政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/80555
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51732907      Online Users : 583
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/80555


    Title: CRITICAL TWO-POINT FUNCTIONS FOR LONG-RANGE STATISTICAL-MECHANICAL MODELS IN HIGH DIMENSIONS
    Authors: 陳隆奇
    Chen, Lung-Chi
    Sakai, Akira
    Contributors: 應數系
    Date: 2015-02
    Issue Date: 2016-01-13 16:23:13 (UTC+8)
    Abstract: We consider long-range self-avoiding walk, percolation and the Ising model on ZdZd that are defined by power-law decaying pair potentials of the form D(x)≍|x|−d−αD(x)≍|x|−d−α with α>0α>0. The upper-critical dimension dcdc is 2(α∧2)2(α∧2) for self-avoiding walk and the Ising model, and 3(α∧2)3(α∧2) for percolation. Let α≠2α≠2 and assume certain heat-kernel bounds on the nn-step distribution of the underlying random walk. We prove that, for d>dcd>dc (and the spread-out parameter sufficiently large), the critical two-point function Gpc(x)Gpc(x) for each model is asymptotically C|x|α∧2−dC|x|α∧2−d, where the constant C∈(0,∞)C∈(0,∞) is expressed in terms of the model-dependent lace-expansion coefficients and exhibits crossover between α<2α<2 and α>2α>2. We also provide a class of random walks that satisfy those heat-kernel bounds.
    Relation: The Annals of Probability, 43(2), 639-681.
    Data Type: article
    DOI link: http://dx.doi.org/10.1214/13-AOP843
    DOI: 10.1214/13-AOP843
    Appears in Collections:[Department of Mathematical Sciences] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    639681.pdf391KbAdobe PDF2803View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback