English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52585804      Online Users : 958
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/85393
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/85393


    Title: 資料挖掘應用於入口網站之顧客關係管理—以國內某網站為例
    Application of Data Mining Techniques to Portal Site`s Customer Relationship Management: A Case Study of Taiwan`s Portal Site
    Authors: 柯淑貞
    Ko, Shu-Chen
    Contributors: 劉文卿
    Liou, Wen-Ching
    柯淑貞
    Ko, Shu-Chen
    Keywords: 資料挖掘
    入口網站
    顧客關係管理
    關聯規則
    評估指標
    Data mining
    Portal site
    CRM
    Association rule
    Evaluation indicator
    Date: 2001
    Issue Date: 2016-04-18 16:27:43 (UTC+8)
    Abstract: 處在變化快速的網路環境中,入口網站如何建立起專屬的會員制度,以期行銷人員能在大量的會員資料庫中找出有用的資訊,掌握會員的網路行為模式、實現個人化之服務、有效區隔市場及瞭解不同會員之網路行為模式等,進而以制定適當之行銷策略而達成結合實體行銷之目標。而資料挖掘的技術能在資料量龐大的會員交易資料庫中,利用會員的基本資料與交易資料衍生建立相關的評估指標,以評估會員的特質、需求模型、消費特徵、建立市場區隔的行銷策略等,行銷人員藉此可採用不同的宣傳方式與促銷策略,以達最佳的獲利結果。
    In the rapid-changing network environment, how do Portal Sites establish exclusive membership mechanism in order to filter useful information out of their own database, master the network behavior models of their members, realize personalized services, and effectively segment and understand different network behavior models of all members? However, data mining can use the basic members` information and transaction data to produce the associated evaluation indicator during the high volume transaction database in order to evaluate the customers’ traits, demand models, consuming characteristics, and establish the marketing strategy of segmenting target market. As a result, we can adopt different advertising types and promotion strategies to achieve the best profitable goals.
    Reference: 中文部份
    1. 吳欣穎,「企業導入顧客關係管理之研究」,國立台北大學企業管理學系碩士論文,2000年6月。
    2. 洪懿妍,「入門網站 行銷新利器」,天下雜誌212期,1999年1月。
    3. 凌俊青,「在包裹資料庫中挖掘數量關聯規則」,國立中央大學資訊管理學系碩士論文,1999年6月。
    4. 陳致魁,「關係品質對網路書店顧客忠誠度影響之研究」,大葉大學資訊管理所碩士論文,1999年6月。
    5. 黃彥文,「資料探勘之應用--會員消費特徵之發掘」,屏東科技大學資訊管理所碩士論文,2000年6月。
    6. 資策會市場情報中心,「MIC網路與通訊資料庫」,1998年11月,http://mic.iii.org.tw/analysis/telecom/index.html。
    7. 劉慧瑜,「資料提煉技術在虛擬商店之應用」,國立中興大學應用數學學系碩士論文,2000年6月。
    8. 劉穎潔,「入口與社群網站之創業模式比較與動態策略發展」,國立臺灣大學國際企業學系碩士論文,2000年6月。
    9. 蔡永恆,「應用資料挖掘技術研究銀行顧客消費行為」,私立靜宜大學資訊管理碩士論文,2000年6月。
    英文部份
    1. Batra, R. et al. (Eds.), The new direct marketing: How to implement a profit-driven database marketing strategy. Burr Ridge, IL: Irwin, 1995.
    2. Berry, Leonard L. and William A. Parasuraman, Marketing Services:Competing Through Quality, 1sted. New York.: Pressima Inc, 1991.
    3. Bult, J. R., and Wansbeek, T., “Optimal selection for direct mail”, Marketing Scinece, 14(4), pp. 378-381, 1995.
    4. Chaudhuri, S. and U. Dayal, “An Overview of Data Warehousing and OLAP Technology”, ACM SIGMOD RECORD, Vol 26, No.1, pp.65-74, 1997.
    5. Clark Glymour, &, David madigan, &, Daryl Pregibon, and Padhraic Smyth, “Statistical Inference and Data Mining”, Communication of The ACM, Vol. 39, No. 11, pp. 35-41, November 1996.
    6. Conlon, Ginger, No Turning Back, Sales & Marketing Management, pp50-55, 1999.12.
    7. Dunlap, Chatlotte & Wong, Wylie, “Portal Sites Becoming Key to E-commerce Success”, Computer Reseller News, June 29, 1998.
    8. Galbreath, Jeremy and Rogers, Tom, “Customer Relationship Leadership: A Leadership and Motivation Model for the Twenty-first Century Business,” The TQM Magazine (11:3), 1999, pp. 161-171.
    9. Goil, S., Choudhary, A., “A parallel scalable infrastructure for OLAP and data mining”, Database Engineering and Applications, IDEAS `99. International Symposium Proceedings, pp. 178-186, 1999.
    10. Griffin, J., Customer Loyalty:How to Earn It, How to Keep It, Jossey-Bass Publishers, 1997.
    11. Jophiy, Lovelock, Services Marketing, 3rd ed., U.S.A.: Don Hull, 1996.
    12. Kalakota , Ravi and Marcia Robinson ,e-Business: Roadmap for Success, 1sted.,U.S.A.: Mary T.O ’Brien, 1999.
    13. Kotler, Philip, Marketing Management: Analysis, Planning, Implementation, and Control,9th ed., New Jersey: David Borkowsky, 1997.
    14. Krzysztof J. Cios, &, Witold Pedrycz, and Roman W. Swiniarski, Data Mining Methods for Knowledge Discovery, Kluwer Academic, United States of America, 1998.
    15. Michael J. A. Berry, and Gordon Linoff, Data Mining Techniques For Marketing, Sales, and Customer Support, John Wiley & Sons, New York, 1997.
    16. Peppers, Don ,& ,Martha Rogers , Don ‘t Put Customer Relationships on Hold, Sales & Marketing Management , pp26-28 , 1999.
    17. Peter Cabena, Pablo Hadjinian, Rolf Stadler, Jaap Verhees, and Alessandro Zanasi, Discovering Data Mining From Concept to Implementation, Prentice Hall PTR, 1997.
    18. Pieter Adriaans, and Dolf Zantinge. Data Mining, Addison-Wesley, Harlow, 1996.
    19. R Agrawal, and R. Srikant, Fast Algorithms for Mining Association Rules, Proc. of the 20th Int`l Conference on Very Large Databases, Santiago, Chile, Sept. 1994.
    20. Raphel, Neil , Murray Raphel , Loyalty Ladder , Harper Collins Publishers, Inc. , 1995 (以客為尊,袁述芬譯,幼獅出版,1998)
    21. Reichheld, F. F. & Sasser, W, E., " Zero Defections:Quality Comes to Services," Harvard Business Review, Sep-Oct 1990, pp.105-111.
    22. Seybold, Patricia B.,Customer.com, Times Business, 1999.
    23. Sirohi, N., McLaughlin, E. W., & Wittink, D. R. "A Model of Consumer Perceptions and Store Loyalty Intensions for a Supermarket Retailer," Journal of Retailing(74:2), 1998, pp. 223-245.
    24. Sterne, Jim , Customer Service On The Internet . John Wiley & Sons, Inc., 1996(網際網路客戶服務,資策會產品處中文化部門譯,和碩出版,1998)
    25. STUART H.RUBIN, ”A Fuzzy Approach Towards Inferential Data Mining”, Elsevier Science Ltd, pp. 267-270, 1998.
    26. Sung Ho Ha, Sang Chan Park, “Application of data mining tools to hotel data mart on the intranet for database marketing”, Expert systems with Applications, Elsevier Science Ltd, pp. 1-31, 1998.
    27. Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, Advances in Knowledge Discovery and Data Mining, AAAI Press/The MIT Press, Menlo Park, 1996.
    Description: 碩士
    國立政治大學
    資訊管理學系
    88356020
    Source URI: http://thesis.lib.nccu.edu.tw/record/#A2002001610
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2220View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback