政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/81088
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114205/145239 (79%)
造访人次 : 52611093      在线人数 : 853
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/81088


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/81088


    题名: INTEGRATING EMD, CHAOS-BASED NEURAL NETWORK AND PSO FOR FINANCIAL TIME SERIES FORECASTING
    作者: 楊亨利;林漢洲
    Yang, Heng-Li;Lin, Han-Chou
    贡献者: 資管所
    日期: 2015
    上传时间: 2016-02-03 10:23:59 (UTC+8)
    摘要: In capital market research, stock or index prices are notoriously difficult to predict, because of their chaotic nature. For chaotic time series, the prediction techniques of PSR (Phase Space Reconstruction) methods, which are based on attractor reconstruction, can be employed to extract the information and characteristics hidden of the dynamic system from the time series. However, the existence of noise which may mask or mimic the deterministic structure of the time series, can lead to spurious results. In this work, EMD (Empirical Mode Decomposition) is specially developed for analyzing such nonlinear and non-stationary data. Thus, the major of this study is to integrate PSR, EMD and NN techniques optimized by particle swarm optimization to attempts to increase the accuracy for the prediction of stock index. The effectiveness of the methodology was verified by experiments comparing random walk model for Nasdaq Composite Index (NASDAQ). The results show that the proposed PSR-EMD-NNPSO model provides best prediction of stock index.
    關聯: ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH,49(1),
    数据类型: article
    显示于类别:[資訊管理學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    INTEGRATING_EMD.pdf628KbAdobe PDF2570检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈