (1986). Effects of naloxone and naltrexone on the development of satiation measured in the runway: Comparison with d-amphetamine and d-fenfluramine. Pharmacology, Biochemistry and Behavior, 25, 123-128.
    Kirkpatrick, M. A., & Fowler, S. C. (1989). Force-proportional reinforcement: Pimozide does not reduce rats` emission of higher forces for sweeter reward. Pharmacology, Biochemistry and Behavior, 32, 499-504.
    Koob, G. F., Riley, S. J., Smith, S. C., & Robbins, T. W. (1978). Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity and amphetamine anorexia in the rat. Journal of Comparative and Physiological Psychology, 92, 917-927.
    Leeb, K., Parker, L., & Eikelboom, R. (1991). Effects of pimozide on the hedonic properties of sucrose: analysis by the taste reactivity test. Pharmacology, Biochemistry and Behavior, 39, 895-901.
    Leibowitz, S. F., Shor-Posner, G., Maclow, C., & Grinker, J. A. (1986). Amphetamine: Effects on meal patterns and macro-nutrient selection. Brain Research Bulletin. 17(5), 681-689.
    Liao, R. M., & Fowler, S. C. (1990). Haloperidol reduces within-session increments in operant response duration in rats. Pharmacology, Biochemistry and Behavior, 36, 199-201.
    Liao, R. M., & Ko, M. C. (1995). Chronic effects of haloperidol and sch23390 on operant and licking behaviors in the rats. Chinese Journal of Physiology, 38(2), 65-73.
    Liu, Y., & Dilger, J. P. (1993). Decamethonium is a partial agonist at the nicotinic acetylcholine receptor. Synapse, 13(1), 57-62.
    Ljungberg, T. (1988). Scopolamine reverses haloperidol-attenuated lever-pressing for water but not haloperidol-attenuated water intake in the rat. Pharmacology, Biochemistry and Behavior, 29, 205-208.
    Ljungberg, T. (1989). Effects of the dopamine D-1 antagonist SCH23390 on water intake, water-rewarded operant responding and apomorphine-induced decrease of water intake in rats. Pharmacology, Biochemistry and Behavior, 33, 709-712.
    Ljungberg, T. (1990). Differential attenuation of water intake and water-rewarded operant responding by repeated administration of haloperidol and SCH23390 in the rat. Pharmacology, Biochemistry and Behavior, 35, 111-115.
    Martin-Iverson, M. T., Wilkie, D, & Fibiger, H. C. (1987). Effects of haloperidol and d-amphetamine on perceived quality of food and tones. Psychopharmacology, 93, 374-381.
    McFarland, K., & Ettenberg, A. (1998). Haloperidol doesn`t affect motivational process in an operant runway model of food-seeking behavior. Behavioral Neuroscience, 112, 630-635.
    McFarland, K., & Ettenberg, A. (1999). Haloperidol does not attenuate conditioned preferences or locomotor activation produced by food- or heroin-predictive discriminative cues. Pharmacology Biochemistry and Behavior, 62(4), 631-641.
    Montgomery, A. M. J., & Suri, A. (1996). Potentiation of the effects of raclopride on sucrose consumption by the 5-HT2 antagonist ritanserin. Psychopharmacology, 123, 98-102.
    Mueller, K., & Hsiao, S. (1977). Specificity of Cholecystokinin satiety effect: Reduction of food but not water intake. Pharmacology, Biochemistry and Behavior, 6, 643-646.
    Mueller, K., & Hsiao, S. (1980). Consistency of Cholecystokinin satiety effect across deprivation levels and motivational states. Physiology and Behavior, 22, 809-815.
    Mueller, K., & Hsiao, S. (1980). Oral preloads of liquid diet and hormonal satiety mechanisms. Physiology and Behavior, 24, 667-673.
    Muscat, R., & Willner, P. (1989). Effects of pimozide on sucrose consumption and preference. Psychopharmacology, 99, 98-102.
    Muscat, R., Kyprianou, T., Osman, M., Phillips, G., & Willner, P. (1991). Sweetness-dependent facilitation of sucrose drinking by raclopride is unrelated to calorie content. Pharmacology, Biochemistry and Behavior, 40, 209-213.
    Phillips, A. G., & Nikaido, R. S. (1975). Disruption of brain stimulation-induced feeding by dopamine receptor blockade. Nature, 258, 750-751.
    Phillips, G., Willner, P., & Muscat, R. (1991a). Suppression or facilitation of operant behaviour by raclopride dependent on concentration of sucrose reward. Psychopharmacology, 105, 239-246.
    Phillips, G., Willner, P., & Muscat, R. (1991b). Reward dependent suppression or facilitation of consummatory behaviour by raclopride. Psychopharmacology, 105, 355-360.
    Posluns, D. (1962). An analysis of chropromazine-induced suppression of the avoidance response. Psychopharmacology, 3, 361-373.
    Rowland, N., & Engel, D. J. (1977). Feeding and drinking interactions after acute butyrophenone administration. Pharmacology, Biochemistry and Behavior, 7, 295-301.
    Rusk, I. N. & Cooper, S. J. (1994). Parametric studies of selective D or D antagonists: Effects on appetitive and feeding behaviour. Behavioural Pharmacology, 5, 615-622.
    Salamone, J. D. (1986). Different effects of haloperidol and extinction on instrumental behaviours. Psychopharmacology, 88, 18-23.
    Salamone, J. D. (1987). The actions of neuroleptic drugs on appetitive instrumental behaviors. In: L. L. Iverson, S. D. Iverson, & S. H. Snyder (Eds.), Handbook of Psychopharmacology (vol. 19). NY: Plenum Press.
    Salamone, J. D. (1988). Dopaminergic involvement in activational aspects of motivation: Effects of haloperidol on schedule-induced activity, feeding, and foraging in rats. Psychobiology, 16(3), 196-206.
    Salamone, J. D. (1992). Complex motor and sensorimotor functions of striatal and accumbens dopamine: Involvement in instrumental behavior process. Psychopharmacology, 107, 160-174.
    Salamone, J. D. (1996). The behavioral neurochemistry of motivation: Methodological and conceptual issues in studies of the dynamic activity of nucleus accumbens dopamine. Psychopharmacology, 88, 18-23.
    Salamone, J. D., Cousins, M. S., & Bucher, S. (1994). Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behavioural Brain Research, 65, 221-229.
    Salamone, M. S., Cousins, M. S., & Snyder, B. J. (1997). Behavioral functions of nucleus accumbens dopamine: Empirical and conceptual problems with the anhedonia hypothesis. Neuroscience and Biobehavioral Reviews, 21(3), 341-359.
    Salamone, J. D., Zigmond, M. J., & Stricker, E. M. (1990). Characterization of the impaired feeding behavior in rats given haloperidol or dopamine-depleting brain lesions. Neuroscience, 39(1), 17-24.
    Salamone, J. D., Aberman, J. E., Sokolowski, J. D., & Cousins, M. S. (1999). Nucleus accumbens dopamine and rate of responding: Neurochemical and behavioral studies. Psychobiology, 27(2), 236-247.
    Salamone, J. D., Kurth, P. A, McCullough, L. D., & Sokolowski, J. D. (1995). The effects of nucleus accumbens dopamine depletions on continuously reinforced operant responding: Contrasts with the effects of extinction. Pharmacology, Biochemistry and Behavior, 50(3), 437-443.
    Salamone, J. D., Kurth, P. A., McCullough, L. D., Sokolowski, J. D., & Cousins, M. S. (1993). The role of brain dopamine in response initiation: Effects of haloperidol and regionally specific dopamine depletion on the local rate of instrumental responding. Brain Research, 628, 218-226.
    Salamone, J. D., Cousins, M. S., Maio, C., Champion, C., Turski, T., & Kovach, J. (1996). Different behavioral effects of haloperidol, clozapine and thioridazine in a concurrent lever pressing and feeding procedure. Psychopharmacology, 125, 105-112.
    Salamone, J. D., Steinpreis, R. E., McCullough, L. D., Smith, P., Grebel, D., & Mahan, K. (1991). Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology, 104, 515-521.
    Schlecter, J. M., & Butcher, L. L. (1972). Blockade by pimozide of (+) amphetamine induced hyperkinesia in mice. Journal of Pharmacy and Pharmacology, 24, 408-409.
    Schneider, L. H., Greenberg, D., & Smith, G. P. (1988). Comparison of the effects of selective D1 and D2 receptor antagonists on sucrose sham feeding and water sham feeding. In: P. W. Kalivas, & C. B. Nemeroff (Eds.), Annals of the New York Academy of Sciences(Vol. 537): The Mesocorticolimbic Dopamine System, (pp.534-538).
    Schneider, L. H., Davis, J. D., Watson, C. A., & Smith, G. P. (1990). Similar effect of raclopride and reduced sucrose concentration of the microstructure of sucrose sham feeding. European Journal of Pharmacology, 186, 61-70.
    Sinnamon, H. M. (1982). The reward-effort model: An economic framework for examining the mechanism of neuroleptic action. Behavioral and Brain Sciences, 5,73-75.
    Smith, G. P. (1995). Dopamine and food reward. Progress in Psychobiology and Physiological Psychology, 16, 83-144.
    Smith, G. P., & Schneider, L. H. (1988). Relationships between dopamine and eating behavior. In: P. W. Kalivas, & C. B. Nemeroff (Eds.), Annals of the New York Academy of Science: The Mesocorticolimbic Dopamine System, (Volume 537, pp.254-261).
    Sokolowski, J. D., Conlan, A. N., & Salamone, J. D. (1999). A microdialysis study of nucleus accumbens core and shell dopamine during operant responding in the rat. Neuroscience, 86(3), 1001-1009.
    Streinpreis, R. E., Baskin, P. P., & Salamone, J. D. (1993). Vacuous jaw movements induced by sub-chronic administration of haloperidol: Interactions with scopolamine. Psychopharmacology, 111, 99-105.
    Thurlby, P. C., & Samanin, R. (1981). Effects of anorectic drugs and prior feeding on food-rewarded runway behavior. Pharmacology, Biochemistry and Behavior, 14, 799-804.
    Thurlby, P. C., Grimm, V. E., & Samanin, R. (1983). Feeding and satiation observed in the runway: The effects of d-amphetamine and d-fenfluramine compared. Pharmacology, Biochemistry and Behavior, 18, 841-846.
    Tombaugh, T. N., Szostak, C., & Mills, P. (1983). Failure of pimozide to disrupt the acquisition to light-dark and spatial discrimination problem. Psychopharmacology, 79, 161-168.
    Towell, A., Muscat, R., & Willner, P. (1988). Behavioural microanalysis of the role of dopamine in amphetamine anorexia. Pharmacology, Biochemistry and Behavior, 30(3), 641-648.
    Treit, D. (1985). Animal models for the study of anti-anxiety agents. Neuroscience and Biobehavioral Reviews, 9, 203-222.
    Treit, D., & Berridge, K. C. (1990). A comparison of benzodiazepine, serotonin, and dopamine agents in the taste-reactivity paradigm. Pharmacology, Biochemistry and Behavior, 37, 451-456.
    Trevitt, J. T., Lyons, M., Aberman, J., Carriero, D., Finn, M., & Salamone, J. D. (1997). Effects of clozapine, thioridazine, risperidone and haloperidol on behavioral tests related to extrapyramidal motor function. Psychopharmacology, 132, 74-81.
    Tsuneki, H., Kimura, I., & Kimura, M. (1994) Independent regulation of activation and inactivation phases in non-contractile Ca(2+) transients by nicotinic receptor at the mouse neuromuscular junction. Brain Research, 652(2), 299-304.
    Turkish, S., & Cooper, S. J.(1984). Enhancement of saline consumption by chlordiazepoxide in thirsty rats: Antagonism by Ro15-1788. Pharmacology, Biochemistry and Behavior, 20, 869-873.
    Vallone, D., Picetti, R., & Borelli, E. (2000). Structure and function of dopamine receptors. Neuroscience and Biobehavioral Reviews, 24, 125-132.
    Waldbillig, R. J., & Bartness, T. J. (1982). The suppression of sucrose intake by Cholecystokinin is scaled according to the magnitude of the orosensory control over feeding. Physiology and Behavior, 28, 591-595.
    Waldbillig, R. J., & O`Callaghan, M. (1980). Hormones and hedonics Cholecystokinin and taste: A possible behavioral mechanism of action. Physiology and Behavior, 25, 25-30.
    Watson, P. J., & Cox, J. S. (1976). An analysis of barbiturate-induced eating and drinking in the rat. Physiological Psychology, 4, 325-332.
    Weijnen, J. A. W. M. (1998). Licking behavior in the rat: Measurement and situational control of licking frequency. Neuroscience and Biobehavioral Reviews, 22(6), 751-760.
    Willner, P., Sampson, D., Phillips, G., & Muscat, R. (1990). A matching law analysis of the effects of dopamine receptor antagonists. Psychopharmacology, 101, 560-567.
    Willner, P., Chawla, K., Sampson, D., Sophokleous, S., & Muscat, R. (1988). Tests of functional equivalence between pimozide pretreatment, extinction and free feeding. Psychopharmacology, 95, 423-426.
    Wise, R. A. (1982). Neuroleptics and operant behavior: The anhedonia hypothesis. Behavior and Brain Science, 5, 39-87.
    Wise, R. A., & Colle, L. (1984). Pimozide attenuates free-feeding: Best scores analysis reveals a motivational deficit. Psychopharmacology, 84, 446-451.
    Wise, R. A., & Schwartz, H. V. (1981). Pimozide attenuates acquisition of lever pressing for food in rats. Pharmacology, Biochemistry and Behavior, 15, 655-656.
    Wise, R. A., Spindler, J., De Wit H., & Gerber, G. J. (1978). Neuroleptics induced anhedonia in rats. Science, 201, 262-264.
    Wolgin, D. L., Oslan, I. A., & Thompson, G. B. (1988). Effects of anorexia in appetitive and consummatory behavior. Behavioral Neuroscience, 102(2), 312-318.
    Xenakis, A., & Sclafani, A. (1982). The dopaminergic mediation of a sweet reward in normal and VMH hyperphagic rats. Pharmacology, Biochemistry and Behavior, 16, 293-302.
    Zis, A. P., & Fibiger, H. C. (1975). Neuroleptic-induced deficits in food and water regulation: Similarity to the lateral hypothalamic syndrome. Psychopharmacologia, 43, 63-68.
    Description: 碩士
    國立政治大學
    心理學系
    Source URI: http://thesis.lib.nccu.edu.tw/record/#A2002001746
    Data Type: thesis
    Appears in Collections:[Department of Psychology] Theses

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2303View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback