English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52562347      Online Users : 877
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/72554
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/72554


    Title: 以資料科學技術進行轉職行為之分析
    Career Transition Analysis Using Data Science Techniques
    Authors: 諶宏軍
    Chen, Hung Chun
    Contributors: 沈錳坤
    Shan, Man Kwan
    諶宏軍
    Chen, Hung Chun
    Keywords: 轉職
    資料探勘
    分類演算法
    相關係數
    Career Transition
    Data Mining
    Classification
    Correlation Coefficient
    Date: 2014
    Issue Date: 2015-01-05 11:22:14 (UTC+8)
    Abstract: 轉職對於職涯發展來說,是非常重要的人生課題;而求職者目前在面臨轉職問題時,大多時候顯得手足無措,只能詢問親友的經驗或者憑著直覺找自己有興趣的工作;整個求職的過程就像是拿人生當賭注,運氣不好時即可能賠上美好的未來。
    本篇研究使用國內某知名人力銀行的求職者資料,採用資料科學的方式,利用大量求職者的實際轉職資料來做資料分析與探勘,分析轉職高峰期、工作轉換頻率、跨職類轉職、跨產業轉職及轉職與景氣的關係,並使用J48、Naïve Bayesian Classifier、Logistic Regression、Random Forest、AdaBoost和Support Vector Machines這6種分類方法來預測轉職行為。
    為了方便呈現實驗結果,本研究使用Google App Engine建立了一個轉職分析查詢系統,透過分析結果可以了解台灣各產業與各職類的轉職趨勢,而轉職預測功能也可以提供給求職者與人資人員做為參考。
    Career transition is important for employees. However, most of job seekers are helpless in decision of career transition. They can only make the decision based on the experience from their friends and family members, or by intuition. The decision of job seeking is like a gamble that may lose a better future when they faced with bad luck.
    This research tried to analyse and discover the behaviours of job transition from the job seeking data based on the data science approach. The job seeker’s data used in the study was obtained from the well-known job bank’s database. We analyse the behaviours of the job transition, including the peak months of transition, transition frequency, cross-job and cross-industry career transition. Moreover, we investigate the methods to predict the behavior of job transfer. Six kinds of classification algorithms were used to predict the behavior of career transfer, including the J48, Naïve Bayesian Classifier, Logistic Regression, Random Forest, AdaBoost and SVM.
    We develop the web-based Career Transition Analysis System to provide users the capability for behaviour analysis and prediction of career transition based on Google App Engine. The findings in this study are helpful for industry trends and career transition forecasts for job seeker and human resource staffs.
    Reference: [1] 王文賢,2009,探勘公務人員職系類別轉換對陞遷之影響-以行政及技術類別資料為例,世新大學資訊管學系碩士論文。
    [2] 薛冰絜,2010,影響年輕族群工作轉換意願之因素探討,國立中央大學人力資源管理研究所碩士論文。
    [3] 阮金聲,2005,護理人員離職預測系統之研究,國立中正大學資訊管理所碩士論文。
    [4] 吳姿嬋,2013,景氣衰退的預期與壽險從業人員的自願離職傾向,逢甲大學風險管理與保險學系碩士論文。
    [5] P. Domingos, “Metacost: A General Method for Making Classifiers Cost Sensitive,” In Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining, San Diego, pp. 155-164, 1999.
    [6] N. Japkowicz and S. Stephen, “The Class Imbalance Problem: A Systematic Study,” Intelligent Data Analysis Journal, Vol. 6, No. 5, pp. 429-450, 2002.
    [7] N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling Technique,” Journal of Artificial Intelligence Research, Vol.16, pp. 321-357, 2002.
    [8] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San Mateo, CA, 1993.
    [9] J. R. Quinlan, “Induction of Decision Trees,” Machine Learning, Vol. 1, pp. 81-106, 1986.
    [10] G. H. John, and P. Langley, “Estimating Continuous Distributions in Bayesian Classifiers,” In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers, San Mateo, pp. 338-345, 1995.
    [11] S. Le Cessie and J. C. van Houwelingen, “Ridge Estimators in Logistic Regression,” Applied Statistics, 41, Vol.1, pp. 191-201, 1992.
    [12] C. C. Chang, and C. J. Lin, A Library for Support Vector Machines. URL http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
    [13] Y. Freund, and R. E. Schapire, “Experiments with a New Boosting Algorithm,” In Thirteenth International Conference on Machine Learning, San Francisco, pp. 148-156, 1996.
    [14] L. Breiman,” Random Forests,” Machine Learning, Vol. 45, pp. 5-32, 2001.
    [15] Weka, http://www.cs.waikato.ac.nz/ml/weka/
    [16] Weka wiki introduction, http://en.wikipedia.org/wiki/We ka_(machine_learning)
    [17] 景氣指標查詢系統,http://index.ndc.gov.tw/
    [18] 中華民國統計資訊網-總體統計資料庫,http://ebas1.ebas.gov.tw/pxweb/Dialog/statfile9L.asp
    Description: 碩士
    國立政治大學
    資訊科學學系
    99971007
    103
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0999710071
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File SizeFormat
    007101.pdf13642KbAdobe PDF2263View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback