政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/77557
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113873/144892 (79%)
造访人次 : 51918072      在线人数 : 538
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/77557


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/77557


    题名: 運用支持向量機和決策樹預測台指期走勢
    Predicting Taiwan Stock Index Future Trend Using SVM and Decision Tree
    作者: 吳永樂
    Wu, Yong Le
    贡献者: 劉文卿
    Liou, Wen Qing
    吳永樂
    Wu, Yong Le
    关键词: 支持向量機
    決策樹
    台指期
    預測模型
    SVM
    Decision Tree
    Global Indices
    Taiwan Stock Market
    日期: 2015
    上传时间: 2015-08-17 14:08:36 (UTC+8)
    摘要: 本研究利用479個全球指標對台指期建立預測模型。該模型可以預測台指期在未來K天的漲跌走勢。我們使用了兩種演算法(支持向量機和決策樹)以及兩種取樣方式(交叉驗證和移動視窗)進行預測。在交叉驗證的建模過程中,決策樹展現了較高的預測力,最高準確度達到了93.4%。在移動視窗的建模過程中,支持向量機表現較好,達到了79.97%的預測准確度。於此同時,不管是哪一種條件設定都表明當我們預測的週期拉長時,預測的效果相對較好。這說明全球市場對台灣市場的影響很大,但是需要一定的市場反應時間。該研究結果對投資人有一定的參考作用。在未來方向裡,可以嘗試使用改進的決策樹演算法,也可以結合回歸預測進行深入研究。
    In this research, we build a stock price direction forecasting model with Taiwan Stock Index Future (TXF). The input data we used is 479 global indices. The classification algorithms we used are SVM and Decision Tree. This model can predict the up and down trend in the next k days. In the model building process, both cross validation and moving window are taking into account. As for the time period, both short term prediction (i.e. 1 day) and long term prediction (i.e. 100 days) are tested for comparison. The results showed that cross validation performs best with 93.4% in precision, and moving window reached 79.97% in precision when we use the last 60 days historical data to predict the up and down trend in the next 20 days. The results imply Taiwan stock market is significantly influenced by the global market in the long run. This finding could be further used by investors and also be studied with regression algorithms as a combination model to enhance its performance.
    參考文獻: 1. Aase, K.-G. (2011). Text Mining of News Articles for Stock Price Predictions, Norwegian University of Science and Technology.
    2. Campbell, C., & Ying, Y. (2011). Learning with support vector machines. Synthesis Lectures on Artificial Intelligence and Machine Learning, 5(1), 1-95.
    3. Chen, A. S., Leung, M. T., & Daouk, H. (2003). Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index. Computers & Operations Research, 30(6), 901-923.
    4. Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge university press.
    5. Lin, S., Patel, S., Duncan, A., & Goodwin, L. (2003). Using decision trees and support vector machines to classify genes by names. In Proceeding of the Europen workshop on data mining and text mining for bioinformatics (pp. 35-41).
    6. Lu, Y. C., Fang, H., & Nieh, C. C. (2012). The price impact of foreign institutional herding on large-size stocks in the Taiwan stock market. Review of Quantitative Finance and Accounting, 39(2), 189-208.
    7. Mingers, J. (1989). An empirical comparison of selection measures for decision-tree induction. Machine learning, 3(4), 319-342.
    8. Ou, P., & Wang, H. (2009). Prediction of stock market index movement by ten data mining techniques. Modern Applied Science, 3(12), p28.
    9. Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.
    10. Shen, S., Jiang, H., & Zhang, T. (2012). Stock market forecasting using machine learning algorithms. url: http://cs229. stanford. edu/proj2012/ShenJiangZhang-StockMarketForecastingusingMachineLearningAlgorithms. pdf (visited on 05/08/2015).
    11. Wu, M. C., Lin, S. Y., & Lin, C. H. (2006). An effective application of decision tree to stock trading. Expert Systems with Applications, 31(2), 270-274.
    12. Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., ... & Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1-37.
    13. Yang, Y., & Liu, X. (1999, August). A re-examination of text categorization methods. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval (pp. 42-49). ACM.
    描述: 碩士
    國立政治大學
    資訊管理研究所
    102356048
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G1023560482
    数据类型: thesis
    显示于类别:[資訊管理學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    048201.pdf1063KbAdobe PDF290检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈