English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52585487      Online Users : 1014
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/81527
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/81527


    Title: 穿戴式互動展演創新應用與即時追蹤技術研究
    Interactive Performance Using Wearable Devices: Real-time Tracking Technology and Innovative Applications
    Authors: 鄭仲祐
    Cheng, Chung Yu
    Contributors: 蔡子傑
    Tsai, Tzu Chieh
    鄭仲祐
    Cheng, Chung Yu
    Keywords: 藍牙4.0
    虛實互動表演
    即時體態捕捉
    即時追蹤
    穿戴式裝置
    Bluetooth 4.0
    virtual-character integrated interactive perform
    Real-time motion capture
    Real-time Tracking
    Wearable devices
    Date: 2016
    Issue Date: 2016-03-01 10:40:48 (UTC+8)
    Abstract: 近年來越來越多虛實整合技術不斷地湧出,像是電影阿凡達或虛實互動型態的表演。這樣的表演會根據事先預錄好的虛擬角色進行演出,但要成功地演出需要演員們不斷的練習。另外,許多電影利用攝影機捕捉人體姿態來與虛擬角色互動,但此方法受限於燈光環境以及障礙物。
    此篇論文運用穿戴式裝置與新一代無線網路藍芽4.0,提出即時追蹤技術套用於這類表演,可使得演出更加豐富並且能即興創作。然而,目前受限於穿戴式平台上的藍芽訊號強度更新頻率每秒只有5至10次且傳輸容量有限,所以本篇論文結合體態感測裝置輔助無線網路藍芽4.0,提升對穿戴者的即時追蹤能力。實驗結果與真實位置只有0.3至0.5秒的延遲時間,並在校內進行兩場互動式展演作驗證成果。未來期許可以將此技術運用於多人展演場,讓更多使用者可以互動體驗。
    Recently, more and more interactive performance technologies appear such as Avatar or virtual-character integrated art perform. Such performs are based on pre-made animations and physics simulations. However, this kind of shows need a lot of practice, and it is impossible that audience or performers play with or interact with the virtual characters. In addition, many moviemakers use high quality cameras to distinguish body postures. Although cameras can record anything with high precision, it is constrained on the light and obstacles of the environments.
    If we, somehow, can capture the motion of the performers in real time, then we are able to interact with virtual characters and make improvisation possible. This thesis aims to use the wearable sensors and the Received Signal Strength Indication (RSSI) of BLE to track in real-time. However, the update rate of RSSI is limited to 5~10 per second. This thesis proposed a tracking technique which combines with wearable motion sensors to assist BLE localization. The tracking lag can be reduced to only 0.3~0.5 seconds, and also real performance was experimented in the campus. In the future, we hope to use this technique on interactive performance with many people in different places.
    Reference: [1] Britain`s Got Talent. Available: https://www.youtube.com/watch?v=A7IMKWvyBn4
    [2] International event of cool Japan. Available:
    https://www.youtube.com/watch?v=nNushriHQ4Q&feature=youtu.be
    [3] Daniel Roetenberg, Henk Luinge, and Per Slycke, “Xsens MVN: Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors. XSENS Technologies,”version Apr 3, 2013.
    [4] UWB Technical Overview. Available:
    https://en.wikipedia.org/wiki/Ultra-wideband#cite_note-1
    [5] 2015 Bluetooth SIG. Available: https://www.bluetooth.org/en-us
    [6] Li, H. (2014). Low-Cost 3D Bluetooth Indoor Positioning with Least Square. Wireless Personal Communications, 78(2), 1331-1344.
    [7] Chawathe, S. S. (2008, October). Beacon placement for indoor localization using bluetooth. In Intelligent Transportation Systems, 2008. ITSC 2008. 11th International IEEE Conference on (pp. 980-985). IEEE.
    [8] Muset, B., & Emerich, S. (2012). Distance Measuring using Accelerometer and Gyroscope Sensors. Carpathian Journal of Electronic and Computer Engineering, 5(83), 2012.
    [9] Deng, J., Qiu, J., Zhong, Z., & Wan, Z. (2015, January). Three-dimensional Trajectory Tracking System Based on Compass and Gyroscope. In International Conference on Education, Management, Commerce and Society (EMCS-15). Atlantis Press.
    [10] Blumrosen, G., & Luttwak, A. (2013). Human body parts tracking and kinematic features assessment based on RSSI and inertial sensor measurements. Sensors, 13(9), 11289-11313.
    [11] Brookner, E. Tracking and Kalman Filtering Made Easy 1998; Wiley-Interscience: New York, NY, USA, April 1998.
    [12] Chia-Feng Lu, Mathlab learning : http://www.ym.edu.tw/~cflu/CFLu_course_matlabgui.html
    [13] Sandeep Mistry masters in Bluetooth services. Available: http://en.gravatar.com/mistrysandeep
    [14] Ahn, D., Park, J. S., Kim, C. S., Kim, J., Qian, Y., & Itoh, T. (2001). A design of the low-pass filter using the novel microstrip defected ground structure. Microwave Theory and Techniques, IEEE Transactions on, 49(1), 86-93.
    [15] Jeff Rowberg. “I2Cdevlib. MPU-6050 6-axis accelerometer/gyroscope”. Accessed 28-May- 2014. 2013. URL: USC Viterbi School of Engineering. Archived from the original 2012-03-21.
    [16] Liu, T., Inoue, Y., & Shibata, K. (2009). “Development of a wearable sensor system for quantitative gait analysis. Measurement”, 42(7), 978-988.
    [17] Dąbek, P. (2013). “Evaluation of low-cost MEMS accelerometers for measurements of velocity of unmanned vehicles.” Pomiary, Automatyka, Robotyka, 17, 102-113.
    [18] Takeda, R., Tadano, S., Natorigawa, A., Todoh, M., & Yoshinari, S. (2009).” Gait posture estimation using wearable acceleration and gyro sensors.” Journal of biomechanics, 42(15), 2486-2494.
    [19] Drezner, Z., Drezner, T., & Wesolowsky, G. O. (2009). “Location with acceleration–deceleration distance.” European Journal of Operational Research, 198(1), 157-164.
    [20] Tuck, K. (2007). “Tilt sensing using linear accelerometers.” Freescale Semiconductor Application Note AN3107.
    [21] Charlon, Y., Fourty, N., & Campo, E. (2013). “A telemetry system embedded in clothes for indoor localization and elderly health monitoring.” Sensors, 13(9), 11728-11749.
    [22] Čapkun, S., Hamdi, M., & Hubaux, J. P. (2002). “GPS-free positioning in mobile ad hoc networks.” Cluster Computing, 5(2), 157-167.
    [23] Lee, J. S., Su, Y. W., & Shen, C. C. (2007, November). “A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In Industrial Electronics Society, 2007.” IECON 2007. 33rd Annual Conference of the IEEE (pp. 46-51). IEEE.
    [24] Lee, Y. H., Ho, K. W., Tseng, H. W., Lo, C. Y., Huang, T. C., Shih, J. Y., & Kang, T. H. (2014). “Accurate Bluetooth Positioning Using Large Number of Devices Measurements.” In Proceedings of the International MultiConference of Engineers and Computer Scientists (Vol. 2).
    [25] Chandrasiri, R., Abhayasinghe, N., & Murray, I. (2013, October). “Bluetooth Embedded Inertial Measurement Unit for Real-Time Data Collection for Gait Analysis.” In International Conference on Indoor Positioning and Indoor Navigation (Vol. 28, p. 31st).
    [26] Wang, Y., Yang, X., Zhao, Y., Liu, Y., & Cuthbert, L. (2013, January). “Bluetooth positioning using RSSI and triangulation methods.” In Consumer Communications and Networking Conference (CCNC), 2013 IEEE (pp. 837-842). IEEE.
    [27] Liu, J., Chen, C., Ma, Y., & Xu, Y. (2013, September). “Energy analysis of device discovery for bluetooth low energy.” In Vehicular Technology Conference (VTC Fall), 2013 IEEE 78th (pp. 1-5). IEEE.
    [28] Baniukevic, A., Jensen, C. S., & Lu, H. (2013, June). “Hybrid indoor positioning with wi-fi and bluetooth: architecture and performance.” In Mobile Data Management (MDM), 2013 IEEE 14th International Conference on (Vol. 1, pp. 207-216). IEEE.
    Description: 碩士
    國立政治大學
    資訊科學學系
    102753022
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0102753022
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    302201.pdf3650KbAdobe PDF277View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback