Reference: | [1] Douglas B.West, Introduction to graph theory, Prentice Hall, 1996. [2] A.M.Yu, M.Lu, F.Tian, On the spectral radius of graphs, Linear Algebra Appl, 387, 2004, 41-49. [3] Yuan Hong, Xiao-Dong Zhang, Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees, Discrete Mathematics, 296, 2005, 187-197. [4] Tomohiro Kawasaki, A sharp upper bound for the largest eigenvalue of the Laplacian matrix of a tree, Portland State University M.S. in Mathematical Sciences, 296, 2011, 187-197. [5] N.Biggs, Algebraic graph theory, second ed, Cambridge University Press, Cambridge, 1995. [6] Meyer, C. D. (Carl Dean), Matrix analysis and applied linear algebra, Society for Industrial and Applied, 2000. [7] G. Chris, R. Golden, Algebraic graph theory, Springer-Verlag, New York, Inc, 2001. [8] Q. Li, K. Feng, On the largest eigenvalue of a graph, Acta Math, Appl. Sinica 2 (in Chinese): 167-175, 1979 . [9] J. Shu, Y. Hong, K. Wnren, A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph, Linear Algebra Appl, 347, 2002, 123-129 . [10] Jianxi Li, Wai Chee Shiu, Wai Hong Chan, The aplacian spectral radius of some graphs, Linear Algebra Appl, 431, 2009, 99–103. [11] Dragos M. Cvetkovic, Michael Doob, Horst Sachs, Spectra of graphs : theory and application , Academic Press, 1979. [12] Cvetkovic D., Applications of Graph Spectra: An introduction to the literature, Applications of Graph Spectra, Zbornik radova 13(21), ed. D.Cvetkovi c, I.Gutman, Mathematical Institute SANU, Belgrade, 2009, 7-31. [13] Ji-Ming Guo, The effect on the Laplacian spectral radius of a graph by adding or grafting edges, Linear Algebra Appl, 413, 2006, 59–71. [14] Lihua Feng, Qiao Li and Xiao-Dong Zhang, Some Sharp Upper Bounds on the Spectral Radius of Graphs, TAIWANESE JOURNAL OF MATHEMATICS, 2007. [15] Bao-Xuan Zhu, On the signless Laplacian spectral radius of graphs with cut vertices, Linear Algebra Appl, 433, 2010, 928–933. [16] JIAQI JIANG, Introduction To Spectral Graph Theory, 2012. [17] Zdenek Dvorak, Bojan Mohar, Spectral radius of finite and infinite planar graphs and of graphs of bounded genus, Journal-ref: J. Combin. Theory Ser. B 100 (2010) 729-739, arXiv: 0907.1591. [18] M. N. Ellingham, Xiaoya Zha, The spectral radius of graphs on surfaces, Journal of Combinatorial Theory, Series B, 78, 2000, 45–56. [19] Xiao-Dong Zhang, The Laplacian eigenvalues of graphs: a survey, Linear Algebra Research Advances, Editor: Gerald D. Ling, pp. 201-228,2007, arXiv:1111.2897v1 . |