English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51725871      Online Users : 576
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/73495
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/73495


    Title: Emerging organizational structure for knowledge-oriented teamwork using genetic algorithm
    Authors: 陳春龍
    Huang, Hsiao-Tzu;Chen, Chuen-Lung
    Contributors: 資管系
    Keywords: Match;Organizational structure;Knowledge sharing and support;Genetic algorithm
    Date: 2009-12
    Issue Date: 2015-02-12 14:18:58 (UTC+8)
    Abstract: Organizations have historically sought efficiency improvements through different combinations of materials, components, production and processes to get better performance. However, in this age of the knowledge economy, the new organizational management has shifted its focus to the proper use of the knowledge of employees to create greater output and performance. There is a recent trend towards flat organizations and team-orientated structures, therefore this study will concentrate on the knowledge-oriented teamwork. To construct the fitting team structure, we solve the problem in two stages. In the first stage, we assign the proper tasks to the proper members to achieve a good match for effective usage of organizational knowledge. In the second stage, we solve the problem of insufficient knowledge within the organizational structure generated in the first stage by adjusting the positions of members to improve the mutual coordination and knowledge sharing and support. We applied a basic genetic algorithm (BGA) to solve the problems in both the stages. Five factors, such as member/task number, the number of knowledge types, the number of task types, the average complexity of each member’s knowledge types and the average complexity of task knowledge types, are considered to generate different types of problems. Computational results show that the BGA is able to find optimal knowledge matching for small-sized problems in the first stage, and that the BGA is able to improve the organizational structure generated in the first stage in order to reduce the communication cost of knowledge support among the members in the second stage.
    Relation: Expert Systems with Applications,36(10),12137-12142
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1016/j.eswa.2009.03.062
    DOI: 10.1016/j.eswa.2009.03.062
    Appears in Collections:[資訊管理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    12137-12142.pdf349KbAdobe PDF2863View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback