政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/71743
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113656/144643 (79%)
造訪人次 : 51761513      線上人數 : 542
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/71743


    題名: 雙酚合成物對抗神經毒素所引起神經細胞傷害的保護功效
    Protective Effect of Biphenyl Compounds Against Neurotoxin-induced Neurotoxicity
    作者: 鄭宇銘
    貢獻者: 詹銘煥
    鄭宇銘
    關鍵詞: 百草枯
    魚藤酮
    雙酚化合物
    神經保護
    腎上腺髓質嗜鉻細胞瘤
    過氧化體增生活化受體γ
    paraquat
    rotenone
    biphenol
    neuroprotection
    PC12
    PPARγ
    日期: 2013
    上傳時間: 2014-12-01 14:24:03 (UTC+8)
    摘要: 環境毒素如百草枯 (paraquat, PQ),為非選擇性的除草劑,與一種被廣泛使用的除蟲劑魚藤酮 (rotenone, ROT),皆會引起氧化壓力增加而造成多巴胺神經元 (dopaminergic neuron) 死亡,並可能為導致帕金森氏症 (Parkinson`s disease, PD) 的原因,因此百草枯與魚藤酮經常作為神經毒素引發神經傷害的體外模式。MH101 為一種合成的雙酚化合物,先前文獻發現它在體內及體外模式中皆具有抗氧化效果。故本研究進一步探討新穎的合成雙酚化合物 MH101 與結構相似的 MH102 在對於神經毒素百草枯及魚藤酮造成的多巴胺神經損傷的體外模式,是否具有保護的效果。透過腎上腺髓質嗜鉻細胞瘤 PC12 細胞預先處理 MH101 及 MH102,並以不同濃度及不同時間點的百草枯和魚藤酮暴露細胞,使用 MTT assay 觀測對細胞存活的影響。實驗結果指出 MH101 及 MH102 於對抗百草枯和魚藤酮所造成的神經傷害具有顯著的保護作用。利用Griess test 測量 NO 含量,結果顯示百草枯、MH101 及 MH102 不影響 NO 的產生。相反地,使用 DCFH-DA assay 偵測細胞內活性氧 (reactive oxygen species, ROS) 含量,發現 MH101 及 MH102 能夠顯著地減少 H2O2 和百草枯所誘發的 ROS。然而,PC12 細胞預先處理 MH101 及 MH102 與單獨處理百草枯和魚藤酮相比並不會改變酪胺酸羥化酶 (tyrosine hydroxylase, TH)、多巴胺轉運蛋白 (dopamine transporter, DAT) 與過氧化體增生活化受體γ (peroxisome proliferator-activated receptor, PPARγ) 的蛋白質表現量。使用 PolarScreenTM PPARγ Competitor Assay Kit 測量 MH101 及 MH102 與 PPARγ 的結合能力,結果得知 MH102 的結合能力較佳。由此推論,合成的雙酚化合物 MH101 和 MH102 在百草枯及魚藤酮引起多巴胺神經毒害的體外模式中具備神經保護的能力。此外,MH101 和 MH102 對抗百草枯及魚藤酮之毒害的保護作用可能是藉由減少 ROS 的產生。
    Environmental toxicants such as paraquat (PQ), a nonselective herbicide, and rotenone (ROT), a widely used pesticide are known to induce the increase of oxidative stress and death of dopaminergic neurons, which might lead to Parkinson`s disease (PD). Thus, PQ and ROT were used as the neurotoxins to induce neuronal damage in vitro studies. Previous findings showed that MH101, a synthetic biphenyl compound, has the anti-oxidant effect in in vivo and in vitro model. In this study, we evaluated whether the newly synthetic compounds MH101 and MH102, which structure is similar to MH101, have the neuroprotective activities in PQ- and ROT-induced neuronal cell death in vitro studies. It was observed that PC12 cells exposed to PQ and ROT resulted in neuronal cell death, determined by the 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, in a concentration- and time-dependent manners. Our data further indicated that MH101 and MH102 revealed a significant protective action against PQ- and ROT-induced neuronal damage. PQ, MH101 and MH102 didn’t affect NO production, assessed by Griess test. In contrast, MH101 and MH102 significantly decreased the level of ROS induced by H2O2 and PQ, measured by DCFH- DA assay. However, pretreatment of PC12 cells with MH101 and MH102 did not show significant changes in the protein expression of tyrosine hydroxylase (TH), dopamine transporter (DAT) and peroxisome proliferator-activated receptor γ (PPARγ) compared with the PQ-treated cells. However MH102 compared with MH101 had higher PPARγ binding affinity, measured by PolarScreenTM PPARγ Competitor Assay Kit. In this study, we concluded that the synthetic compounds MH101 and MH102 have the neuronal protective activities in PQ- or ROT-induced cell death in vitro studies. Furthermore, the neuroprotection of the synthetic biphenyl compounds in preventing PQ- or ROT- induced toxicity may be related to reduction of ROS production.
    參考文獻: 一、期刊論文
    Abraki SB, Khalaj L, Shaerzadeh F, Khodagholi F (2013) Simultaneous inhibition of COX-2 and activation of PPAR-gamma resulted in the same level and pattern of neuroprotection as they were targeted separately. Journal of molecular neuroscience : MN 49:116-129.
    Agid Y (1991) Parkinson`s disease: pathophysiology. Lancet 337:1321-1324.
    Aires RD, Capettini LS, Silva JF, Rodrigues-Machado Mda G, Pinho V, Teixeira MM, Cortes SF, Lemos VS (2013) Paraquat poisoning induces TNF-alpha-dependent iNOS/NO mediated hyporesponsiveness of the aorta to vasoconstrictors in rats. PloS one 8:e73562.
    Atanasov AG, Wang JN, Gu SP, Bu J, Kramer MP, Baumgartner L, Fakhrudin N, Ladurner A, Malainer C, Vuorinen A, Noha SM, Schwaiger S, Rollinger JM, Schuster D, Stuppner H, Dirsch VM, Heiss EH (2013) Honokiol: a non-adipogenic PPARgamma agonist from nature. Biochimica et biophysica acta 1830:4813-4819.
    Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. Journal of the neurological sciences 20:415-455.
    Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson`s disease. Nat Neurosci 3:1301-1306.
    Bonilla E, Medina-Leendertz S, Villalobos V, Molero L, Bohorquez A (2006) Paraquat-induced oxidative stress in drosophila melanogaster: effects of melatonin, glutathione, serotonin, minocycline, lipoic acid and ascorbic acid. Neurochemical research 31:1425-1432.
    Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods in enzymology 186:343-355.
    Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson`s disease. NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics 2:484-494.
    Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain research 823:1-10.
    Brown TP, Rumsby PC, Capleton AC, Rushton L, Levy LS (2006) Pesticides and Parkinson`s disease--is there a link? Environmental health perspectives 114:156-164.
    Casey G (2013) Parkinson`s disease: a long and difficult journey. Nursing New Zealand 19:20-24.
    Chen F, Wang T, Wu YF, Gu Y, Xu XL, Zheng S, Hu X (2004) Honokiol: a potent chemotherapy candidate for human colorectal carcinoma. World journal of gastroenterology : WJG 10:3459-3463.
    Chen RC, Chang SF, Su CL, Chen TH, Yen MF, Wu HM, Chen ZY, Liou HH (2001) Prevalence, incidence, and mortality of PD: a door-to-door survey in Ilan county, Taiwan. Neurology 57:1679-1686.
    Cheramy A, Leviel V, Glowinski J (1981) Dendritic release of dopamine in the substantia nigra. Nature 289:537-542.
    Chuang DY, Chan MH, Zong Y, Sheng W, He Y, Jiang JH, Simonyi A, Gu Z, Fritsche KL, Cui J, Lee JC, Folk WR, Lubahn DB, Sun AY, Sun GY (2013) Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells. Journal of neuroinflammation 10:15.
    Day BJ, Patel M, Calavetta L, Chang LY, Stamler JS (1999) A mechanism of paraquat toxicity involving nitric oxide synthase. Proceedings of the National Academy of Sciences of the United States of America 96:12760-12765.
    de Groot MW, Westerink RH (2014) Chemically-induced oxidative stress increases the vulnerability of PC12 cells to rotenone-induced toxicity. Neurotoxicology.
    de la Fuente-Fernandez R, Calne DB (2002) Evidence for environmental causation of Parkinson`s disease. Parkinsonism & related disorders 8:235-241.
    de Lau LM, Breteler MM (2006) Epidemiology of Parkinson`s disease. Lancet neurology 5:525-535.
    Dexter DT, Wells FR, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1987) Increased nigral iron content in postmortem parkinsonian brain. Lancet 2:1219-1220.
    Dinis-Oliveira RJ, Remião F, Carmo H, Duarte JA, Navarro AS, Bastos ML, Carvalho F (2006) Paraquat exposure as an etiological factor of Parkinson`s disease. Neurotoxicology 27:1110-1122.
    Fahim MA, Shehab S, Nemmar A, Adem A, Dhanasekaran S, Hasan MY (2013) Daily subacute paraquat exposure decreases muscle function and substantia nigra dopamine level. Physiological research / Academia Scientiarum Bohemoslovaca 62:313-321.
    Fuenzalida KM, Aguilera MC, Piderit DG, Ramos PC, Contador D, Quinones V, Rigotti A, Bronfman FC, Bronfman M (2005) Peroxisome proliferator-activated receptor gamma is a novel target of the nerve growth factor signaling pathway in PC12 cells. The Journal of biological chemistry 280:9604-9609.
    Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America 73:2424-2428.
    Guasch L, Sala E, Castell-Auvi A, Cedo L, Liedl KR, Wolber G, Muehlbacher M, Mulero M, Pinent M, Ardevol A, Valls C, Pujadas G, Garcia-Vallve S (2012) Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation. PloS one 7:e50816.
    Haavik J, Toska K (1998) Tyrosine hydroxylase and Parkinson`s disease. Molecular neurobiology 16:285-309.
    Hald A, Lotharius J (2005) Oxidative stress and inflammation in Parkinson`s disease: is there a causal link? Experimental neurology 193:279-290.
    Hamasaki Y, Muro E, Miyanji S, Yamamoto S, Kobayashi I, Sato R, Zaitu M, Matsuo M, Ichimaru T, Tasaki H, Miyazaki S (1996) Inhibition of leukotriene synthesis by honokiol in rat basophilic leukemia cells. International archives of allergy and immunology 110:278-281.
    Haskew-Layton RE, Payappilly JB, Xu H, Bennett SA, Ratan RR (2013) 15-Deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) protects neurons from oxidative death via an Nrf2 astrocyte-specific mechanism independent of PPARgamma. Journal of neurochemistry 124:536-547.
    Hatanaka H (1981) Nerve growth factor-mediated stimulation of tyrosine hydroxylase activity in a clonal rat pheochromocytoma cell line. Brain Res 222:225-233.
    Hirata Y, Suzuno H, Tsuruta T, Oh-hashi K, Kiuchi K (2008) The role of dopamine transporter in selective toxicity of manganese and rotenone. Toxicology 244:249-256.
    Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427-442.
    Hoi CP, Ho YP, Baum L, Chow AH (2010) Neuroprotective effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta-amyloid-induced toxicity in PC12 cells. Phytotherapy research : PTR 24:1538-1542.
    Hong GL, Liu JM, Zhao GJ, Wang L, Liang G, Wu B, Li MF, Qiu QM, Lu ZQ (2013) The reversal of paraquat-induced mitochondria-mediated apoptosis by cycloartenyl ferulate, the important role of Nrf2 pathway. Experimental cell research 319:2845-2855.
    Houze P, Baud FJ, Mouy R, Bismuth C, Bourdon R, Scherrmann JM (1990) Toxicokinetics of paraquat in humans. Human & experimental toxicology 9:5-12.
    Hu H, Zhang XX, Wang YY, Chen SZ (2005) Honokiol inhibits arterial thrombosis through endothelial cell protection and stimulation of prostacyclin. Acta pharmacologica Sinica 26:1063-1068.
    Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645-650.
    Jimenez-Del-Rio M, Guzman-Martinez C, Velez-Pardo C (2010) The effects of polyphenols on survival and locomotor activity in Drosophila melanogaster exposed to iron and paraquat. Neurochemical research 35:227-238.
    Kang X, Chen J, Xu Z, Li H, Wang B (2007) Protective effects of Ginkgo biloba extract on paraquat-induced apoptosis of PC12 cells. Toxicology in vitro : an international journal published in association with BIBRA 21:1003-1009.
    Kim BH, Cho JY (2008) Anti-inflammatory effect of honokiol is mediated by PI3K/Akt pathway suppression. Acta pharmacologica Sinica 29:113-122.
    Kim HG, Park G, Piao Y, Kang MS, Pak YK, Hong SP, Oh MS (2014) Effects of the root bark of Paeonia suffruticosa on mitochondria-mediated neuroprotection in an MPTP-induced model of Parkinson`s disease. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
    Kim SW, Choi OK, Chang MS, Shin CS, Park KS, Kim SY (2008) Thiazolidinediones inhibit the growth of PC12 cells both in vitro and in vivo. Biochemical and Biophysical Research Communications 371:197-202.
    Klintworth H, Newhouse K, Li T, Choi WS, Faigle R, Xia Z (2007) Activation of c-Jun N-terminal protein kinase is a common mechanism underlying paraquat- and rotenone-induced dopaminergic cell apoptosis. Toxicological sciences : an official journal of the Society of Toxicology 97:149-162.
    Kuter K, Smialowska M, Wieronska J, Zieba B, Wardas J, Pietraszek M, Nowak P, Biedka I, Roczniak W, Konieczny J, Wolfarth S, Ossowska K (2007) Toxic influence of subchronic paraquat administration on dopaminergic neurons in rats. Brain research 1155:196-207.
    Lambert JD, Sang S, Yang CS (2007) Possible controversy over dietary polyphenols: benefits vs risks. Chem Res Toxicol 20:583-585.
    Lee EY, Lee JE, Park JH, Shin IC, Koh HC (2012) Rosiglitazone, a PPAR-gamma agonist, protects against striatal dopaminergic neurodegeneration induced by 6-OHDA lesions in the substantia nigra of rats. Toxicology letters 213:332-344.
    Li H, Wu S, Wang Z, Lin W, Zhang C, Huang B (2012) Neuroprotective effects of tert-butylhydroquinone on paraquat-induced dopaminergic cell degeneration in C57BL/6 mice and in PC12 cells. Archives of toxicology 86:1729-1740.
    Lin CH, Huang JY, Ching CH, Chuang JI (2008) Melatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of D2 receptor in rotenone-induced parkinsonian rats. Journal of pineal research 44:205-213.
    Lin YR, Chen HH, Ko CH, Chan MH (2006) Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage. European journal of pharmacology 537:64-69.
    Liu E, Du X, Ge R, Liang T, Niu Q, Li Q (2013) Comparative toxicity and apoptosis induced by diorganotins in rat pheochromocytoma (PC12) cells. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 60:302-308.
    Lou H, Jing X, Ren D, Wei X, Zhang X (2012) Eriodictyol protects against H(2)O(2)-induced neuron-like PC12 cell death through activation of Nrf2/ARE signaling pathway. Neurochemistry international 61:251-257.
    Martinez-Gras I, Perez-Nievas BG, Garcia-Bueno B, Madrigal JL, Andres-Esteban E, Rodriguez-Jimenez R, Hoenicka J, Palomo T, Rubio G, Leza JC (2011) The anti-inflammatory prostaglandin 15d-PGJ2 and its nuclear receptor PPARgamma are decreased in schizophrenia. Schizophrenia research 128:15-22.
    McCormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, Cory-Slechta DA, Di Monte DA (2002) Environmental risk factors and Parkinson`s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiology of disease 10:119-127.
    Moran JM, Ortiz-Ortiz MA, Ruiz-Mesa LM, Fuentes JM (2010) Nitric oxide in paraquat-mediated toxicity: A review. Journal of biochemical and molecular toxicology 24:402-409.
    Motojima K (1993) Peroxisome proliferator-activated receptor (PPAR): structure, mechanisms of activation and diverse functions. Cell structure and function 18:267-277.
    Murakami Y, Ishii H, Hoshina S, Takada N, Ueki A, Tanaka S, Kadoma Y, Ito S, Machino M, Fujisawa S (2009) Antioxidant and cyclooxygenase-2-inhibiting activity of 4,4`-biphenol, 2,2`-biphenol and phenol. Anticancer research 29:2403-2410.
    Nissbrandt H, Sundstrom E, Jonsson G, Hjorth S, Carlsson A (1989) Synthesis and release of dopamine in rat brain: comparison between substantia nigra pars compacts, pars reticulata, and striatum. Journal of neurochemistry 52:1170-1182.
    Nussbaum RL, Ellis CE (2003) Alzheimer`s disease and Parkinson`s disease. The New England journal of medicine 348:1356-1364.
    Ortiz-Ortiz MA, Moran JM, Gonzalez-Polo RA, Niso-Santano M, Soler G, Bravo-San Pedro JM, Fuentes JM (2009) Nitric oxide-mediated toxicity in paraquat-exposed SH-SY5Y cells: a protective role of 7-nitroindazole. Neurotoxicity research 16:160-173.
    Pain S, Gochard A, Bodard S, Gulhan Z, Prunier-Aesch C, Chalon S (2013) Toxicity of MPTP on neurotransmission in three mouse models of Parkinson`s disease. Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie 65:689-694.
    Prakash J, Yadav SK, Chouhan S, Singh SP (2013) Neuroprotective role of Withania somnifera root extract in maneb-paraquat induced mouse model of parkinsonism. Neurochemical research 38:972-980.
    Purisai MG, McCormack AL, Cumine S, Li J, Isla MZ, Di Monte DA (2007) Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiology of disease 25:392-400.
    Qi Z, Miller GW, Voit EO (2014) Rotenone and paraquat perturb dopamine metabolism: A computational analysis of pesticide toxicity. Toxicology 315:92-101.
    Rappold PM, Cui M, Chesser AS, Tibbett J, Grima JC, Duan L, Sen N, Javitch JA, Tieu K (2011) Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proceedings of the National Academy of Sciences of the United States of America 108:20766-20771.
    Rebois RV, Reynolds EE, Toll L, Howard BD (1980) Storage of dopamine and acetylcholine in granules of PC12, a clonal pheochromocytoma cell line. Biochemistry 19:1240-1248.
    Sai Y, Wu Q, Le W, Ye F, Li Y, Dong Z (2008) Rotenone-induced PC12 cell toxicity is caused by oxidative stress resulting from altered dopamine metabolism. Toxicology in vitro : an international journal published in association with BIBRA 22:1461-1468.
    Sai Y, Chen J, Ye F, Zhao Y, Zou Z, Cao J, Dong Z (2013) Dopamine Release Suppression Dependent on an Increase of Intracellular Ca(2+) Contributed to Rotenone-induced Neurotoxicity in PC12 Cells. Journal of toxicologic pathology 26:149-157.
    Sher T, Yi HF, McBride OW, Gonzalez FJ (1993) cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry 32:5598-5604.
    Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson`s disease. The Journal of neuroscience : the official journal of the Society for Neuroscience 23:10756-10764.
    Shimizu K, Ohtaki K, Matsubara K, Aoyama K, Uezono T, Saito O, Suno M, Ogawa K, Hayase N, Kimura K, Shiono H (2001) Carrier-mediated processes in blood--brain barrier penetration and neural uptake of paraquat. Brain Res 906:135-142.
    Sinet PM, Bresson JL, Couturier J, Laurent C, Prieur M, Rethore MO, Taillemite JL, Toudic D, Jerome H, Lejeune J (1977) [Possible localization of the glutathione reductase (EC 1.6.4.2) on the 8p21 band]. Annales de genetique 20:13-17.
    Singh M, Murthy V, Ramassamy C (2013) Neuroprotective mechanisms of the standardized extract of Bacopa monniera in a paraquat/diquat-mediated acute toxicity. Neurochemistry international 62:530-539.
    Srivastava G, Dixit A, Yadav S, Patel DK, Prakash O, Singh MP (2012) Resveratrol potentiates cytochrome P450 2 d22-mediated neuroprotection in maneb- and paraquat-induced parkinsonism in the mouse. Free radical biology & medicine 52:1294-1306.
    Talpade DJ, Greene JG, Higgins DS, Jr., Greenamyre JT (2000) In vivo labeling of mitochondrial complex I (NADH:ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone. Journal of neurochemistry 75:2611-2621.
    Tan X, Dagher H, Hutton C, Bourke J (2010) Effects of PPARgamma ligands on TGF-beta1-induced epithelial-mesenchymal transition in alveolar epithelial cells. Respiratory Research 11:21.
    Tanaka A, Hamada N, Fujita Y, Itoh T, Nozawa Y, Iinuma M, Ito M (2010) A novel kavalactone derivative protects against H2O2-induced PC12 cell death via Nrf2/ARE activation. Bioorganic & medicinal chemistry 18:3133-3139.
    Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Marras C, Bhudhikanok GS, Kasten M, Chade AR, Comyns K, Richards MB, Meng C, Priestley B, Fernandez HH, Cambi F, Umbach DM, Blair A, Sandler DP, Langston JW (2011) Rotenone, paraquat, and Parkinson`s disease. Environmental health perspectives 119:866-872.
    Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79:1147-1156.
    Tuler SM, Hazen AA, Bowen JM (1989) Release and metabolism of dopamine in a clonal line of pheochromocytoma (PC12) cells exposed to fenthion. Fundamental and applied toxicology : official journal of the Society of Toxicology 13:484-492.
    Wang A, Costello S, Cockburn M, Zhang X, Bronstein J, Ritz B (2011a) Parkinson`s disease risk from ambient exposure to pesticides. European journal of epidemiology 26:547-555.
    Wang X, Duan X, Yang G, Zhang X, Deng L, Zheng H, Deng C, Wen J, Wang N, Peng C, Zhao X, Wei Y, Chen L (2011b) Honokiol crosses BBB and BCSFB, and inhibits brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. PloS one 6:e18490.
    Watanabe H, Watanabe K, Hagino K (1983a) Chemostructural requirement for centrally acting muscle relaxant effect of magnolol and honokiol, neolignane derivatives. Journal of pharmacobio-dynamics 6:184-190.
    Watanabe K, Watanabe H, Goto Y, Yamaguchi M, Yamamoto N, Hagino K (1983b) Pharmacological properties of magnolol and honokiol extracted from Magnolia officinalis: central depressant effects. Planta medica 49:103-108.
    Watanabe Y, Himeda T, Araki T (2005) Mechanisms of MPTP toxicity and their implications for therapy of Parkinson`s disease. Medical science monitor : international medical journal of experimental and clinical research 11:RA17-23.
    Weihe E, Depboylu C, Schutz B, Schafer MK, Eiden LE (2006) Three types of tyrosine hydroxylase-positive CNS neurons distinguished by dopa decarboxylase and VMAT2 co-expression. Cellular and molecular neurobiology 26:659-678.
    Wesseling C, Roman N, Quiros I, Paez L, Garcia V, Mora AM, Juncos JL, Steenland KN (2013) Parkinson`s and Alzheimer`s diseases in Costa Rica: a feasibility study toward a national screening program. Global health action 6:23061.
    Woodbury A, Yu SP, Wei L, Garcia P (2013) Neuro-modulating effects of honokiol: a review. Frontiers in neurology 4:130.
    Yang WL, Sun AY (1998) Paraquat-induced cell death in PC12 cells. Neurochemical research 23:1387-1394.
    Yeh CB, Lee CS, Ma KH, Lee MS, Chang CJ, Huang WS (2007) Phasic dysfunction of dopamine transmission in Tourette`s syndrome evaluated with 99mTc TRODAT-1 imaging. Psychiatry research 156:75-82.
    二、未發表之論文
    林筱芩 (2008) 厚朴酚對六-羥基多巴胺的帕金森氏症模式之作用. 慈濟大學藥理暨毒理學研究所碩士論文.
    洪慈偉 (2009) Mag101對毒藤酮引起小鼠神經退化的保護作用. 慈濟大學藥理暨毒理學研究所碩士論文.
    描述: 碩士
    國立政治大學
    神經科學研究所
    101754001
    102
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0101754001
    資料類型: thesis
    顯示於類別:[神經科學研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML2486檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋