政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/74502
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113656/144643 (79%)
造訪人次 : 51745320      線上人數 : 601
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 資訊管理學系 > 會議論文 >  Item 140.119/74502
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/74502


    題名: The prediction approach with Growing Hierarchical Self-Organizing Map
    作者: Huang, S.-Y.;Tsaih, Ray
    蔡瑞煌
    貢獻者: 資管系
    關鍵詞: Classification mechanism;Classification performance;Competitive learning;Financial fraud;Financial reporting;Growing hierarchical self-organizing maps;Prediction rules;Salient features;Sample population;Training sample;Two classification;Unsupervised neural networks;Classification (of information);Conformal mapping;Crime;Detectors;Finance;Forecasting;Forestry;Neural networks;Sampling;Computer crime;Classification;Detectors;Finance;Forestry;Information Retrieval;Neural Networks;Sampling
    日期: 2012
    上傳時間: 2015-04-10 17:34:45 (UTC+8)
    摘要: The competitive learning nature of the Growing Hierarchical Self-Organizing Map (GHSOM), which is an unsupervised neural networks extended from Self-Organizing Map (SOM), can work as a regularity detector that is supposed to help discover statistically salient features of the sample population. With the spatial correspondent assumption, this study presents a prediction approach in which GHSOM is used to help identify the fraud counterpart of each non-fraud subgroup and vice versa. In this study, two GHSOMs a non-fraud tree (NFT) and a fraud tree (FT) are generated via the non-fraud samples and the fraud samples, respectively. Each (fraud or non-fraud) training sample is classified into its belonging leaf nodes of NFT and FT. Then, two classification rules are tuned based upon all training samples to determine the associated discrimination boundary within each leaf node, and the rule with better classification performance is chosen as the prediction rule. With the spatial correspondent assumption, the prediction rule derived from such an integration of FT and NFT classification mechanisms should work well. This study sets up the experiment of fraudulent financial reporting (FFR), a sub-field of financial fraud detection (FFD), to justify the effectiveness of the proposed prediction approach and the result is quite acceptable. © 2012 IEEE.
    關聯: Proceedings of the International Joint Conference on Neural Networks
    10.1109/IJCNN.2012.6252479
    資料類型: conference
    DOI 連結: http://dx.doi.org/10.1109/IJCNN.2012.6252479
    DOI: 10.1109/IJCNN.2012.6252479
    顯示於類別:[資訊管理學系] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML2951檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋