政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/81524
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51735427      Online Users : 634
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/81524


    Title: 以故事性的自然場景探討主角與地點在動態視覺處理上的相互影響
    Investigating the Interaction of Character and Surroundings on Dynamic Visual Processing in the Perception of Narrative Natural Scene
    Authors: 張鈺潔
    Chang, Yu Chieh
    Contributors: 黃淑麗
    Huang, Shwu Lih
    張鈺潔
    Chang, Yu Chieh
    Keywords: 動態視覺處理
    主角
    地點
    一致性效果
    促進效果
    抑制效果
    物體優勢效果
    dynamic visual process
    character
    surroundings
    consistency effect
    facilitation effect
    inhibition effect
    object advantage effect
    Date: 2016
    Issue Date: 2016-03-01 10:40:05 (UTC+8)
    Abstract: 視覺辨識是極其快速而且正確的,逐步揭露作業可展示此一閃而過的動態視覺辨識歷程,本研究目的即在以此作業探討主角與地點在動態視覺辨識過程中相互影響的內涵。實驗一旨在建立主角與地點的視覺辨識基準線,結果發現主角比起地點只需累積較低空間頻率訊息即可完成正確辨識,得到物體優勢效果。實驗二旨在驗證物體與背景之間在視覺處理上的非獨立關係,透過操弄單獨呈現與同時呈現兩種視覺呈現方式,以主角辨識作業與地點辨識作業加以驗證。結果顯示對地點辨識作業而言,同時呈現情況比起單獨呈現情況只需累積較低空間頻率訊息即可完成正確辨識;對主角辨識作業而言,單獨呈現情況與同時呈現情況並無不同。除此之外,在單獨呈現情況下,仍獲得物體優勢效果。但在同時呈現情況下,物體優勢效果並不復見,反而是地點辨識優於主角辨識。實驗二結果支持物體與背景之間在視覺處理上為非獨立關係。實驗三進一步從「一致性效果」在促進層面以及抑制層面上的作用情況,探討物體與背景之間在視覺處理上相互影響的內涵。實驗三a結果顯示,在主角辨識作業中所得到的「一致性效果」,源於地點訊息對主角辨識在抑制層面的作用而來。實驗三b結果顯示,在地點辨識作業中所得到「一致性效果」,則源於主角訊息對地點辨識在促進層面與抑制層面的作用而來。實驗四進一步以同時呈報的作業方式,讓參與者對整張場景進行辨識,對於視覺系統所知覺到的主角內容與地點內容都需加以呈報,藉此再次驗證主角與地點處理的相互影響。其結果顯示在主角內容與地點內容呈報時,皆獲得「一致性效果」。除此之外,在一致情況與不一情況下皆獲得物體優勢效果。本研究以動態視覺處理模型中物體與背景平行處理且密切交換訊息之觀點解釋所得結果,並提出注意力分佈在此動態視覺處理歷程扮演重要角色。
    Visual recognition is a fast and accurate process. The present study adopted a progressive revelation task, which mimics the visual dynamics appropriately, to investigate the interaction of character and surroundings in the dynamic visual processing. Experiment 1 aimed to establish visual recognition curves for character and surroundings separately as baselines. The results showed that less amount of cumulated perceptual evidence was required for character than surroundings, so that it showed the object advantage effect. In Experiment 2, the non-independent relationship between the object- and background-related visual processes was verified. The performance of isolation condition with the character and surroundings presented in isolation was compared to the concurrent condition with the two presented concurrently. The results of the surroundings recognition task showed that less amount of cumulated perceptual evidence was required for concurrent condition than isolation condition. In contrast, for the character recognition task, there was no difference between these two conditions. These results supported the non-independent relationship between object- and background-related processes. Object advantage effect was replicated in the isolation condition but not in the concurrent condition, which meant that surroundings required less amount of perceptual evidence than character for visual recognition instead. In Experiment 3, interaction between object- and background-related processes was investigated by consistency effect from both the aspects of facilitation and inhibition effects. Results of Experiment 3a showed that consistency effect was only contributed by inhibition effect in the character recognition task. Results of Experiment 3b showed that both the facilitation and inhibition effects contributed to the consistency effect in the surroundings recognition task. In Experiment 4, participants were asked to report both the contents of character and surroundings. The results showed that consistency effects occurred in both of the content reports. And also the object advantage effect appeared in both of the consistent and inconsistent conditions. Overall, the results of the present study implied that object- and background-related visual processes operate in parallel while interchange information intimately at each level of the visual processing stages. The results also suggest that deployment of attention resource played an important role in the dynamic visual process.
    Reference: 英文文獻
    Antes, J. R. (1974). The time course of picture viewing. Journal of Experimental Psycholoy, 103, 62-70. http://dx.doi.org/10.1037/h0036799
    Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. Journal of Cognitive Neuroscience, 15(4), 600-609. doi:10.1162/089892903321662976
    Bar, M. (2004). Visual objects in context. Nature Reviews, 5, 617-629. doi:10.1038/nrn1476
    Bar, M. (2007). The proactive brain: using analogies and associations to generate predictions. Trends in Cognitive Sciences, 11(7), 280-289. doi:10.1016/j.tics.2007.05.005
    Bar, M. (2009). The proactive brain: memory for predictions. Philosophical Transactions of the Royal Socity of London. Series B, Biological Sciences, 364, 1235-1243. doi: 10.1098/rstb.2008.0310
    Biederman, I. (1972). Perceiving real-world scenes. Science, 177(4043), 77-80. doi: 10.1126/science.177.4043.77
    Biederman, I., Glass, A. L., & Stacy, E. W. (1973). Searching for objects in real-world scenes. Journal of Experimental Psychology, 97(1), 22-27. Retrieved from http://dx.doi.org/10.1037/h0033776
    Biederman, I., Rabinowitz, J. C., Glass, A. L. & Stacy, E. W. (1974). On the information extracted from a glance at a scene. Journal of Experimental Psychology, 103(3), 597-600. doi: 10.1037/h0037158
    Biederman, I., Teitelbaum, R. C., & Mezzanotte, R. J. (1983). Scene perception: a failure to find a benefit from prior expectancy or familiarity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(3), 411-429. doi: 10.1037/0278-7393.9.3.411
    Boyce, S. J., & Pollatsek, A. (1992). Identification of objects in scenes: the role of scene background in object naming. Journal of Experimental Psychology: Learning, Memory, and Cognition. 18(3), 531-543. doi: 10.1037//0278-7393.18.3.531
    Boyce, S. J., Pollatsek, A., & Rayner, K. (1989). Effect of background information on object identification. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 556-566. Retrieved from http://dx.doi.org/10.1037/0096-1523.15.3.556
    Davenport, J. L. (2007). Consistency effects between objects in scenes. Memory and Cognition, 35(3), 393-401. doi: 10.3758/BF03193280
    Davenport, J. L., & Potter, M. C. (2004). Scene consistency in object and background perception. Psychological Science, 15(8), 559-564. doi:10.1111/j.0956-7976.2004.00719.x
    Delorme, A., Richard, G., & Fabre-Thorpe, M. (2000). Ultra-rapid categorization of natural scenes does not rely on colour cues: a study in monkeys and humans. Vision Research, 40(16), 2187-2200. doi:10.1016/S0042-6989(00)00083-3
    Delplanque, S., N’diaye, K., Scherer, K., & Grandjean, D. (2007). Spatial frequencies or emotional effects? A systematic measure of spatial frequencies for IAPS pictures by a discrete wavelet analysis. Journal of Neuroscience Methods, 165(1), 144-150. doi:10.1016/j.jneumeth.2007.05.030
    Dobel, C., Gumnior, H., Bölte, J., & Zwitserlood, P. (2007). Describing scenes hardly seen. Acta Psychologica, 125(2), 129-143. doi:10.1016/j.actpsy.2006.07.004
    Downing, P. E., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). Cortical area selective for visual processing of the human body. Science, 293, 2470-2473. doi:10.1126/science.1063414
    Enns, J. T., & Lleras, A. (2008). What’s next? New evidence for prediction in human vision. Trends in Cognitive Sciences, 12(9), 327-333. doi:10.1016/j.tics.2008.06.001
    Fabre-Thorpe, M., Richard, G., & Thorpe, S. J. (1998). Rapid categorization of natural images by rhesus monkeys. NeuroReport, 9(2), 303-308. doi:10.1097/00001756-199801260-00023
    Fei-Fei, L., Iyer, A., Koch, C., & Perona, P. (2007). What do we perceive in a glance of a real-world scene? Journal of vision, 7(1), 1-29. doi: 10.1167/7.1.10
    Friedman, A. (1979). Framing pictures: the role of knowledge in automatized encoding and memory for gist. Journal of Experimental Psychology: General, 108(3), 316-355. doi:10.1037/0096-3445.108.3.316
    Griffin, Z. M., & Bock, K. (2000). What the eyes say about speaking. Psychological Science, 11(4), 274-279. doi:10.1111/1467-9280.00255
    Grossman, E. D., & Blake, R. (2001). Brain activity evoked by inverted and imagined biological motion. Vision Research, 41(10-11), 1475-1482. doi:10.1016/S0042-6989(00)00317-5
    Hafri, A., Papafragou, A., & Trueswell, J. C. (2012). Getting the gist of events: recognition of two-participant actions from brief displays. Journal of Experimental Psychology: General, 142(3), 880-905. doi:10.1037/a0030045
    Hanes, D. P., & Schall, J. D. (1996). Neural control of voluntary movement initiation. Science, 274(5286), 427-430. doi:10.1126/science.274.5286.427
    Hegdé, J. (2008). Time course of visual perception: coarse-to-fine processing and beyond. Progress in Neurobiology, 84(4), 405-439. doi:10.1016/j.pneurobio.2007.09.001
    Henderson, J. M. (1992). Object identification in context: The visual processing of natural scenes. Canadian Journal of Psychology, 46(3), 319-341. doi:10.1037/h0084325
    Henderson, J. M., & Hollingworth, A. (1999). High-level scene perception. Annual review of psychology, 50, 243-271. doi:10.1146/annurev.psych.50.1.243
    Hollingworth, A., & Henderson, J. M. (1998). Does consistent scene context facilitate object perception? Journal of Experimental Psychology: General, 127(4), 398-415. Retrieved from http://dx.doi.org/10.1037/0096-3445.127.4.398
    Joubert, O. R., Rousselet, G. A., Fize, D., & Fabre-Thorpe, M. (2007). Processing scene context: fast categorization and object interference. Vision Research, 47, 3286-3297. doi:10.1016/j.visres.2007.09.013
    Kanwisher, N. (2010). Functional specificity in the human brain: A window into the functional architecture of the mind. Proceedings of the National Academy of Sciences, 107(25), 11163-11170. doi:10.1073/pnas.1005062107
    Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302-4311. Retrieved from http://www.jneurosci.org/
    Kauffmann, L., Ramanoël, S., & Peyrin, C. (2014). The neural bases of spatial frequency processing during scene perception. Frontiers in Integrative Neuroscience, 8(37), 1-14. doi:10.3389/fnint.2014.00037
    Kim, J-N., & Shadlen, M. N. (1999). Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nature Neuroscience, 2(2), 176-185. doi:10.1038/5739
    Loftus, G.R., & Mackworth, N. H. (1978). Cognitive determinants of fixation location during picture viewing. Journal of experimental psychology: Human perception and performance, 4, 565-572. http://dx.doi.org.autorpa.lib.nccu.edu.tw/10.1037/0096-1523.4.4.565
    Mack, M. L., & Palmeri, T. J. (2010). Modeling categorization of scenes containing consistent versus inconsistent objects. Journal of Vision, 10(3), 1-11. doi:10.1167/10.3.11
    Mackworth, N. H., & Morandi, A. J. (1967). The gaze selects informative details within pictures. Perception and psychophysics, 2, 547-552. doi: 10.3758/BF03210264
    Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: W.H. Freeman.
    Oliva, A., & Schyns, P. G. (1997). Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cognitive Psychology, 34(1), 72-107. doi:10.1006/cogp.1997.0667
    Oliva, A., & Schyns, P. G. (2000). Diagnostic colors mediate scene recognition. Cognitive Psychology, 41, 176-210. doi:10.1006/cogp.1999.0728
    Palmer, S. E. (1975). The effects of contextual scenes on the identification of objects. Memory and Cognition, 3, 519-526. doi:10.3758/BF03197524
    Pelphrey, K. A., Morris, J. P., & McCarthy, G. (2005). Neural basis of eye gaze processing deficits in autism. Brain, 128, 1038-1048. doi:10.1093/brain/awh404
    Pelphrey, K. A., Viola, R. J., & McCarthy, G. (2004). When strangers pass: processing of mutual and averted social gaze in the superior temporal sulcus. Psychological Science, 15(9), 598-603. doi:10.1111/j.0956-7976.2004.00726.x
    Peyrin, C., Michel, C. M., Schwartz, S., Thut, G., Seghier, M., Landis, T., …Vuilleumier, P. (2010). The neural substrates and timing of top-down processes during coarse-to-fine categorization of visual scenes: a combined fMRI and ERP study. Journal of Cognitive Neuroscience, 22(12), 2768-2780. doi:10.1162/jocn.2010.21424
    Ploran, E. J., Nelson, S. M., Velanova, K., Donaldson, D., Petersen, S., & Wheeler, M. E. (2007). Evidence accumulation and the moment of recognition: dissociating perceptual recognition processes using fMRI. The Journal of Neuroscience, 27(44), 11912-11924. doi: 10.1523/JNEUROSCI.3522-07.2007
    Posner, M. I., Nissen, M. J., & Ogden, W. (1978). Attended and unattended processing modes: the role of set for spatial location. In H. L. Pick & I. J. Saltzman(Eds.), Modes of perceiving and processing information. Hillsdale, NJ: Erlbaum.
    Potter, M. C. (1975). Meaning in visual search. Science, 187(4180), 965-966. doi:10.1126/science.1145183
    Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning and Memory 2(5), 509–522. doi:10.1037/0278-7393.2.5.509
    Ratcliff, R. (1978). A Theory of memory retrieval. Psychological Review, 85(2), 59-108. doi:10.1037/0033-295X.85.2.59
    Ratcliff, R., Thapar, A., Gomez, P., & McKoon, G. (2004). A diffusion model analysis of the effects of aging in lexical-decision task. Psychological Aging, 19(2), 278-289. doi:10.1037/0882-7974.19.2.278
    Rousselet, G. A., Joubert, O. R., & Fabre-Thorpe, M. (2005). How long to get to the “gist” of real-world natural scene. Visual Cognition, 12(6), 852-877. doi:10.1080/13506280444000553
    Rousselet, G., Macé, M. J.-M., & Fabre-Thorpe, M. (2003). Is it an animal? Is it a human face? Fast processing in upright and inverted natural scenes. Journal of vision, 3, 440-455. doi:10:1167/3.6.5
    Schettino, A., Loeys, T., Bossi, M., & Pourtois, G. (2012). Valence-specific modulation in the accumulation of perceptual evidence prior to visual scene recognition. PLoS ONE 7(5), 1-15. doi:10.1371/journal.pone.0038064
    Schettino, A., Loeys, T., Delphanque, S., & Pourtois, G. (2011). Brain dynamics of upstream perceptual processes leading to visual object recognition: a high density ERP topographic mapping study. NeuroImage, 55, 1227-1241. doi:10.1016/j.neuroimage.2011.01.009
    Schyns, P. G., & Oliva, A. (1994). From blobs to boundary edges: Evidence for time- and spatial-scale-dependent scene recognition. Psychological Science, 5(4), 195-200. doi: 10.1111/j.1467-9280.1994.tb00500.x
    Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403-409. doi:10.1016/j.tics.2009.06.003
    Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6), 520-522. doi:10.1038/381520a0
    VanRullen, R., & Thorpe, S. J. (2001). Is it a bird? Is it a plane? Ultra-rapid visual categorization of natural and artifactual objects. Perception, 30, 655-668. doi:10.1068/p3029
    Wurm, L. H., Legge, G. E., Isenberg, L. M., & Luebker, A. (1993). Color improves object recognition in normal and low vision. Journal of Experimental Psychology: Human Perception and Performance, 19(4), 899-911. doi: 10.1037/0096-1523.19.4.899

    中文文獻
    張志三(1999)。漫談碎形。台北:牛頓出版股份有限公司
    Description: 博士
    國立政治大學
    心理學系
    96752501
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0096752501
    Data Type: thesis
    Appears in Collections:[Department of Psychology] Theses

    Files in This Item:

    File SizeFormat
    250101.pdf7319KbAdobe PDF276View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback