政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/73502
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51734536      Online Users : 628
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/73502


    Title: Developing a GP-based Framework for Knowledge Integration
    Authors: 陳春龍
    Kuo, Chan-Sheng;Hong, Tzung-Pei;Chen, Chuen-Lung
    Contributors: 資管系
    Keywords: Genetic Programming;Knowledge Integration;Knowledge Base;Genetic Operator
    Date: 2012
    Issue Date: 2015-02-12 14:44:13 (UTC+8)
    Abstract: Knowledge integration is one of the important tasks for applying knowledge management in an organization to improve organizational performance and competitive competence. In this paper, we have proposed a GP-based knowledge-integration framework that automatically combines multiple rule sets into one integrated knowledge base. The proposed framework consists of three phases: knowledge collection and translation, knowledge integration, and knowledge output. In the collection and translation phase, each knowledge source is obtained and expressed as a rule set and then translated as a classification tree. In the integration phase, the genetic programming technique is used to generate a nearly optimal classification tree. In the output phase, the final derived classification tree is transferred as a rule set, then output to the knowledge base to facilitate the inference of new data. Two new genetic operators, abridgement and compromise, are designed in the proposed approach to remove redundancy, subsumption and contradiction, thus producing more accurate and concise classification rules than that without using them. Experimental results from diagnosis of breast cancer also show the feasibility of the proposed algorithm.
    Relation: Journal of Convergence Information Technology,14(7),79-88
    Data Type: article
    DOI link: http://dx.doi.org/10.4156/jcit.vol7.issue14.10
    DOI: 10.4156/jcit.vol7.issue14.10
    Appears in Collections:[Department of MIS] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    79-88.pdf804KbAdobe PDF2467View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback