政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/81529
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52393697      Online Users : 327
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/81529


    Title: 藉由直覺性素描與輔助影像的模型搜尋技術
    Model Retrieval by Intuitive Sketching and Suggestive Reference
    Authors: 李亞憲
    Lee, Ya Hsien
    Contributors: 紀明德
    Chi, Ming Te
    李亞憲
    Lee, Ya Hsien
    Keywords: 模型搜尋
    筆觸圖
    直覺性繪畫
    輔助影像
    model retrieval
    sketch
    intuitive sketching
    suggestive reference
    Date: 2016
    Issue Date: 2016-03-01 10:41:13 (UTC+8)
    Abstract: 本篇論文建立一個藉由直覺性素描搜尋模型的系統,結合筆觸繪圖搜尋手繪圖與模型。希望可以藉由本系統,提供使用者比起關鍵字或模型搜尋模型,更加方便的模型搜尋工具。系統主要分為建立索引檔、比對特徵向量和使用者介面三個部分。建立索引檔部分要將三維模型處理成資料庫可認知的資料型態,首先將模型旋轉到不同角度並且將之從三維空間描繪成二維模型投影圖,再透過分類演算法把模型投影圖和手繪圖描述為二維特徵向量。比對特徵向量部分需建立手繪圖資料庫和三維模型資料庫的橋梁,藉由計算兩者的特徵向量之間的距離與角度,得到相似度的排序。使用者介面部分提供直覺性使用者繪畫的介面,以不影響使用者創造性的前提下,在使用者繪畫過程中給予最相似於使用者繪畫的手繪圖結果,使用者可以藉由臨摹此結果更貼近所想繪畫的物體,更進一步地取得模型的搜尋結果。最後我們將透過統計方法去驗證系統的有效性。
    We proposed an intuitive model retrieval system with a sketch interface for a database contains sketch drawings and 3D models. Benefit the sketch interface, the proposed system can facilitate the search process better than keyword query or search by 3D model. The system begins with offline indexing preprocess which convert the 3D models into feature vectors. Under best view selection, we render each 3D model into a 2D feature line image. Then classification method will apply the line images and sketching images in model database to build the feature vector. The rank of matching is computed with the angle between the feature vector of input sketch image and feature line images in the database. To extend the usability, we design a sketch interface for searching the best match result during the drawing process. For suggesting the drawing hint, candidate matching results are listed aside to the sketch input screen. We use statistical method to evaluate the feasibility of the proposed system.
    Reference: [1] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, pages 1106–1114, 2012.
    [2] Bay, H., Tuytelaars, T., And Gool, L. J. V. 2006. SURF: Speeded up robust features. In ECCV, 404–417.
    [3] Canny, J. 1986. A computational approach to edge detection.
    IEEE TPAMI 8, 6, 679–698.
    [4] Cao, Y., Wang, H., Wang, C., Li, Z., Zhang, L., and Zhang, L. 2010. Mindfinder: Finding images by sketching. In ACM Multimedia International Conference.
    [5] Chen, D.-Y., Tian, X.-P., Shen, Y.-T., and Ouhyoung, M. 2003. On visual similarity based 3d model retrieval. Comput. Graph. Forum (Proc. Eurographics) 22, 3, 223–232.
    [6] Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman, A. Return of the devil in the details: Delving deep into convolutional nets. In Proc. BMVC., 2014.
    [7] Decarlo, D., Finkelstein, A., Rusinkiewicz, S., and Santella, A. 2003. Suggestive contours for conveying shape. ACM TOG (Proc. SIGGRAPH) 22, 3, 848–855.
    [8] Dixon, D., Prasad, M., and Hammond, T. 2010. icandraw: Using sketch recognition and corrective feedback to assist a user in drawing human faces. ACM CHI.
    [9] Eitz, M., Richter, R., Boubekeur, T., Hildebrand, K., and Alexa, M. 2012. Sketch-based shape retrieval. ACM Transactions on Graphics 31, 4, 31:1–31:10.
    [10] Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., and Jacobs, D. 2003. A search engine for 3D models. ACM TOG 22, 1, 83–105.
    [11] F. Wang, L. Kang, and Y. Li. Sketch-based 3d shape retrieval using convolutional neural networks. In arXiv preprint arXiv:1504.03504, 2015.
    [12] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller. Multi-view convolutional neural networks for 3D shape recognition. In ICCV, 2015.
    [13] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. CoRR, abs/1311.2901, 2013.
    [14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In Proc. CVPR, 2009.
    [15] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. CoRR, abs/1310.1531, 2013.
    [16] Jun-Yan Zhu, Yong Jae Lee, Alexei A. Efros.2014 AverageExplorer: interactive exploration and alignment of visual data collections. ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2014 TOG Volume 33 Issue 4, July 2014
    [17] Lee, Y., Zitnick, C., and Cohen, M. 2011. ShadowDraw: real-time user guidance for freehand drawing. ACM TOG (Proc. SIGGRAPH) 30, 4, 27:1–27:10.
    [18] Li B., Lu Y., Godil A., Schreck T., Aono M., Johan H., Saavedra J. M., Tashiro S.: SHREC’13 track: Large scale sketch-based 3D shape
    retrieval. In 3DOR (2013), pp. 1–9.
    [19] L¨O Ffler, J. 2000. Content-based retrieval of 3D models in distributed web databases by visual shape information. In Int’l. Conf. Information Visualization, 82–87.
    [20] Lowe, D. 2004. Distinctive image features from scale-invariant keypoints. IJCV 60, 2, 91–110.
    [21] Potcharapol Suteparuk, Emmanuel Tsukerman .Geometric Modeling and Processing Project: Mesh Simplication and Expressive Rendering.2013
    [22] Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. 2004. The Princeton Shape Benchmark. In Proc. Shape Modeling International, 167–178.
    [23] Siddhartha Chaudhuri , Vladlen Koltun, Data-driven suggestions for creativity support in 3D modeling, ACM SIGGRAPH Asia 2010 papers, December 15-18, 2010, Seoul, South Korea
    [24] SIVIC, J., AND ZISSERMAN, A. 2003. Video Google: a text retrieval approach to object matching in videos. In ICCV, 1470– 1477.
    [25] Squire, D., Mueller, W., Mueller, H., and Raki, J. 1999. Content-based query of image databases. In Scand. Conf. on Image Analysis, 143–149..
    [26] Sykora ´ , D., Kavan, L., Cˇ Ad´Ik, M., Jamriska ˇ , O., Jacobson, A., Whited, B., Simmons, M., and Sorkinehornung, O. 2014. Ink-and-ray: Bas-relief meshes for adding global illumination effects to hand-drawn characters. ACM Trans. Graphics 33.
    Description: 碩士
    國立政治大學
    資訊科學學系
    102753036
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0102753036
    Data Type: thesis
    Appears in Collections:[Department of Computer Science ] Theses

    Files in This Item:

    File SizeFormat
    303601.pdf2487KbAdobe PDF2496View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback