政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/74458
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114401/145431 (79%)
造訪人次 : 53132990      線上人數 : 916
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 資訊學院 > 資訊科學系 > 會議論文 >  Item 140.119/74458
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/74458


    題名: A rule-based classification algorithm: A rough set approach
    作者: Liao, C.-C.;Hsu, K.-W.
    廖家奇;徐國偉
    貢獻者: 資科系
    關鍵詞: Attribute-value pairs;Classification algorithm;Classification performance;Decision rules;Indiscernibility;Interpretability;Matrix methods;Nominal datum;Rough set;Rule generation method;Rule induction;Rule-based classification;separate-and-conquer;Understandability;Algorithms;Artificial intelligence;Classification (of information);Learning systems;Rough set theory;Separation;Data mining
    日期: 2012
    上傳時間: 2015-04-10 15:35:10 (UTC+8)
    摘要: In this paper, we propose a rule-based classification algorithm named ROUSER (ROUgh SEt Rule). Researchers have proposed various classification algorithms and practitioners have applied them to various application domains, while most of the classification algorithms are designed with a focus on classification performance rather than interpretability or understandability of the models built using the algorithms. ROUSER is specifically designed to extract human understandable decision rules from nominal data. What distinguishes ROUSER from most, if not all, other rule-based classification algorithms is that it utilizes a rough set approach to decide an attribute-value pair for the antecedents of a rule. Moreover, the rule generation method of ROUSER is based on the separate-and-conquer strategy, and hence it is more efficient than the indiscernibility matrix method that is widely adopted in the classification algorithms based on the rough set theory. On about half of the data sets considered in experiments, ROUSER can achieve better classification performance than do classification algorithms that are able to generate decision rules or trees. © 2012 IEEE.
    關聯: Proceeding - 2012 IEEE International Conference on Computational Intelligence and Cybernetics, CyberneticsCom 2012,1-5
    10.1109/CyberneticsCom.2012.6381605
    資料類型: conference
    DOI 連結: http://dx.doi.org/10.1109/CyberneticsCom.2012.6381605
    DOI: 10.1109/CyberneticsCom.2012.6381605
    顯示於類別:[資訊科學系] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML21166檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋