政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/79642
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52616698      Online Users : 678
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/79642


    Title: TRADE-OFF BETWEEN COMPUTATION TIME AND NUMBER OF RULES FOR FUZZY MINING FROM QUANTITATIVE DATA
    Authors: Kuo, Chan-Sheng
    Contributors: 資管系
    Date: 2001
    Issue Date: 2015-12-10 18:09:00 (UTC+8)
    Abstract: Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Most conventional data-mining algorithms identify the relationships among transactions using binary values. Transactions with quantitative values are however commonly seen in real-world applications. We proposed a fuzzy mining algorithm by which each attribute used only the linguistic term with the maximum cardinality int he mining process. The number of items was thus the same as that of the original attributes, making the processing time reduced. The fuzzy association rules derived in this way are not complete. This paper thus modifies it and proposes a new fuzzy data-mining algorithm for extrating interesting knowledge from transactions stored as quantitative values. The proposed algorithm can derive a more complete set of rules but with more computation time than the method proposed. Trade-off thus exists between the computation time and the completeness of rules. Choosing an appropriate learning method thus depends on the requirement of the application domains.
    Relation: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems , Volume 09, Issue 05, October 2001
    Data Type: article
    DOI link: http://dx.doi.org/10.1142/S0218488501001071
    DOI: 10.1142/S0218488501001071
    Appears in Collections:[Department of MIS] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    071.pdf2265KbAdobe PDF2659View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback