政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/83372
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113873/144892 (79%)
Visitors : 51918855      Online Users : 508
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/83372


    Title: 有關數體的低階加羅瓦同調群
    Various Results on Low Galois Gohomology Groups of Number Fields
    Authors: 康瓊如
    Kan, Chiung Ju
    Contributors: 陳永秋
    康瓊如
    Kan, Chiung Ju
    Keywords: 低階加羅瓦
    同調
    Gohomology
    Galois
    Date: 2002
    Issue Date: 2016-03-31 16:39:15 (UTC+8)
    Abstract:   數體的低階加羅瓦同調群是最近數論裡面的一大研究主題,本文的第一部分深入討論有關這個主題的一些古典的及最近的結果以及實際的例子,一個重要的主題是有關數體的希爾伯類體所定義的擴張群是否可分解,陳氏的方法應用數結這個概念可證明一些在文獻上所得到的結果。本文深入的探討這些數結而獲得在冪零群上完成的結果。利用這方法可望推廣到可解群的問題上。
      Low Galois cohomology groups of number fields are studied intensively in recent literature which in the first part of this thesis will be revisited with emphasis of giving direct and rigorous definitions and with providing concrete examples, classical and from more recent results from the literature. One important topic is the splitting problem of group extensions induced by the Hilbert class field of a given Galois extension of number fields. Following Tan`s approach which relates the splitting problem to the triviality of certain number knots, we elaborate known results on criteria for the splitting by giving new proofs which make use of number knots; we also give a complete result in the case of a nilpotent Galois extension. The case of solvable Galois extensions seems possibly settled using our approach.
    Reference: E. Artin and J. Tate, Class Field Theory, W. A. Benjamin,
    Inc., New York, 1967.
    E. Artin, Galois Theory (Notre Dame Math. Lectures, No. 2),
    Indiana, 1946.
    A. Babakhanian, Cohomological methods in group theory,
    Marcel Dekker, New York, 1972.
    M. Baker, An introduction to class field theory, Preprint, U. C. Berkeley, 1996.
    R. J. Bond, On the splitting of the Hilbert class field,
    Journal of Number Theory 42, 1992, 349-360.
    R. J. Bond, Some results on the capitulation problem,
    J. Number Theory 13, 1981, 246-254.
    Brumer and Rosen, Class number and ramification in number fields, Nagoya Math.J. 1963,97-101.
    H. Cohn, A classical invitation to algebraic numbers and class fields, Universitext, Springer-Verlag, Berlin and New York, 1978.
    G. Cornell and M. Rosen, A note on the splitting of the Hilbert
    class field, Journal of Number Theory 28, 1988, 152-158.
    D. Garbanati, Extension of the Hasse norm theorem, Bull.
    Amer. Math. Soc. 81, 1975, 583-586.
    R. Gold, Hilbert class fields and split extensions, Illinois
    J. Math. 21, 1977, 66-69.
    M. Hall, The theory of groups, Macmillan, New York, 1959.
    F. P. Heider, Zahlentheoretische Knoten unendlicher Erweiterungen,
    Archiv der Math. 37, 1981, 341-352.
    C. S. Herz, Construction of class fields, Seminar on Complex
    Multiplication}, Chap. 7, Springer Verlag, New York, 1966.
    M. Ishida, Some unramified abelian extensions of algebraic number fields, J. Reine Angew. Math. 268/269, 1974, 165-173.
    K. Iwasawa, A note on the group of units of an algebraic number
    field, J. Math Pures Appl. 35, 1956, 189-192.
    J. P. Jans, Rings and Homology, Holt, Rinehart and winston,
    Inc. New York, 1964.
    W. Jehne, On knots in algebraic number theory, J. reine u.
    angew. Math. 311, 1979, 215-252.
    H. Kisilevsky, Number fields with class number congruent to 4 mod
    8 and Hilbert`s theorem 94, J. Number Theory 8, 1976,
    271-279.
    H. Kisilevsky, Some results related to Hilbert`s theorem 94,
    J. Number Theory 2, 1970, 199-206.
    F. Lemmermeyer, Construction of Hilbert 2-class fields,
    Preprint, Heidelberg, 1991.
    F. Lorenz, Ein Scholion zum Satz 90 von Hilbert, Abh. Math.
    Sem. Univ. Hamburg 68,1998.
    S. Maclane, Homology, Springer Verlag, Berlin, 1963.
    K. Miyake, The Capitulation Problem, Sugaku Expositions,
    Vol. 1, Number 2, 1988, 175-194.
    J. Tate, The higher dimensional cohomology
    groups of class field theory, Ann. of Math. 56, 1952,
    294-297.
    E. Weiss, Cohomology of groups, Academic Press, New York,
    1969.
    B. F. Wyman, Hilbert class fields and group extensions,
    Scripta Mathematica, Vol 29, 1973, 141-149.
    K. Yamamura, The maximal unramified extensions of the imaginary quadratic number fields with class number two, Journal of number theory 60, 1996, 42-50.
    Description: 碩士
    國立政治大學
    應用數學系
    88751005
    Source URI: http://thesis.lib.nccu.edu.tw/record/#B2002000059
    Data Type: thesis
    Appears in Collections:[Department of Mathematical Sciences] Theses

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2297View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback