政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/81530
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114014/145046 (79%)
造访人次 : 52060274      在线人数 : 660
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/81530


    题名: 大鼠紋狀體腦區 CK2/DARPP-32/GAD67 蛋白細胞訊息傳遞路徑對神經傳遞物質和運動行為影響之探討
    The influence of striatal CK2/DARPP-32/GAD67 signaling pathway on neurotransmitter and motor behavior of rats
    作者: 黃鉉豐
    Huang, Xuan Feng
    贡献者: 趙知章
    Chao, Chi Chang
    黃鉉豐
    Huang, Xuan Feng
    关键词: 紋狀體
    MSN 細胞
    蛋白激酶 CK2
    DARPP-32 蛋白
    麩胺酸脫羧酵素-67
    酪胺酸羥化酶
    多巴胺
    -丁氨基酪酸
    striatum
    medium spiny GABAergic neurons
    protein kinase CK2
    DARPP-32
    Glutamic acid decarboxylase 67
    -aminobutyric acid
    dopamine
    Tyrosine Hydroxylase
    日期: 2016
    上传时间: 2016-03-01 10:41:29 (UTC+8)
    摘要: 蛋白激酶 CK2 是一種針對受質蛋白之絲胺酸/蘇胺酸進行磷酸化之多種功能的蛋白激酶,參與調節包括神經可塑性和神經保護等許多神經系統的功能,但是其分子層面的細胞機制目前尚未完全釐清。研究發現CK2在紋狀體腦區的表現量與活性皆高於其他腦區,而紋狀體之中型多刺狀GABA 神經元(medium spiny neuron, MSN)中DARPP-32 (Dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa) 蛋白的Ser102胺基酸被證實是 CK2 的磷酸化作用位置。許多研究文獻證實在多巴胺訊息傳遞路徑中, DARPP-32 蛋白之 Ser34/Thr75 的磷酸化現象參與藥物成癮相關生理行為的作用,然而 Ser102 的磷酸化作用與 MSN 細胞對運動行為調控的生理機制則仍待釐清。由於 MSN 細胞是藉由 -氨基丁酸 (GABA) 參與運動行為的控制,而負責GABA 生合成酵素之一的麩胺酸脫羧酵素-67 (GAD67) 的異常表現量被認為與巴金森氏症 (Parkinson’s disease) 引起之運動異常有相關性,但 GAD-67 的細胞調節機制仍待釐清,因此,論文研究的主軸是探討紋狀體 CK2 、 DARPP-32 和 GAD67 蛋白之間的訊息傳遞與神經傳遞物質和行為之間的關係。

    研究結果發現在大鼠紋狀體轉染野生型 CK2α DNA 質體會增加 DARPP-32 Ser102的磷酸化程度及 GAD67 mRNA 的表現量;而轉染 CK2 siRNA 則會降低 DARPP-32 蛋白含量和 Ser102 的磷酸化程度、 GAD67 蛋白含量和 mRNA 的表現量和紋狀體的 GABA 含量。轉染 DARPP-32 siRNA會降低 GAD67 蛋白含量及 mRNA 表現量和紋狀體的 GABA 含量;轉染突變型 DARPP-32 S102A DNA 質體(模擬胺基酸不能被磷酸化) 同樣會減少紋狀體的 GABA 含量。此外,共同轉染 CK2α DNA 和 DARPP-32 S102A DNA 質體會抑制單獨轉染 CK2α DNA 對提升紋狀體GABA和多巴胺含量增加的作用。在紋狀體給予 CK2 siRNA 觀察到黑質腦區 (substantia nigra) 酪胺酸羥化酶 (tyrosine hydroxylase, TH) 蛋白表現減少,給予 DARPP-32 siRNA 則觀察到黑質 TH Ser40 胺基酸磷酸化減少。在 rota-rod 運動行為測試中也可發現,轉染 CK2 siRNA 會抑制多巴胺受體致效劑 SKF38393 對促進運動能力的效果。綜合論文實驗的結果推測在紋狀體 MSN 細胞中,蛋白激酶 CK2 對 DARPP-32 蛋白 Ser102 磷酸化作用的細胞機制除了參與 GAD67 蛋白和神經傳遞物質 GABA 以及大鼠運動行為的生理調控外,亦可能回饋影響黑質腦區多巴胺神經細胞的 TH 蛋白含量和磷酸化程度。
    Protein kinase CK2 is a multifunctional serine/threonine protein kinase and involves in many neurophysiological functions including neuronal plasticity and neuroprotection, but its molecular mechanisms are not well investigated. Previous studies have shown that CK2 protein levels and activity are more elevated in the striatum than other brain areas. DARPP-32 (Dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa) is also highly enriched in striatal medium spiny GABAergic neurons and has been found the Ser102 residue is a phosphorylation site for CK2. Many studies have revealed that Ser34/Thr75 phosphorylation of DARPP-32 mediates dopamine signaling pathway which affects the physiological function and behavior in drug abuse. However, whether Ser102 phosphorylation by CK2 in the MSN controls motor behaviors is still unclear. Glutamic acid decarboxylase 67 (GAD67) which is one of the enzymes responsible for the synthesis of neurotransmitter GABA in the MSN and its dysfunction is presented relationship with Parkinson’s disease-induced behavior deficits. But the cellular regulatory mechanism of GAD67 is not fully studies. The aims of this proposal are to investigate the signaling relationship between CK2, DARPP-32 and GAD67 reflecting on neurotransmitter content in striatum and motor behavior in rats.
    The present results demonstrates that DARPP-32 Ser102 phosphorylation status and GAD67 mRNA levels are increased by wild-type CK2 plasmid DNA transfection. CK2 siRNA treatment also decreased DARPP-32 protein levels and Ser102 phosphorylation status, GAD67 protein and mRNA levels as well as GABA levels in the striatum. On the other hand, DARPP-32 siRNA transfection decreased GAD67 protein and mRNA levels, as also GABA levels in the striatum. TH Ser40 phosphorylation level in the substantia nigra. Striatal GABA levelds were decreased by transfection of mutant DARPP-32 S102A, which mimics the un-phosphorylated by CK2. Co-express CK2 and DARPP-32 S102A plasmid DNA reduced GABA level which was induced by CK2alone. The striatal CK2 or DARPP-32 siRNA transfection decreased Tyrosine Hydroxylase (TH) protein level or TH Ser40 phosphorylation level in the substantia nigra. Furthermore, DA agonist SKF38393 induced motor behavior promotion was inhibited by CK2 siRNA transfection. All the current results suggest that cellular signaling of DARPP-32 Ser102 phosphorylation by CK2 not only mediates GAD67 protein expression and biosynthesis of GABA neurotransmitter in striatum and motor behavior of rats, but also might affect TH protein level and phosphorylation status in the substantia nigra.
    參考文獻: Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA (1996) A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Human gene therapy 7:1947-1954.
    Alerte TN, Akinfolarin AA, Friedrich EE, Mader SA, Hong C-S, Perez RG (2008) α-Synuclein aggregation alters tyrosine hydroxylase phosphorylation and immunoreactivity: Lessons from viral transduction of knockout mice. Neuroscience letters 435:24-29.
    Allende J, Allende C (1994) Protein kinase CK2: an enzyme with multiple functions and a puzzling regulation
    Asada H, Kawamura Y, Maruyama K, Kume H, Ding R-G, Kanbara N, Kuzume H, Sanbo M, Yagi T, Obata K (1997) Cleft palate and decreased brain γ-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proceedings of the National Academy of Sciences 94:6496-6499.
    Bateup HS, Santini E, Shen W, Birnbaum S, Valjent E, Surmeier DJ, Fisone G, Nestler EJ, Greengard P (2010) Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proceedings of the National Academy of Sciences 107:14845-14850.
    Bateup HS, Svenningsson P, Kuroiwa M, Gong S, Nishi A, Heintz N, Greengard P (2008) Cell type–specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nature neuroscience 11:932-939.
    Bennett MK, Miller KG, Scheller RH (1993) Casein kinase II phosphorylates the synaptic vesicle protein p65. The Journal of neuroscience 13:1701-1707.
    Bertran-Gonzalez J, Hervé D, Girault J-A, Valjent E (2010) What is the degree of segregation between striatonigral and striatopallidal projections? Frontiers in neuroanatomy 4.
    Bibb JA, Chen J, Taylor JR, Svenningsson P, Nishi A, Snyder GL, Yan Z, Sagawa ZK, Ouimet CC, Nairn AC (2001) Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410:376-380.
    Bibb JA, Snyder GL, Nishi A, Yan Z, Meijer L, Fienberg AA, Tsai L-H, Kwon YT, Girault J-A, Czernik AJ (1999) Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature 402:669-671.
    Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends in neurosciences 30:194-202.
    Blandini F, Armentero MT (2012) Animal models of Parkinson’s disease. FEBS Journal 279:1156-1166.
    Borgkvist A, Avegno EM, Wong MY, Kheirbek MA, Sonders MS, Hen R, Sulzer D (2015) Loss of Striatonigral GABAergic Presynaptic Inhibition Enables Motor Sensitization in Parkinsonian Mice. Neuron 87:976-988.
    Buchou T, Vernet M, Blond O, Jensen HH, Pointu H, Olsen BB, Cochet C, Issinger O-G, Boldyreff B (2003) Disruption of the regulatory β subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Molecular and cellular biology 23:908-915.
    Carta AR, Tabrizi MA, Baraldi PG, Pinna A, Pala P, Morelli M (2003) Blockade of A 2A receptors plus L-DOPA after nigrostriatal lesion results in GAD67 mRNA changes different from L-DOPA alone in the rat globus pallidus and substantia nigra reticulata. Experimental neurology 184:679-687.
    Cenci M, Lee C, Björklund A (1998) L‐DOPA‐induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin‐and glutamic acid decarboxylase mRNA. European Journal of Neuroscience 10:2694-2706.
    Chang CM, Chao CC (2013) Protein kinase CK2 enhances Mcl‐1 gene expression through the serum response factor‐mediated pathway in the rat hippocampus. Journal of neuroscience research 91:808-817.
    Channavajhala P, Seldin DC (2002) Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis. Oncogene 21:5280-5288.
    Chao CC, Chiang CH, Ma YL, Lee EH (2006) Molecular mechanism of the neurotrophic effect of GDNF on DA neurons: role of protein kinase CK2. Neurobiology of aging 27:105-118.
    Chao CC, Ma YL, Lee EH (2007) Protein kinase CK2 impairs spatial memory formation through differential cross talk with PI-3 kinase signaling: activation of Akt and inactivation of SGK1. The Journal of neuroscience 27:6243-6248.
    Chao CC, Ma YL, Lee EH (2011) Brain‐Derived Neurotrophic Factor Enhances Bcl‐xL Expression Through Protein Kinase Casein Kinase 2‐Activated and Nuclear Factor Kappa B‐Mediated Pathway in Rat Hippocampus. Brain Pathology 21:150-162.
    Charriaut-Marlangue C, Otani S, Creuzet C, Ben-Ari Y, Loeb J (1991) Rapid activation of hippocampal casein kinase II during long-term potentiation. Proceedings of the National Academy of Sciences 88:10232-10236.
    Chung HJ, Huang YH, Lau L-F, Huganir RL (2004) Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. The Journal of neuroscience 24:10248-10259.
    Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Archives of biochemistry and biophysics 508:1-12.
    Desdouits F, Siciliano J, NAIRN A, Greengard P, Girault J (1998) Dephosphorylation of Ser-137 in DARPP-32 by protein phosphatases 2A and 2C: different roles in vitro and in striatonigral neurons. Biochem J 330:211-216.
    Desdouits F, Siciliano JC, Greengard P, Girault J-A (1995) Dopamine-and cAMP-regulated phosphoprotein DARPP-32: phosphorylation of Ser-137 by casein kinase I inhibits dephosphorylation of Thr-34 by calcineurin. Proceedings of the National Academy of Sciences 92:2682-2685.
    Di Maira G, Brustolon F, Pinna LA, Ruzzene M (2009) Dephosphorylation and inactivation of Akt/PKB is counteracted by protein kinase CK2 in HEK 293T cells. Cellular and molecular life sciences 66:3363-3373.
    Ding H, Underwood R, Lavalley N, Yacoubian T (2015) 14-3-3 inhibition promotes dopaminergic neuron loss and 14-3-3θ overexpression promotes recovery in the MPTP mouse model of Parkinson’s disease. Neuroscience 307:73-82.
    Emborg ME, Carbon M, Holden JE, During MJ, Ma Y, Tang C, Moirano J, Fitzsimons H, Roitberg BZ, Tuccar E (2007) Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. Journal of Cerebral Blood Flow & Metabolism 27:501-509.
    Engmann O, Giralt A, Gervasi N, Marion-Poll L, Gasmi L, Filhol O, Picciotto MR, Gilligan D, Greengard P, Nairn AC (2015) DARPP-32 interaction with adducin may mediate rapid environmental effects on striatal neurons. Nature communications 6.
    Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7:91-100.
    Faust RA, Tawfic S, Davis AT, Bubash LA, Ahmed K (2000) Antisense oligonucleotides against protein kinase CK2‐α inhibit growth of squamous cell carcinoma of the head and neck in vitro. Head & neck 22:341-346.
    Fenalti G, Law RH, Buckle AM, Langendorf C, Tuck K, Rosado CJ, Faux NG, Mahmood K, Hampe CS, Banga JP (2007) GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nature structural & molecular biology 14:280-286.
    Fienberg A, Hiroi N, Mermelstein P, Song W-J, Snyder G, Nishi A, Cheramy A, O`callaghan J, Miller D, Cole D (1998) DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281:838-842.
    Fienberg AA, Greengard P (2000) The DARPP-32 knockout mouse. Brain research reviews 31:313-319.
    Frank MJ, Seeberger LC, O`reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306:1940-1943.
    Galvan A, Wichmann T (2007) GABAergic circuits in the basal ganglia and movement disorders. Progress in brain research 160:287-312.
    George SR, O`Dowd BF (2007) A novel dopamine receptor signaling unit in brain: heterooligomers of D1 and D2 dopamine receptors. The Scientific World Journal 7:58-63.
    Georgievska B, Kirik D, Björklund A (2004) Overexpression of glial cell line-derived neurotrophic factor using a lentiviral vector induces time-and dose-dependent downregulation of tyrosine hydroxylase in the intact nigrostriatal dopamine system. The Journal of neuroscience 24:6437-6445.
    Girault J-A, Hemmings HC, Williams KR, Nairn AC, Greengard P (1989) Phosphorylation of DARPP-32, a dopamine-and cAMP-regulated phosphoprotein, by casein kinase II. Journal of Biological Chemistry 264:21748-21759.
    Girault J-A, Valjent E, Caboche J, Hervé D (2007) ERK2: a logical AND gate critical for drug-induced plasticity? Current opinion in pharmacology 7:77-85.
    Graybiel AM (2000) The basal ganglia. Current Biology 10:R509-R511.
    Grealish S, Jönsson ME, Li M, Kirik D, Björklund A, Thompson LH (2010) The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson’s disease. Brain awp328.
    Greengard P, Allen PB, Nairn AC (1999) Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23:435-447.
    Hamada M, Hendrick JP, Ryan GR, Kuroiwa M, Higashi H, Tanaka M, Nairn AC, Greengard P, Nishi A (2005) Nicotine regulates DARPP-32 (dopamine-and cAMP-regulated phosphoprotein of 32 kDa) phosphorylation at multiple sites in neostriatal neurons. Journal of Pharmacology and Experimental Therapeutics 315:872-878.
    Hasbi A, Fan T, Alijaniaram M, Nguyen T, Perreault ML, O`Dowd BF, George SR (2009) Calcium signaling cascade links dopamine D1–D2 receptor heteromer to striatal BDNF production and neuronal growth. Proceedings of the National Academy of Sciences 106:21377-21382.
    Hemmings H, Nairn A, Aswad D, Greengard P (1984) DARPP-32, a dopamine-and adenosine 3`: 5`-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus. The Journal of neuroscience 4:99-110.
    Hemmings H, Nairn A, Elliott J, Greengard P (1990) Synthetic peptide analogs of DARPP-32 (Mr 32,000 dopamine-and cAMP-regulated phosphoprotein), an inhibitor of protein phosphatase-1. Phosphorylation, dephosphorylation, and inhibitory activity. Journal of Biological Chemistry 265:20369-20376.
    Hersch SM, Ciliax BJ, Gutekunst C-A, Rees H, Heilman CJ, Yung K, Bolam J, Ince E, Yi H, Levey A (1995) Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. The Journal of neuroscience 15:5222-5237.
    Horvath L, van Marion I, Taï K, Nielsen TT, Lundberg C (2011) Knockdown of GAD67 protein levels normalizes neuronal activity in a rat model of Parkinson`s disease. The journal of gene medicine 13:188-197.
    Hsieh JH, Stein DJ, Howells FM (2014) The neurobiology of methamphetamine induced psychosis. Frontiers in human neuroscience 8.
    Ikemoto S (2002) Ventral striatal anatomy of locomotor activity induced by cocaine, D-amphetamine, dopamine and D 1/D 2 agonists. Neuroscience 113:939-955.
    Jackson DM, Westlind-Danielsson A (1994) Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacology & therapeutics 64:291-370.
    Javoy-Agid F, Hirsch E, Dumas S, Duyckaerts C, Mallet J, Agid Y (1990) Decreased tyrosine hydroxylase messenger RNA in the surviving dopamine neurons of the substantia nigra in Parkinson`s disease: an in situ hybridization study. Neuroscience 38:245-253.
    Jones BE, Holmes CJ, Rodriguez‐Veiga E, Mainville L (1991) GABA‐synthesizing neurons in the medulla: Their relationship to serotonin‐containing and spinally projecting neurons in the rat. Journal of Comparative Neurology 313:349-367.
    Kalkman H, Loetscher E (2003) GAD67: the link between the GABA-deficit hypothesis and the dopaminergic-and glutamatergic theories of psychosis. Journal of Neural Transmission 110:803-812.
    Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA, Bland RJ, Young D, Strybing K, Eidelberg D (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson`s disease: an open label, phase I trial. The Lancet 369:2097-2105.
    Kebabian JW, Calne DB (1979) Multiple receptors for dopamine.
    López-Huerta VG, Carrillo-Reid L, Galarraga E, Tapia D, Fiordelisio T, Drucker-Colin R, Bargas J (2013) The balance of striatal feedback transmission is disrupted in a model of parkinsonism. The Journal of Neuroscience 33:4964-4975.
    Laprade N, Soghomonian J-J (1995) Differential regulation of mRNA levels encoding for the two isoforms of glutamate decarboxylase (GAD65 and GAD67) by dopamine receptors in the rat striatum. Molecular brain research 34:65-74.
    Lau CG, Murthy VN (2012) Activity-dependent regulation of inhibition via GAD67. The Journal of Neuroscience 32:8521-8531.
    Lee G, Tanaka M, Park K, Lee SS, Kim YM, Junn E, Lee S-H, Mouradian MM (2004) Casein kinase II-mediated phosphorylation regulates α-synuclein/synphilin-1 interaction and inclusion body formation. Journal of Biological Chemistry 279:6834-6839.
    LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, Kostyk SK, Thomas K, Sarkar A, Siddiqui MS (2011) AAV2-GAD gene therapy for advanced Parkinson`s disease: a double-blind, sham-surgery controlled, randomised trial. The Lancet Neurology 10:309-319.
    Lin J-M, Kilman VL, Keegan K, Paddock B, Emery-Le M, Rosbash M, Allada R (2002) A role for casein kinase 2α in the Drosophila circadian clock. Nature 420:816-820.
    Lindgren N, Xu ZQD, Lindskog M, Herrera‐Marschitz M, Goiny M, Haycock J, Goldstein M, Hökfelt T, Fisone G (2000) Regulation of tyrosine hydroxylase activity and phosphorylation at Ser19 and Ser40 via activation of glutamate NMDA receptors in rat striatum. Journal of neurochemistry 74:2470-2477.
    Lindskog M, Svenningsson P, Pozzi L, Kim Y, Fienberg AA, Bibb JA, Fredholm BB, Nairn AC, Greengard P, Fisone G (2002) Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine. Nature 418:774-778.
    Lorenz P, Pepperkok R, Ansorge W, Pyerin W (1993) Cell biological studies with monoclonal and polyclonal antibodies against human casein kinase II subunit beta demonstrate participation of the kinase in mitogenic signaling. Journal of Biological Chemistry 268:2733-2739.
    Lou DY, Dominguez I, Toselli P, Landesman-Bollag E, O`Brien C, Seldin DC (2008) The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Molecular and cellular biology 28:131-139.
    Lungwitz U, Breunig M, Blunk T, Göpferich A (2005) Polyethylenimine-based non-viral gene delivery systems. European Journal of Pharmaceutics and Biopharmaceutics 60:247-266.
    Luo J, Kaplitt MG, Fitzsimons HL, Zuzga DS, Liu Y, Oshinsky ML, During MJ (2002) Subthalamic GAD gene therapy in a Parkinson`s disease rat model. Science 298:425-429.
    Maggio R, Millan MJ (2010) Dopamine D 2–D 3 receptor heteromers: pharmacological properties and therapeutic significance. Current opinion in pharmacology 10:100-107.
    Marcellino D, Ferré S, Casadó V, Cortés A, Le Foll B, Mazzola C, Drago F, Saur O, Stark H, Soriano A (2008) Identification of dopamine D1–D3 receptor heteromers indications for a role of synergistic D1–D3 receptor interactions in the striatum. Journal of Biological Chemistry 283:26016-26025.
    Martin DL, Rimvall K (1993) Regulation of γ‐aminobutyric acid synthesis in the brain. Journal of neurochemistry 60:395-407.
    Martres MP, Demeneix B, Hanoun N, Hamon M, Giros B (1998) Up‐and down‐expression of the dopamine transporter by plasmid DNA transfer in the rat brain. European Journal of Neuroscience 10:3607-3616.
    McKendrick L, Milne D, Meek D (1999) Protein kinase CK2-dependent regulation of p53 function: evidence that the phosphorylation status of the serine 386 (CK2) site of p53 is constitutive and stable. In: A Molecular and Cellular View of Protein Kinase CK2, pp 187-199: Springer.
    Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiological reviews 78:189-225.
    Mitchell I, Clarke C, Boyce S, Robertson R, Peggs D, Sambrook M, Crossman A (1989) Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Neuroscience 32:213-226.
    Nakajo S, Hagiwara T, Nakaya K, Nakamura Y (1987) Tissue distribution of casein kinases. Biochemistry international 14:701-707.
    Nakashima A, Ota A, Kaneko YS, Mori K, Nagasaki H, Nagatsu T (2013) A possible pathophysiological role of tyrosine hydroxylase in Parkinson’s disease suggested by postmortem brain biochemistry: a contribution for the special 70th birthday symposium in honor of Prof. Peter Riederer. Journal of Neural Transmission 120:49-54.
    Neve KA, Seamans JK, Trantham-Davidson H (2004) Dopamine receptor signaling. Journal of receptors and signal transduction 24:165-205.
    Niefind K, Yde CW, Ermakova I, Issinger O-G (2007) Evolved to be active: sulfate ions define substrate recognition sites of CK2α and emphasise its exceptional role within the CMGC family of eukaryotic protein kinases. Journal of molecular biology 370:427-438.
    Nishi A, Kuroiwa M, Shuto T (2011) Mechanisms for the modulation of dopamine D1 receptor signaling in striatal neurons. Frontiers in neuroanatomy 5.
    Nishi A, Snyder GL, Nairn AC, Greengard P (1999) Role of calcineurin and protein phosphatase‐2A in the regulation of DARPP‐32 dephosphorylation in neostriatal neurons. Journal of neurochemistry 72:2015-2021.
    Okazawa H, Murata M, Watanabe M, Kamei M, Kanazawa I (1992) Dopaminergic stimulation up-regulates the in vivo expression of brain-derived neurotrophic factor (BDNF) in the striatum. FEBS letters 313:138-142.
    Olsten MEK, Weber JE, Litchfield DW (2005) CK2 interacting proteins: emerging paradigms for CK2 regulation? Molecular and cellular biochemistry 274:115-124.
    Ouimet C, Greengard P (1990) Distribution of DARPP-32 in the basal ganglia: an electron microscopic study. Journal of neurocytology 19:39-52.
    Ouimet C, Miller P, Hemmings H, Walaas SI, Greengard P (1984) DARPP-32, a dopamine-and adenosine 3`: 5`-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. The Journal of neuroscience 4:111-124.
    Pascoli V, Besnard A, Hervé D, Pagès C, Heck N, Girault J-A, Caboche J, Vanhoutte P (2011) Cyclic Adenosine Monophosphate–independent tyrosine phosphorylation of NR2B mediates cocaine-induced Extracellular Signal-Regulated Kinase activation. Biological psychiatry 69:218-227.
    Pinna L (1993) A historical view of protein kinase CK2. Cellular & molecular biology research 40:383-390.
    Pivonello R, Ferone D, Lombardi G, Colao A, Lamberts SW, Hofland LJ (2007) Novel insights in dopamine receptor physiology. European journal of endocrinology 156:S13-S21.
    Rebholz H, Nishi A, Liebscher S, Nairn AC, Flajolet M, Greengard P (2009) CK2 negatively regulates Gαs signaling. Proceedings of the National Academy of Sciences 106:14096-14101.
    Rebholz H, Zhou M, Nairn AC, Greengard P, Flajolet M (2013) Selective knockout of the casein kinase 2 in D1 medium spiny neurons controls dopaminergic function. Biological psychiatry 74:113-121.
    Reid M, Herrera-Marschitz M, Hökfelt T, Terenius L, Ungerstedt U (1988) Differential modulation of striatal dopamine release by intranigral injection of γ-aminobutyric acid (GABA), dynorphin A and substance P. European journal of pharmacology 147:411-420.
    Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Current opinion in neurobiology 6:228-236.
    Robinson PJ, Liu J-P, Powell KA, Fykse EM, Südhof TC (1994) Phosphorylation of dynamin I and synaptic-vesicle recycling. Trends in neurosciences 17:348-353.
    Südhof TC (1995) The synaptic vesicle cycle: a cascade of protein protein interactions.
    Sánchez N, Coura R, Engmann O, Marion-Poll L, Longueville S, Hervé D, Andrés ME, Girault J-A (2014) Haloperidol-induced Nur77 expression in striatopallidal neurons is under the control of protein phosphatase 1 regulation by DARPP-32. Neuropharmacology 79:559-566.
    Salvatore MF, Zhang JL, Large DM, Wilson PE, Gash CR, Thomas TC, Haycock JW, Bing G, Stanford JA, Gash DM (2004) Striatal GDNF administration increases tyrosine hydroxylase phosphorylation in the rat striatum and substantia nigra. Journal of neurochemistry 90:245-254.
    Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault J-A, Hervé D, Greengard P, Fisone G (2007) Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. The Journal of neuroscience 27:6995-7005.
    Sanz-Clemente A, Matta JA, Isaac JT, Roche KW (2010) Casein kinase 2 regulates the NR2 subunit composition of synaptic NMDA receptors. Neuron 67:984-996.
    Singh TJ, Huang K-P (1985) Glycogen synthase (casein) kinase-1: tissue distribution and subcellular localization. FEBS letters 190:84-88.
    Soghomonian J-J, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends in pharmacological sciences 19:500-505.
    Stipanovich A, Valjent E, Matamales M, Nishi A, Ahn J-H, Maroteaux M, Bertran-Gonzalez J, Brami-Cherrier K, Enslen H, Corbillé A-G (2008) A phosphatase cascade by which rewarding stimuli control nucleosomal response. Nature 453:879-884.
    Surmeier DJ, Song W-J, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. The Journal of neuroscience 16:6579-6591.
    Tawfic S, Yu S, Wang H, Faust R, Davis A, Ahmed K (2001) Revie w Protein kinase CK2 signal in neoplasia. Histol Histopathol 16:573-582.
    Taylor SB, Lewis CR, Olive MF (2013) The neurocircuitry of illicit psychostimulant addiction: acute and chronic effects in humans. Subst Abuse Rehabil 4:29-43.
    Ulery PG, Rudenko G, Nestler EJ (2006) Regulation of ΔFosB stability by phosphorylation. The Journal of neuroscience 26:5131-5142.
    Valjent E, Bertran-Gonzalez J, Hervé D, Fisone G, Girault J-A (2009) Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice. Trends in neurosciences 32:538-547.
    Valjent E, Pascoli V, Svenningsson P, Paul S, Enslen H, Corvol J-C, Stipanovich A, Caboche J, Lombroso PJ, Nairn AC (2005) Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proceedings of the National Academy of Sciences of the United States of America 102:491-496.
    Viggiano D, Ruocco LA, Sadile AG (2003) Dopamine phenotype and behaviour in animal models: in relation to attention deficit hyperactivity disorder. Neuroscience & Biobehavioral Reviews 27:623-637.
    Walaas SI, Greengard P (1984) DARPP-32, a dopamine-and adenosine 3`: 5`-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. The Journal of neuroscience 4:84-98.
    Walter J, Capell A, Grünberg J, Pesold B, Schindzielorz A, Prior R, Podlisny M, Fraser P, Hyslop P, Selkoe D (1996) The Alzheimer`s disease-associated presenilins are differentially phosphorylated proteins located predominantly within the endoplasmic reticulum. Molecular Medicine 2:673.
    Xu X, Toselli PA, Russell LD, Seldin DC (1999) Globozoospermia in mice lacking the casein kinase II α′ catalytic subunit. Nature genetics 23:118-121.
    Yager L, Garcia A, Wunsch A, Ferguson S (2015) The ins and outs of the striatum: Role in drug addiction. Neuroscience 301:529-541.
    You Z-B, Herrera-Marschitz M, Nylander I, Goiny M, O`connor W, Ungerstedt U, Terenius L (1994) The striatonigral dynorphin pathway of the rat studied with in vivo microdialysis—II. Effects of dopamine D 1 and D 2 receptor agonists. Neuroscience 63:427-434.
    Zhang H, Sulzer D (2012) Regulation of striatal dopamine release by presynaptic auto-and heteroreceptors. Basal Ganglia 2:5-13.
    描述: 碩士
    國立政治大學
    神經科學研究所
    99754010
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0099754010
    数据类型: thesis
    显示于类别:[神經科學研究所] 學位論文

    文件中的档案:

    没有与此文件相关的档案.



    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈