English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51768054      Online Users : 531
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/77556
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/77556


    Title: 分散式計算系統及巨量資料處理架構設計-基於YARN, Storm及Spark
    Distributed computing system and big data real-time processing structure—based on YARN, Storm and Spark
    Authors: 曾柏崴
    Tseng, Po Wei
    Contributors: 劉文卿
    張景堯

    Liou, Wen Ching
    Chang, Jiing Yao

    曾柏崴
    Tseng, Po Wei
    Keywords: Apache YARN
    Apache Storm
    Apache Spark
    大數據處理
    即時預測
    Apache YARN
    Apache Storm
    Apache Spark
    Big Data Processing
    Real-time Forecasting
    Date: 2015
    Issue Date: 2015-08-17 14:08:24 (UTC+8)
    Abstract: 近年來,隨著大數據時代的來臨,即時資料運算面臨許多挑戰。例如在期貨交易預測方面,為了精準的預測市場狀態,我們需要在海量資料中建立預測模型,且耗時在數十毫秒之內。
    在本研究中,我們將介紹一套即時巨量資料運算架構,這套架構將解決在實務上需要解決的三大需求:高速處理需求、巨量資料處理以及儲存需求。同時,在整個平行運算系統之下,我們也實作了數種人工智慧演算法,例如SVM (Support Vector Machine)和LR (Logistic Regression)等,做為策略模擬的子系統。本架構包含下列三種主要的雲端運算技術:
    1. 使用Apache YARN以整合整體系統資源,使叢集資源運用更具效率。
    2. 為滿足高速處理需求,本架構使用Apache Storm以便處理海量且即時之資料流。同時,借助該框架,可在數十毫秒之內,運算上千種市場狀態數值供模型建模之用。
    3. 運用Apache Spark,本研究建立了一套分散式運算架構用於模型建模。藉由使用Spark RDD(Resilient Distributed Datasets),本架構可將SVM和LR之模型建模時間縮短至數百毫秒之內。
    為解決上述需求,本研究設計了一套n層分散式架構且整合上列數種技術。另外,在該架構中,我們使用Apache Kafka作為整體系統之訊息中介層,並支持系統內各子系統間之非同步訊息溝通。
    With the coming of the era of big data, the immediacy and the amount of data computation are facing with many challenges. For example, for Futures market forecasting, we need to accurately forecast the market state with the model built from large data (hundreds of GB to tens of TB) within tens of milliseconds.
    In this research, we will introduce a real-time big data computing architecture to resolve requests of high speed processing, the immense volume of data and the request of large data processing. In the meantime, several algorithms, such as SVM (Support Vector Machine, SVM) and LR (Logistic Regression, LR), are implemented as a subproject under the parallel distributed computing system. This architecture involves three main cloud computing techniques:
    1. Use Apache YARN as a system of integrated resource management in order to apply cluster resources more efficiently.
    2. To satisfy the requests of high speed processing, we apply Apache Storm in order to process large real-time data stream and compute thousands of numerical value within tens of milliseconds for following model building.
    3. With Apache Spark, we establish a distributed computing architecture for model building. By using Spark RDD (Resilient Distributed Datasets, RDD), this architecture can shorten the execution time to within hundreds of milliseconds for SVM and LR model building.
    To resolve the requirements of the distributed system, we design an n-tier distributed architecture to integrate the foregoing several techniques. In this architecture, we use the Apache Kafka as the messaging middleware to support asynchronous message-based communication.
    Reference: [1] Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J. M., Kulkarni, S., ... & Ryaboy, D. (2014, June). Storm@ twitter. InProceedings of the 2014 ACM SIGMOD international conference on Management of data (pp. 147-156). ACM.
    [2] Apache Storm. https://storm.apache.org/
    [3] Jones, M. T. (2013). Process real-time big data with Twitter Storm. IBM Technical Library.
    [4] Aarsten, A., Brugali, D., & Menga, G. (1996). Patterns for three-tier client/server applications. Proceedings of Pattern Languages of Programs (PLoP’96), 4-6.
    [5] Hirschfeld, R. (1996). Three-tier distribution architecture. Pattern Languages of Programs (PloP).
    [6] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., ... & Stoica, I. (2012, April). Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation (pp. 2-2). USENIX Association.
    [7] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010, June). Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX conference on Hot topics in cloud computing (pp. 10-10).
    [8] Hansen, C. A. (2012). Optimizing Hadoop for the cluster. Institue for Computer Science, University of Troms0, Norway, http://oss. csie. fju. edu. tw/~ tzu98/Optimizing% 20Hadoop% 20for% 20the% 20cluster. pdf, Retrieved online October.
    [9] Apach Kafka. http://kafka.apache.org/
    [10] Manuel, P. D., & AlGhamdi, J. (2003). A data-centric design for n-tier architecture. Information Sciences, 150(3), 195-206.
    [11] Ding, Y. S., Hu, Z. H., & Sun, H. B. (2008). An antibody network inspired evolutionary framework for distributed object computing. Information Sciences,178(24), 4619-4631.
    [12] Sumbaly, R., Kreps, J., & Shah, S. (2013, June). The big data ecosystem at linkedin. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data (pp. 1125-1134). ACM.
    [13] Kreps, J., Narkhede, N., & Rao, J. (2011, June). Kafka: A distributed messaging system for log processing. In Proceedings of 6th International Workshop on Networking Meets Databases (NetDB), Athens, Greece.
    [14] Joshi, R. (2007). Data-Oriented Architecture: A Loosely-Coupled Real-Time SOA. Real-Time Innovations, Inc, CA, Tech. Rep
    [15] Netty. http://netty.io/index.html
    [16] TIBCO. http://www.tibco.com/
    [17] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010, June). Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX conference on Hot topics in cloud computing (pp. 10-10).
    [18] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., Mccauley, M., ... & Stoica, I. (2012). Fast and interactive analytics over Hadoop data with Spark.USENIX; login, 37(4), 45-51.
    [19] Zaharia, T. H. T. D. M., Bayen, A., Abbeel, P., & Hunter, T. Large-Scale Online Expectation Maximization with Spark Streaming. eecs. berkeley. edu, 1-5.
    [20] Buyya, R., Broberg, J., & Goscinski, A. M. (Eds.). (2010). Cloud computing: Principles and paradigms (Vol. 87). John Wiley & Sons.
    [21] Cloudera. http://www.cloudera.com/content/cloudera/en/home.html
    [22] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R., ... & Baldeschwieler, E. (2013, October). Apache hadoop yarn: Yet another resource negotiator. In Proceedings of the 4th annual Symposium on Cloud Computing (p. 5). ACM.
    [23] Node.js. https://nodejs.org
    Description: 碩士
    國立政治大學
    資訊管理研究所
    102356040
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0102356040
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File SizeFormat
    604001.pdf1084KbAdobe PDF2741View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback