政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/71720
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113648/144635 (79%)
造访人次 : 51663450      在线人数 : 488
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/71720


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/71720


    题名: 基於多元編碼機制之區域特徵描述子
    Local Descriptors Based on Multi-level Encoding Scheme
    作者: 翁苡甄
    贡献者: 廖文宏
    翁苡甄
    关键词: 多元化區域特徵描述子
    二元化區域特徵描述子
    影像辨識
    local multi-level encoding descriptor
    local binary descriptor
    object recognition
    日期: 2014
    上传时间: 2014-12-01 14:19:35 (UTC+8)
    摘要: 影像辨識一直是電腦視覺中很重要的技術,且伴隨著行動裝置與相機的普及,人們更加重視辨識的準確度與效能,以區域梯度分佈及直方圖表示方法為基礎的影像特徵描述子,如SIFT與SURF,是近十多年來的物件辨識技術中所採用的主流演算法,然而此類特徵表示法,常需要為多維度的資訊提供大量的儲存空間與複雜的距離計算流程,因此,近年來有學者提出了另一種形式的區域二元特徵描述子 ( Local Binary Descriptor, LBD),以二元架構建立描述子,使得LBD能在較少空間之下提供可相抗衡的辨識率。
    本論文提出以多元編碼機制之區域特徵描述子(LMLED),乃基於LBD的基本架構,但改以多元編碼取代LBD的二元編碼方法,利用緩衝區的架構達到更強的抗噪性,並提出降維方法以承襲二元編碼在儲存空間的優勢,使得多元編碼機制之區域特徵描述子能在不影響匹配能力與儲存空間的情況下,得到更佳的影像辨識能力。
    Efficient and robust object recognition is an important yet challenging task in computer vision. With the popularity of mobile equipment and digital camera, the demand for effectiveness and efficiency in image recognition has become increasingly pressing. In the past decade, local feature descriptors based on the distribution of local gradients and histogram representation such as SIFT and SURF have achieved a certain level of success. However, these descriptors require a large amount of storage and computing resources for high dimensional feature vectors. Hence, local binary descriptor (LBD) arises and becomes popular in recent years, providing comparable performance with binary structure that needs dramatically lower storage cost.
    In this thesis, we propose to employ multi-level encoding scheme to replace binary encoding of LBD. The resultant descriptor is named local multi-level encoding descriptor (LMLED). LMLED takes advantage of multiple decision intervals and thus can achieve better noise resistivity. Methods to reduce the dimension have been devised to maintain low storage cost. Extensive experiments have been performed and the results validate that LMLED can achieve superior performance under noisy condition while maintaining comparable matching efficacy and storage requirement.
    參考文獻: [1] Mikolajczyk, K.,Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 2004, 1615-1630.
    [2] Hua, G., Brown, M., Winder, S.: Discriminant Embedding for Local Image Descriptors. In International Conference on Computer Vision, 2007.
    [3] Calonder, M., Lepetit, V., Strecha, C., Fua, P.:“Brief: Binary robust independent elementary features.” In Proceeding of the European Conference on Computer Vision(ECCV), 2010. 778-792.‏
    [4] Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: “ORB: an efficient alternative to SIFT or SURF.” In International Conference on Computer Vision ICCV, 2011, In IEEE International Conference, 2011.‏
    [5] Leutenegger, S., Chli, M., Siegwart, R.Y.: “BRISK: Binary robust invariant scalable keypoints.”In International Conference on Computer Vision ICCV, 2011, IEEE International Conference, 2011.‏
    [6] Alahi, A., Ortiz, R., Vandergheyns, P.: “Freak: Fast retina keypoint”, In Computer Vision and Pattern Recognition (CVPR), 2012, IEEE International Conference, 2012.‏
    [7] Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. Computer Vision and Image Understanding 20, 91–110, 2004.
    [8] Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: Speeded Up Robust Features, Computer Vision and Image Understanding 10, 346–359, 2008.
    [9] Canny, J.:A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.
    [10] Scharr, Hanno: Dissertation (in German), Optimal Operators in Digital Image Processing, 2000.
    [11] C. Harris and M. Stephens: ”A combined corner and edge detector”, Proceedings of the 4th Alvey Vision Conference. 147–151, 1998.
    [12] S. M. Smith and J. M. Brady:"SUSAN–a new approach to low level image processing", International Journal of Computer Vision 23,45–78,1997.
    [13] Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In Proceeding of the European Conference on Computer Vision(ECCV), 2006.
    [14] Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: Speeded Up Robust Features, Computer Vision and Image Understanding 10, 346–359, 2008.
    [15] P. L. Rosin. Measuring corner properties. Computer Vision and Image Understanding, 73(2):291 – 307, 1999.
    [16] Everingham, M.: The PASCAL Visual Object Classes Challenge 2006 (VOC2006) Results.
    [17] Hamming, Richard W.:"Error detecting and error correcting codes", Bell System Technical Journal29(2),147–160,1950.
    [18] Cao, X. , Zhang, H., Liu, S., Guo, X., Lin, L.: “SYM-FISH: A Symmetry-Aware Flip Invariant Sketch Histogram Shape Descriptor”, In Computer Vision (ICCV), IEEE International Conference, 313 – 320, 2013.
    [19] Heinly, J., Dunn, E., Frahm, JM.: Comparative Evaluation of Binary Features, In Computer Vision (ECCV), 2012.
    [20] Miksik, O., Mikolajczyk, K.: Evaluation of local detectors and descriptors for fast feature matching, In Pattern Recognition (ICPR), 21st International Conference on pp. 2681~2684, 2012.
    [21] H.R. Sheikh, Z.Wang, L. Cormack and A.C. Bovik, "LIVE Image Quality Assessment Database Release 2", http://live.ece.utexas.edu/research/quality.
    [22] E. C. Larson and D. M. Chandler, "Most apparent distortion: full-reference image quality assessment and the role of strategy," Journal of Electronic Imaging, 19 (1), March 2010.
    [23] N. Ponomarenko, O. Ieremeiev, V. Lukin, K. Egiazarian, L. Jin, J. Astola, B. Vozel, K. Chehdi, M. Carli, F. Battisti, C.-C. Jay Kuo, Color Image Database TID2013: Peculiarities and Preliminary Results, Proceedings of 4th Europian Workshop on Visual Information Processing EUVIP2013, June 10-12, 2013, pp. 106-111.
    [24] R. Arandjelović and A. Zisserman, "Three things everyone should know to improve object retrieval", CVPR, 2012.
    描述: 碩士
    國立政治大學
    資訊科學學系
    101753013
    103
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0101753013
    数据类型: thesis
    显示于类别:[資訊科學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    301301.pdf17101KbAdobe PDF2265检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈