政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/77175
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113869/144892 (79%)
Visitors : 51895947      Online Users : 520
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大典藏 > College of Commerce > Department of MIS > Theses >  Item 140.119/77175
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/77175


    Title: 最大化顧客參與行為於推薦平台: 以品牌合作角度塑造達人知識
    Maximizing Customer Engagement Behavior through Recommender System: Framing Maven Knowledge with Brand Alliance Perspective
    Authors: 巫承安
    Wu, Cheng An
    Contributors: 苑守慈
    Yuan, Soe Tysr
    巫承安
    Wu, Cheng An
    Keywords: 顧客參與行為
    社群化推薦平台
    品牌合作
    重塑知識
    達人
    Customer engagement behavior
    Social recommender
    Maven knowledge
    Value co-creation
    Multi-stakeholder
    Date: 2015
    Issue Date: 2015-08-03 13:20:27 (UTC+8)
    Abstract: 在這個充滿繁多新媒體時代,使用者面臨到眾多資料和快速變動的環境,使用者在媒體的使用行為和選擇上更加依賴各種推薦平台的建議。除此之外,隨著社群媒體的興起,許多的推薦平台整合了社群的人們關係來提供更準確的建議和選擇。雖然推薦系統在影響使用者的使用行為有顯著的效果,然而企業和品牌卻鮮少去關注或了解如何增加顧客參與行為在整合社群媒體的推薦平台上。顧客參與行為並不只有傳統的交易行為,而是包含了所有直接和間接影響企業品牌的行為,像是使用者回饋、口碑傳播等。而且,現今尚未有清楚明確的定義哪些關鍵因素,會影響顧客參與行為在社群化推薦推薦系統,來藉此獲得顧客關注,形成正向生態系統。
    本研究中,我們根據達人在社群化推薦平台中具有重要的影響力的觀點,以促進重塑達人知識來改變原有達人的行為和態度,藉此影響所有一般使用者在社群化推薦平台的顧客參與行為。我們提出新的架構和系統來幫助中小型商家在推薦平台上影響更多的推薦達人,獲得更多的顧客參與。我們建立商家參與後台來幫助中小型商家可以洞悉達人的行為,我們也建立了重新塑造資訊的系統,提供達人所需要的訊息文章,藉此來改變達人的知識和行為。此研究發現,達人的行為會受到娛樂型、知識型和激勵型的文章訊息影響行為,一般使用者也會受到達人行為影響。此外我們藉由品牌合作角度來幫助得到更多的顧客參與行為,我們發現中小型商家可以在社群化推薦平台獲得顧客參與且建立一個正向機制循環。
    With the highly dynamic trend of service economy, the firms are increasingly to co-create value with brand alliance to advance their competition advantage. On the other hand, with the massive information on the new media, the referrals provided by recommender systems in combination with social media have significantly impact on customer behavior. In light of these trends, the markers and firms should aim to increase the customer engagement behavior (CEB) which goes beyond the traditional transactions including purchase and non-purchase behavior on social recommenders.
    In this research, we focus on the role of mavens who are powerful influencers on the social recommender. We propose a new conceptual framework for facilitating to impact the maven’s knowledge and behavior and increase the CEB on the social recommender for Small/Middle Enterprise (SME). We establish the SME support engagement site for increasing the CEB on social recommender and framing knowledge context to influence maven for achieving the insight of the maven’s behavior. As the result of research, we discover that maven engagement behavior would be influenced by the entertainment, information and incentive types in context from the brand alliance perspective and the non-maven are willing to be affected by maven behavior. Moreover, with this discovery, the SME can increase the customer engagement behavior on the social recommender
    Reference: Abrantes, J. L., Seabra, C., Lages, C. R., & Jayawardhena, C. (2013). Drivers of in-group and out-of-group electronic word-of-mouth (eWOM). European Journal of Marketing, 47(7), 1067-1088.
    Bengtsson, M., & Kock, S. (1999). Cooperation and competition in relationships between competitors in business networks. Journal of Business & Industrial Marketing, 14(3), 178-194.
    Bijmolt, T. H., Leeflang, P. S., Block, F., Eisenbeiss, M., Hardie, B. G., Lemmens, A., & Saffert, P. (2010). Analytics for customer engagement. Journal of Service Research, 13(3), 341-356.
    Boster, F. J., Kotowski, M. R., Andrews, K. R., & Serota, K. (2011). Identifying influence: Development and validation of the connectivity, persuasiveness, and maven scales. Journal of Communication, 61(1), 178-196.
    Brodie, R. J., Hollebeek, L. D., Juric, B., & Ilic, A. (2011). Customer engagement: conceptual domain, fundamental propositions, and implications for research. Journal of Service Research, 1094670511411703.
    Burke, R. (2002). Hybrid recommender systems: Survey and experiments.User modeling and user-adapted interaction, 12(4), 331-370.
    Cambria, E., Speer, R., Havasi, C., & Hussain, A. (2010, March). SenticNet: A Publicly Available Semantic Resource for Opinion Mining. In AAAI Fall Symposium: Commonsense Knowledge (Vol. 10, p. 02).
    Chen, H. H., Kuo, J. J., Huang, S. J., Lin, C. J., & Wung, H. C. (2003). A summarization system for Chinese news from multiple sources. Journal of the American Society for Information Science and Technology, 54(13), 1224-1236.
    Cherbakov, L., Galambos, G., Harishankar, R., Kalyana, S., & Rackham, G. (2005). Impact of service orientation at the business level. IBM Systems Journal, 44(4), 653-668.
    Chi, P. Y., & Lieberman, H. (2011, February). Intelligent assistance for conversational storytelling using story patterns. In Proceedings of the 16th international conference on Intelligent user interfaces (pp. 217-226). ACM.
    Chou, Szu-Yu, and Soe-Tsyr Daphne Yuan (2014), “How New Media Affect Customer Engagement Behavior in Service Ecosystems,” Summer Marketing Educators’ Conference (AMA Summer `14), San Francisco, CA, USA
    Cvijikj, I. P., & Michahelles, F. (2013). Online engagement factors on Facebook brand pages. Social Network Analysis and Mining, 3(4), 843-861.
    Dholakia, U. M., Bagozzi, R. P., & Pearo, L. K. (2004). A social influence model of consumer participation in network-and small-group-based virtual communities. International journal of research in marketing, 21(3), 241-263.
    El Sawy, O. A., & Pereira, F. (2013). Business modelling in the dynamic digital space. Los Angeles, California: Springer.
    Entman, R. M. (1993). Framing: Toward clarification of a fractured paradigm.Journal of communication, 43(4), 51-58.
    Feick, L. F., & Price, L. L. (1987). The market maven: A diffuser of marketplace information. The Journal of Marketing, 83-97.
    Forrester Consulting. (2008). How Engaged Are Your Customers?. https://www.adobe.com/engagement/pdfs/Forrester_TLP_How_Engaged_Are_Your_Customers.pdf. Retrieved on Oct. 1st, 2014
    Ghose, A., Ipeirotis, P. G., & Li, B. (2012). Designing ranking systems for hotels on travel search engines by mining user-generated and crowdsourced content.Marketing Science, 31(3), 493-520.
    Göksedef, M., & Gündüz-Öğüdücü, Ş. (2010). Combination of Web page recommender systems. Expert Systems with Applications, 37(4), 2911-2922.
    Goodey, C., & East, R. (2008). Testing the market maven concept. Journal of Marketing Management, 24(3-4), 265-282.
    Hennig-Thurau, T., Malthouse, E. C., Friege, C., Gensler, S., Lobschat, L., Rangaswamy, A., & Skiera, B. (2010). The impact of new media on customer relationships. Journal of Service Research, 13(3), 311-330.
    Hu, M., Sun, A., & Lim, E. P. (2007, November). Comments-oriented blog summarization by sentence extraction. In Proceedings of the sixteenth ACM conference on Conference on information and knowledge management (pp. 901-904). ACM.
    Katz, E., Blumler, J. G., & Gurevitch, M. (1973). Uses and gratifications research. Public opinion quarterly, 509-523.
    Kumar, V., et al. "Undervalued or overvalued customers: capturing total customer engagement value." Journal of Service Research 13.3 (2010): 297-310.
    Liu, H., & Singh, P. (2004). ConceptNet—a practical commonsense reasoning tool-kit. BT technology journal, 22(4), 211-226
    Moore, J. F. (1998). The rise of a new corporate form. Washington Quarterly, 21(1), 167-181.
    Nenkova, A., & McKeown, K. (2012). A survey of text summarization techniques. In Mining Text Data (pp. 43-76). Springer US.
    Park, N., Kee, K. F., & Valenzuela, S. (2009). Being immersed in social networking environment: Facebook groups, uses and gratifications, and social outcomes. CyberPsychology & Behavior, 12(6), 729-733.Leuthesser, L., Kohli, C., & Suri, R. (2003). 2+ 2= 5? A framework for using co-branding to leverage a brand. The Journal of Brand Management, 11(1), 35-47.
    Prasad, R. V. V. S. V., & Kumari, V. V. (2012). ACategorical REVIEW OF RECOMMENDER SYSTEMS. System, 1(U2), U3
    Scheufele, D. A. (1999). Framing as a theory of media effects. Journal of communication, 49(1), 103-122
    Selsky, J. W., Goes, J., & Babüroğlu, O. N. (2007). Contrasting perspectives of strategy making: applications in ‘hyper’environments. Organization Studies,28(1), 71-94
    Senecal, S., & Nantel, J. (2004). The influence of online product recommendations on consumers’ online choices. Journal of retailing, 80(2), 159-169.
    Shen, D., Yang, Q., Sun, J. T., & Chen, Z. (2006, August). Thread detection in dynamic text message streams. In Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval(pp. 35-42). ACM.
    Speer, R., & Havasi, C. (2012, May). Representing General Relational Knowledge in ConceptNet 5. In LREC (pp. 3679-3686).
    Van Doorn, J., Lemon, K. N., Mittal, V., Nass, S., Pick, D., Pirner, P., & Verhoef, P. C. (2010). Customer engagement behavior: theoretical foundations and research directions. Journal of Service Research, 13(3), 253-266.
    Vargo, S. L., & Lusch, R. F. (2008). Service-dominant logic: continuing the evolution. Journal of the Academy of marketing Science, 36(1), 1-10
    Verleye, K., Gemmel, P., & Rangarajan, D. (2013). Managing engagement behaviors in a network of customers and stakeholders evidence from the nursing home sector. Journal of Service Research, 1094670513494015.
    von Alan, R. H., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS quarterly, 28(1), 75-105.
    Yang, C. Y., & Yuan, S. T. (2010). Color Imagery for Destination Recommendation in Regional Tourism. PACIS 2010 Proceedings.
    Description: 碩士
    國立政治大學
    資訊管理研究所
    102356023
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0102356023
    Data Type: thesis
    Appears in Collections:[Department of MIS] Theses

    Files in This Item:

    File SizeFormat
    602301.pdf5184KbAdobe PDF2389View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback