English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 115256/146303 (79%)
造訪人次 : 54499303      線上人數 : 12
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/84761


    題名: 開發新的粒子群聚法求解流程式排程問題(I)
    其他題名: A Revised Discrete Particle Swarm Optimization for Permutation Flow-Shop Scheduling Problem
    作者: 陳春龍
    貢獻者: 資訊管理學系
    關鍵詞: 粒子群聚法;流程式生產排程問題;總完成時間;基因演算法;蟻群演算法
    Particle Swarm Optimization;Permutation Flow Shop Scheduling;Makespan;Genetic Algorithms;Ant Colony Optimization
    日期: 2012
    上傳時間: 2016-04-15 11:37:55 (UTC+8)
    摘要: 本研究擬開發新的粒子群聚法(RDPSO)求解常見的以總完成時間為目標的流程式生產排程問題。我們首先透過完整的探討全體最佳解(global best solution)與個體最佳解(personal best solution)在粒子的搜尋過程中所扮演的引導角色來開發新的群體學習策略(swarm learning strategies)。然後,我們將開發一個新的過濾區域搜尋法(filtered local search)來過濾粒子已經搜尋過的區域,將粒子的搜尋導向尚未開發的區域,以避免粒子過早陷入區域最佳解。如果粒子的搜尋還是陷入區域最佳解,我們將開發三個新的逃離策略(escape strategies)來幫助粒子逃離區域最佳解。本研究將分兩年完成,第一年我們將專注於群體學習策略的研究,以開發一個基本的RDPSO (Basic RDPSO)。第二年我們將專注於過濾區域搜尋法與逃離策略的研究,以開發一個多階的RDPSO(Multi-phase RDPSO,簡稱MRDPSO)來改善Basic RDPSO的效能。我們將使用常用的Taillard 測試問題組,以基因演算法(GA),蟻群演算法,和其它的粒子群聚法(PSO),來評估Basic RDPSO與MRDPSO的效能。
    This research proposes a revised discrete particle swarm optimization (RDPSO) to solve the permutation flow-shop scheduling problem with the objective of minimizing makespan (PFSP-makespan). The candidate problem is one of the most studied NP-complete scheduling problems. RDPSO proposes new particle swarm learning strategies to thoroughly study how to properly apply the global best solution and the personal best solution to guide the search of RDPSO. A new filtered local search (FLS) is developed to filter the solution regions that have been reviewed and guide the search to new solution regions in order to keep the search from premature convergence. In addition, three escape strategies are proposed to help the search escape if the search becomes trapped at a local optimum. This proposed research will be conducted in two years. The first year will be dedicated to investigating the new particle swarm learning strategies and developing a basic RDPSO heuristic. In the second year, we will study the filtered local search and escape strategies to further improve the results of the basic RDPSO and also develop a multi-phase RDPSO heuristic (MRDPSO). Computational experiments on Taillard`s benchmark data sets will be performed to evaluate the effectiveness of the basic RDPSO and the MRDPSO by comparing their performance with that of Genetic Algorithms (GA), Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO).
    關聯: 計畫編號 NSC101-2221-E004-004
    資料類型: report
    顯示於類別:[資訊管理學系] 國科會研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    101-2221-E004-004.pdf522KbAdobe PDF2300檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋