English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113974/145000 (79%)
Visitors : 52014365      Online Users : 688
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/77867
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/77867


    Title: 連通圖的拉普拉斯與無符號拉普拉斯 譜半徑之研究
    On the Laplacian and the Signless Laplacian Spectral Radius of a Connected Graph
    Authors: 羅文隆
    Contributors: 張宜武
    羅文隆
    Keywords: 
    鄰接矩陣
    拉普拉斯矩陣
    無符號拉普拉斯矩陣
    譜半徑
    拉普拉斯譜半徑
    無符號拉普拉斯譜半徑
    grpah
    adjacency matrix,
    Laplacian matrix
    signless Laplacian matrix
    spectral radius
    Laplacian spectral radius
    signless Laplacian spectral radius
    Date: 2015
    Issue Date: 2015-08-24 09:55:36 (UTC+8)
    Abstract: 圖的譜半徑在數學方面以及其他領域有非常多的應用。在這篇論文裡,我們整理有關連通圖的拉普拉斯與無符號拉普拉斯譜半徑的論文。本文一開始探討一些圖的譜理論,並找出這些界限的關係。然後,我們將討論更精確的圖之拉普拉斯與無符號拉普拉斯譜半徑。最後,我們給一個例子,並使用前面所探討過的性質分析之。
    The spectral radius of a graph has been applied in mathenatics and in diverse disciplines.In this thesis, we survey some papers about the Laplacian spectral radius and the signless Laplacian spectral radius of a connected graph. Initially, we discuss some properties about the spectral graphs and find the relations between these bounds. Then, we discuss the upper bounds and lower bounds of the Laplacian and signless Laplacian spectral radius of a graph. In the end, we give an example and analyze it.
    Reference: [1] Douglas B.West, Introduction to graph theory, Prentice Hall, 1996.
    [2] A.M.Yu, M.Lu, F.Tian, On the spectral radius of graphs, Linear Algebra Appl, 387, 2004, 41-49.
    [3] Yuan Hong, Xiao-Dong Zhang, Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees, Discrete Mathematics, 296, 2005, 187-197.
    [4] Tomohiro Kawasaki, A sharp upper bound for the largest eigenvalue of the Laplacian matrix of a tree, Portland State University M.S. in Mathematical Sciences, 296, 2011, 187-197.
    [5] N.Biggs, Algebraic graph theory, second ed, Cambridge University Press, Cambridge, 1995.
    [6] Meyer, C. D. (Carl Dean), Matrix analysis and applied linear algebra, Society for Industrial and Applied, 2000.
    [7] G. Chris, R. Golden, Algebraic graph theory, Springer-Verlag, New York, Inc, 2001.
    [8] Q. Li, K. Feng, On the largest eigenvalue of a graph, Acta Math, Appl. Sinica 2 (in Chinese): 167-175, 1979 .
    [9] J. Shu, Y. Hong, K. Wnren, A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph, Linear Algebra Appl, 347, 2002, 123-129 .
    [10] Jianxi Li, Wai Chee Shiu, Wai Hong Chan, The aplacian spectral radius of some graphs, Linear Algebra Appl, 431, 2009, 99–103.
    [11] Dragos M. Cvetkovic, Michael Doob, Horst Sachs, Spectra of graphs : theory and application , Academic Press, 1979.
    [12] Cvetkovic D., Applications of Graph Spectra: An introduction to the literature, Applications
    of Graph Spectra, Zbornik radova 13(21), ed. D.Cvetkovi c, I.Gutman, Mathematical Institute SANU, Belgrade, 2009, 7-31.
    [13] Ji-Ming Guo, The effect on the Laplacian spectral radius of a graph by adding or grafting edges, Linear Algebra Appl, 413, 2006, 59–71.
    [14] Lihua Feng, Qiao Li and Xiao-Dong Zhang, Some Sharp Upper Bounds on the Spectral Radius of Graphs, TAIWANESE JOURNAL OF MATHEMATICS, 2007.
    [15] Bao-Xuan Zhu, On the signless Laplacian spectral radius of graphs with cut vertices, Linear Algebra Appl, 433, 2010, 928–933.
    [16] JIAQI JIANG, Introduction To Spectral Graph Theory, 2012.
    [17] Zdenek Dvorak, Bojan Mohar, Spectral radius of finite and infinite planar graphs and of graphs of bounded genus, Journal-ref: J. Combin. Theory Ser. B 100 (2010) 729-739, arXiv:
    0907.1591.
    [18] M. N. Ellingham, Xiaoya Zha, The spectral radius of graphs on surfaces, Journal of Combinatorial Theory, Series B, 78, 2000, 45–56.
    [19] Xiao-Dong Zhang, The Laplacian eigenvalues of graphs: a survey, Linear Algebra Research Advances, Editor: Gerald D. Ling, pp. 201-228,2007, arXiv:1111.2897v1 .
    Description: 碩士
    國立政治大學
    應用數學研究所
    100751007
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0100751007
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    100701.pdf618KbAdobe PDF2431View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback