Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/76164
|
Title: | 雲端環境下之複合式動態網路負載平衡研究 A Study of Hybrid Network Load Balancing Architecture in Cloud Environment |
Authors: | 梁博輝 Liang, Po Huei |
Contributors: | 楊建民 Yang, Jiann Min 梁博輝 Liang, Po Huei |
Keywords: | 雲端運算 網路負載平衡 虛擬化 Cloud Computing Network Load Balancing Virtualization |
Date: | 2014 |
Issue Date: | 2015-07-01 14:44:05 (UTC+8) |
Abstract: | 近年來,雲端運算已經成為一個非常熱門的話題。雲端運算以網路為基礎,將網路資料中心(Internet Data Center, IDC)的運算資源(電腦和其他設備、 軟體和資訊等資源)虛擬化,再依照需求動態分配使用者。因此,企業資訊人員與IDC業者,在規劃與建置雲端運算服務時,除了成本考量因素外,資源與服務虛擬化之效能,更是重要考量的因素。
由於雲端運算服務的低維護成本和易取得的優點,讓越來越多的使用者將 Web 服務移轉到雲端環境。為了提升Web服務的高可用性,系統管理者大多會結合Web Cluster和硬體式網路負載平衡器;然而,硬體式的網路負載平衡器除了價位高且不易擴展外,同時也必須與Web Cluster環境放置在一起,地域性也受到限制。
本研究透過文獻探討並以Open Source作為基礎,提出一個可在雲端環境中動態配置的虛擬化網路負載器系統架構,再以系統雛形方式建立實做環境,進一步以實驗方式收集結果與分析其效能,驗證本研究提出的架構可行性。
為考量網路負載平衡器擴展性的需求,本研究利用免費的LVS (Linux Virtual System)來建置軟體式的網路負載平衡器,並建置在雲端環境上以虛擬機器方式提供全域性且高可用性的負載平衡系統服務。我們設計出一種兩層式負載平衡架構(Cloud Hybrid Load Balancer, CHLB),可運用兩種或以上不同的負載平衡方法來處理使用者的需求,同時也可滿足不同雲端服務間的負載平衡需求。
在本研究中,為了評估與驗證CHLB之績效,我們同時發展虛擬化效能的評估方法,並針對虛擬化應用系統效能,影響實體與虛擬主機效能比較,以及不同虛擬化平台軟體的效能比較進行實驗分析;結果說明不同應用系統虛擬化後效能與實體上的效能高度相似,而在不同的虛擬平台上效能也差異很小。本研究並以上述評估方法針對所提出的雲端複合式負載平衡器,對網站系統的服務效能和單層網路負載平衡架構效能進行實驗比較;主要針對網站服務的回應時間和處理需求數進行實驗測量。由於實驗資源限制,我們模擬兩個雲端平台,架構兩個網路資源不同的情境,並選擇了輪替(Round Robin)和加權最少連接(Weight Least Connection) 兩種常用的負載平衡方法。利用這兩種方法對單層和兩層的負載平衡架構進行效能比較。實驗結果顯示,本研究提出的雲端複合式負載平衡器(CHLB)在固定時間內能處理較多47.96%的需求數,而處理相同需求數時所需的回應時間較少33.08%,驗證出本研究的架構能協助提供更佳的服務效能。
本研究結果顯示CHLB在雲端環境中確是一個可行且低價的全區域性網路負載平衡器。未來可進一步探討如何提升雲端複合式負載平衡器效能,和比較其他不同的負載平衡方法影響。同時為了有效運用運算資源,未來也將研究如何結合虛擬平台的資源管理,進一步動態配置雲端複合式負載平衡架構中所需的虛擬主機資源。 Cloud Computing has become a very hot topics for the past few years. Cloud computing is based on the Internet that dynamically allocates resources to the consumers with virtualization of Internet Data Center (IDC) computing resources such as computation computers, software information and other peripherals. Therefore Information Technology (IT) staffs and IDC companies should consider the resource and the performance of service virtualization besides the cost factor while planning and establishing the cloud services.
With the lower cost and convenience of cloud computing services, users have increasingly put their Web resources and information in the cloud environment. In order to enhance high availability of the important web services, the system administrators usually combine Web Clusters with hardware-based network load balancers. However, the hardware-based network load balancers are expensive and difficult to expand. There is a regional limitation which the hardware-based network load balancer must be placed together with a Web Cluster environment.
This research adopts the method of literature review. We propose a multiple-layer virtualized network load balancing architecture which is based on Open Source and can be dynamically deployed in cloud environments. Next we applied the system prototyping method and we implemented the testing environment. Further, we made experiments and collected the results to analyze the performance of our proposed framework and to verify the feasibility of the architecture.
This study applies the free Linux Virtual System (LVS) for implementation of the software-based network load balancer for the scalability of load balancers and put the system as a virtual machine in the cloud environment to provide a global and high available load balancing service. We propose a kind of two-level load balancing framework (Cloud Hybrid Load Balancer, CHLB), the framework can be applied with two or more load balancing methods for handling with requests from users. It can fit the load balancing requirements between different cloud services.
To evaluate and verify the performance of CHLB, we develop the evaluation method of virtualization performance. And to focus on the virtualized application performance, we make experiments and analysis about the performance emphasis between physical machines and virtual machines, and the performance comparison of different hypervisors in this research. According to the testing results, the performance results of different workloads after virtualization are highly similar. There are very small differences between the performances of different hypervisors. We adopt the above evaluation method and focus on the proposed CHLB and to test the performance of the web services in CHLB and the one with single-level network load balancer. We focus on the experiments and the measurement of the response time and the finished requests. Because the limitation of the experiment resources, we simulate two cloud environments with different network resources and we select two common load balancing methods, which are Round Robin and Weight Least Connection. Single load balancer compared with two-level load balancer by these two methods. The experimental results show that the proposed CHLB in this study can finish more 47.96% requests within the same time period and the response time taken by processing the same requests is more less 33.08% than the one of the single load balancer. These results verify that the framework of this study can help provide better service performance.
Although this research results show that CHLB is feasible and low-cost global network load balancer in cloud environments. In the future, we can further explore how to improve the effectiveness of cloud hybrid load balancer and comparison with other methods on different load balancing methods. In order to efficiently use computing resources, in the future we will also study how to combine the resource management of the hypervisor. Further it can be dynamically deployed the required virtual machines of CHLB. |
Reference: | A Vouk, M. (2008). Cloud computing–issues, research and implementations. CIT. Journal of Computing and Information Technology, 16(4), 235-246.
A10 networks, http://www.a10networks.com/.
About Load Balancing Methods [Online]. Available: http://msdn.microsoft.com/en-us/library/windowsazure/dn339010.aspx.
Alef, M., & Gable, I. (2010, April). HEP specific benchmarks of virtual machines on multi-core CPU architectures. In Journal of Physics: Conference Series (Vol. 219, No. 5, p. 052015). IOP Publishing.
Amazon Elastic Load Balancing (ELB), available on line: http://aws.amazon.com/elasticloadbalancing/?nc2=h_ls
ApacheBench (ab), http://en.wikipedia.org/wiki/ApacheBench
Arora, M., Das, S. K., & Biswas, R. (2002). A de-centralized scheduling and load balancing algorithm for heterogeneous grid environments. In Parallel Processing Workshops, 2002. Proceedings. International Conference on (pp. 499-505). IEEE.
Azure Load Balancer, available on line: https://msdn.microsoft.com/en-us/library/azure/dn655058.aspx
Beitch, A., Liu, B., Yung, T., Griffith, R., Fox, A., & Patterson, D. A. (2010). Rain: A workload generation toolkit for cloud computing applications. Electrical Engineering and Computer Sciences University of California at Berkeley, White paper UCB/EECS-2010-14.
Binnig, C., Kossmann, D., Kraska, T., & Loesing, S. (2009, June). How is the weather tomorrow?: towards a benchmark for the cloud. In Proceedings of the Second International Workshop on Testing Database Systems (p. 9). ACM.
Buyya, R., Ranjan, R., & Calheiros, R. N. (2009, June). Modeling and simulation of scalable Cloud computing environments and the CloudSim toolkit: Challenges and opportunities. In High Performance Computing & Simulation, 2009. HPCS`09. International Conference on (pp. 1-11). IEEE.
Chen, S. J., Liang, P. H., & Yang, J. M. (2010, November). Workload evaluation and analysis on virtual systems. In e-Business Engineering (ICEBE), 2010 IEEE 7th International Conference on (pp. 111-116). IEEE.
Cosine similarity, http://en.wikipedia.org/wiki/Cosine_similarity
Creasy, R. J. (1981). The origin of the VM/370 time-sharing system. IBM Journal of Research and Development, 25(5), 483-490.
Dhakal, S., Hayat, M. M., Pezoa, J. E., Yang, C., & Bader, D. A. (2007). Dynamic load balancing in distributed systems in the presence of delays: A regeneration-theory approach. Parallel and Distributed Systems, IEEE Transactions on, 18(4), 485-497.
Dobber, M., Koole, G., & van der Mei, R. (2005, May). Dynamic load balancing experiments in a grid. In Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE International Symposium on (Vol. 2, pp. 1063-1070). IEEE.
El-Refaey, M. A., & Rizkaa, M. A. (2009, June). Virtual systems workload characterization: An overview. In Enabling Technologies: Infrastructures for Collaborative Enterprises, 2009. WETICE`09. 18th IEEE International Workshops on (pp. 72-77). IEEE.
Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G. & Stoica, I. (2009). Above the clouds: A Berkeley view of cloud computing. Dept. Electrical Eng. and Comput. Sciences, University of California, Berkeley, Rep. UCB/EECS, 28, 13.
GoGrid (F5) Load balancer, available on line: https://wiki.gogrid.com/index.php/%28F5%29_Load_Balancer
GoGrid Dynamic Load Balancer, available on line: https://wiki.gogrid.com/index.php/Load_Balancers
GoGrid Load Balancer. Available [Online]: http://www.gogrid.com/products/load-balancers.
Greer, M. B. (2009). Software as a service inflection point: Using cloud computing to achieve business agility. iUniverse.
Grosu, D., & Chronopoulos, A. T. (2005). Noncooperative load balancing in distributed systems. Journal of Parallel and Distributed Computing, 65(9), 1022-1034.
Guo, J., & Bhuyan, L. N. (2006). Load balancing in a cluster-based web server for multimedia applications. Parallel and Distributed Systems, IEEE Transactions on, 17(11), 1321-1334.
Hirschheim, R., & Klein, H. K. (1989). Four paradigms of information systems development. Communications of the ACM, 32(10), 1199-1216.
HP delivered Testing-as-a-Service : http://www8.hp.com/us/en/business-services/it-services.html?compURI=1078997#.U_DFPWP5cVc
HP Cloud Load Balancer. Available [Online]:http://www.hpcloud.com/products-services/load-balancer?t=features.
http_load, http://www.acme.com/software/http_load/
Hu, Y., & Zhu, S. (2014, June). Load-balancing cluster based on Linux Virtual Server for internet-based laboratory. In Industrial Electronics and Applications (ICIEA), 2014 IEEE 9th Conference on (pp. 2181-2185). IEEE.
Hutchinson, C., Ward, J., & Castilon, K. (2009). Navigating the Next-Generation Application Architecture. IT professional, 11(2), 18-22.
Iyer, R., Illikkal, R., Tickoo, O., Zhao, L., Apparao, P., & Newell, D. (2009). VM3: Measuring, modeling and managing VM shared resources. Computer Networks, 53(17), 2873-2887.
Jerger, N. E., Vantrease, D., & Lipasti, M. (2007, September). An evaluation of server consolidation workloads for multi-core designs. In Workload Characterization, 2007. IISWC 2007. IEEE 10th International Symposium on (pp. 47-56). IEEE.
Kameda, H., Li, J., Kim, C., & Zhang, Y. (2011). Optimal load balancing in distributed computer systems. Springer Publishing Company, Incorporated.
Kernel-based Virtual Machine (KVM), http://www.linux-kvm.org/page/Main_Page.
King, T. M., & Ganti, A. S. (2010, April). Migrating autonomic self-testing to the cloud. In Software Testing, Verification, and Validation Workshops (ICSTW), 2010 Third International Conference on (pp. 438-443). IEEE.
Kopparapu, C. (2002). Load balancing servers, firewalls, and caches. John Wiley & Sons.
Lee, W., Lee, H. W., & Choi, M. (2013, October). Load balancing system for IPTV web application virtualization. In ICT Convergence (ICTC), 2013 International Conference on (pp. 602-603). IEEE.
Liang, P. H., & Yang, J. M. (2011). Virtual personalized learning environment (VPLE) on the cloud. In Web Information Systems and Mining (pp. 403-411). Springer Berlin Heidelberg.
Liang, P. H., & Yang, J. M. (2011). An Open Framework of Virtualized Network Load Balancer (VNLB) on the Cloud. In Proceedings of the 12th Conference on Information Management and New Technologies on (pp. 170-177).
Liang, P. H., & Yang, J. M. (2013). Evaluation of Cloud Hybrid Load Balancer (CHLB). International Journal of E-Business Development.
Liang, P. H., & Yang, J. M. (2015, April). Evaluation of Two-Level Global Load Balancing Framework in Cloud Environment. International Journal of Computer Science & Information Technology (IJCSIT), Vol 7 No 2.
Linux Virtual Server (LVS), http://www.linuxvirtualserver.org/
Linthicum, D. S. (2009). Cloud computing and SOA convergence in your enterprise: a step-by-step guide. Pearson Education.
Liu, Y., Wang, L., & Li, S. (2008, November). Research on self-adaptive load balancing in EJB clustering system. In Intelligent System and Knowledge Engineering, 2008. ISKE 2008. 3rd International Conference on (Vol. 1, pp. 1388-1392). IEEE.
Load Balancing. Available, available on line: http://www.citrix.com/glossary/load-balancing.html.
LVS Documentation, http://www.linuxvirtualserver.org/docs/scheduling.html.
Makhija, V., Herndon, B., Smith, P., Roderick, L., Zamost, E., & Anderson, J. (2006). VMmark: A scalable benchmark for virtualized systems. VMware Inc, CA, Tech. Rep. VMware-TR-2006-002, September.
Mell, P., & Grance, T. (2009). The NIST definition of cloud computing. National Institute of Standards and Technology, 53(6), 50.
Menken, I., & Blokdijk, G. (2010). Cloud Computing Virtualization Specialist Complete Certification Kit-Study Guide Book and Online Course. Emereo Pty Ltd.
Menon, H., & Kalé, L. (2013, November). A distributed dynamic load balancer for iterative applications. In Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis (p. 15). ACM.
Meyer, R. A., & Seawright, L. H. (1970). A virtual machine time-sharing system. IBM Systems Journal, 9(3), 199-218.
Mishra, M. A. Network Load Balancing and Its Performance Measures.
Motahari-Nezhad, H. R., Stephenson, B., & Singhal, S. (2009). Outsourcing business to cloud computing services: Opportunities and challenges. IEEE Internet Computing, 10.
Naumann, J. D., & Jenkins, A. M. (1982). Prototyping: the new paradigm for systems development. Mis Quarterly, 29-44.
Network load balancing, available on line: http://en.wikipedia.org/wiki/Network_Load_Balancing
Niyato, D., & Srinilta, C. (2001, October). Load balancing algorithms for internet video and audio server. In Networks, 2001. Proceedings. Ninth IEEE International Conference on (pp. 76-80). IEEE.
O`Rourke, P., & Keefe, M. (2001, April). Performance Evaluation of Linux Virtual Server. In LISA (pp. 79-92).
OpenStack Neutron/LBaaS, available on line: https://wiki.openstack.org/wiki/Neutron/LBaaS
Padala, P., Zhu, X., Wang, Z., Singhal, S., & Shin, K. G. (2007). Performance evaluation of virtualization technologies for server consolidation. HP Labs Tec. Report.
Penmatsa, S., & Chronopoulos, A. T. (2005, April). Job allocation schemes in computational Grids based on cost optimization. In Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International (pp. 180a-180a). IEEE.
Penmatsa, S., & Chronopoulos, A. T. (2006, April). Price-based user-optimal job allocation scheme for grid systems. In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International (pp. 8-pp). IEEE.
Penmatsa, S., & Chronopoulos, A. T. (2007, March). Dynamic multi-user load balancing in distributed systems. In Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International (pp. 1-10). IEEE.
Popek, G. J., & Goldberg, R. P. (1974). Formal requirements for virtualizable third generation architectures. Communications of the ACM, 17(7), 412-421.
Rackspace Cloud Load Balancer, available on line: http://www.rackspace.com/cloud/load-balancing
Rahman, M., Iqbal, S., & Gao, J. (2014, April). Load Balancer as a Service in Cloud Computing. In Service Oriented System Engineering (SOSE), 2014 IEEE 8th International Symposium on (pp. 204-211). IEEE.
Ranadive, A., Kesavan, M., Gavrilovska, A., & Schwan, K. (2008, March). Performance implications of virtualizing multicore cluster machines. In Proceedings of the 2nd workshop on System-level virtualization for high performance computing (pp. 1-8). ACM.
Rimal, B. P., Choi, E., & Lumb, I. (2009, August). A taxonomy and survey of cloud computing systems. In INC, IMS and IDC, 2009. NCM`09. Fifth International Joint Conference on (pp. 44-51). IEEE.
Rittinghouse, J. W., & Ransome, J. F. (2009). Cloud computing: implementation, management, and security. CRC press.
Rosenblum, M. (1999). VMware’s Virtual Platform: A virtual machine monitor for commodity PCs. In Hot Chips 11.
Round robin DNS (RRDNS), http://en.wikipedia.org/wiki/Round-robin_DNS.
Shah, R., Veeravalli, B., & Misra, M. (2007). On the design of adaptive and decentralized load balancing algorithms with load estimation for computational grid environments. Parallel and Distributed Systems, IEEE Transactions on, 18(12), 1675-1686.
Siege, https://www.joedog.org/siege-home/.
Sobel, W., Subramanyam, S., Sucharitakul, A., Nguyen, J., Wong, H., Klepchukov, A. & Patterson, D. (2008, October). Cloudstone: Multi-platform, multi-language benchmark and measurement tools for web 2.0. In Proc. of CCA (Vol. 8).
Standard Performance Evaluation Corporation (SPEC) - http://www.spec.org/.
T-test, http://en.wikipedia.org/wiki/Student%27s_t-test
Tang, X., & Chanson, S. T. (2000). Optimizing static job scheduling in a network of heterogeneous computers. In Parallel Processing, 2000. Proceedings. 2000 International Conference on (pp. 373-382). IEEE.
The Technologies Behind Cloud Load Balancers. Available [Online]: http://www.rackspace.com/cloud/load-balancing/technology/.
Velte, T., Velte, A., & Elsenpeter, R. (2009). Cloud computing, a practical approach. McGraw-Hill, Inc.
Wang, L., Von Laszewski, G., Younge, A., He, X., Kunze, M., Tao, J., & Fu, C. (2010). Cloud computing: a perspective study. New Generation Computing, 28(2), 137-146.
Web Bench, https://xuri.me/2013/10/27/install-webbench.html.
Weinhardt, C., Anandasivam, A., Blau, B., & Stosser, J. (2009). Business Models in the Service World. IT professional, 11(2), 28-33.
Windows Azure Traffic Manager [Online], Available: http://msdn.microsoft.com/en-us/library/windowsazure/hh744833.aspx.
Wikipedia. Virtualization. http://en.wikipedia.org/wiki/Virtualization.
Xiong, K., & Perros, H. (2009, July). Service performance and analysis in cloud computing. In Services-I, 2009 World Conference on (pp. 693-700). IEEE.
Xu, Y., Xie, X., & Xia, D. (2009, September). Research and design on LVS cluster system. In Open-source Software for Scientific Computation (OSSC), 2009 IEEE International Workshop on (pp. 68-72). IEEE.
Yigitbasi, N., Iosup, A., Epema, D., & Ostermann, S. (2009, May). C-meter: A framework for performance analysis of computing clouds. In Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid (pp. 472-477). IEEE Computer Society.
Youseff, L., Butrico, M., & Da Silva, D. (2008, November). Toward a unified ontology of cloud computing. In Grid Computing Environments Workshop, 2008. GCE`08 (pp. 1-10). IEEE.
Zhang, M., & Yu, H. (2013, December). A New Load Balancing Scheduling Algorithm Based on Linux Virtual Server. In Computer Sciences and Applications (CSA), 2013 International Conference on (pp. 737-740). IEEE.
Zhang, W. (2000, July). Linux virtual server for scalable network services. In Ottawa Linux Symposium (Vol. 2000).
Zhang, W. and et al. Linux virtual server project. http://www.LinuxVirtualServer.org/, 1998-now. |
Description: | 博士 國立政治大學 資訊管理研究所 95356505 103 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0953565051 |
Data Type: | thesis |
Appears in Collections: | [資訊管理學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
index.html | 0Kb | HTML2 | 245 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|