English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113656/144643 (79%)
造訪人次 : 51739958      線上人數 : 536
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/76910
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/76910


    題名: 二元轉換模式建構新技術及其應用
    New Approach on Bivariate Transfer Function Modeling and Its Applications
    作者: 曾封啟
    Tseng, Feng Chi
    貢獻者: 吳柏林
    Wu, Berlin
    曾封啟
    Tseng, Feng Chi
    關鍵詞: 二元轉換模式
    模式建構
    軟運算
    模糊統計
    bivariate transfer function model
    model-constructing
    soft computing
    fuzzy statistic
    日期: 2015
    摘要: 一直以來,對如何預測的新技術的發展都是人們所感興趣的,常見的預測方法有移動平均、指數平滑以及 ARIMA 這幾種方法,但是這幾種預測方法解釋現象的能力並不強。本研究考慮應用轉換模式方法,利用二元轉換模式建構可以良好的解釋所預測時間數列起伏的因果關係。再來隨著模糊理論以及區間軟運算的技術開發,運用區間估計過程改良傳統點估計預測的不足。實際運用上更能給出較為彈性的決策空間。最後以日月光股價為例,透過轉換模式對實數值資料作模糊迴歸方法來找出模糊係數,藉此得到新的轉換模式,建構新轉換模式並與傳統轉換模式比較,探討此模式的準確性與效率性。
    Stock market forecasting is an important realistic work in the financial engineering field. Generally, people use moving averages, exponential smoothing, and ARIMA to do the forecasting work. But those methods have their drawbacks, such as not efficient in the model construction or forecasting evaluation. In this research, we consider using the transfer function model to make a better and efficient forecasting work. Since the transfer function can satisfactorily explain the causation of the time series which we predicted. Moreover, with the fuzzy theories and soft computing mature, we can do an interval forecasting work for the interval time series. The proposed technique can meet the actual situation better and provided to decision-makers more flexibility of choice. In the empirical study, we can find that our model construction have a better efficient forecasting evaluation than the traditional ones. Through the transfer function to the real value data for fuzzy regression method to find the fuzzy coefficient.
    1.前言 4
    2.研究理論與方法 7
    2.1 ARIMA模型 7
    2.2 模糊迴歸 8
    2.3 二元轉換模式 10
    2.4 具模糊系數之二元轉換模式 11
    2.5 新模式預測估計 12
    3.實證分析 14
    3.1 資料分析 14
    3.2 建構具模糊係數轉換模式 18
    3.3 預測結果與比較 22
    4.結論與建議 25
    5.參考文獻 26
    描述: 碩士
    國立政治大學
    應用數學研究所
    102751013
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0102751013
    資料類型: thesis
    顯示於類別:[應用數學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML2255檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋