English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52586826      Online Users : 1017
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 期刊論文 >  Item 140.119/71424
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/71424


    Title: Asymptotic enumeration of independent sets on the Sierpinski gasket
    Authors: 張書銓;晏衛根
    Chang, Shu-Chiuan
    陳隆奇
    Chen, Lung-Chi
    晏衛根
    Yan, Weigen
    Contributors: 應數系
    Date: 2013.07
    Issue Date: 2014-11-13 17:24:00 (UTC+8)
    Abstract: The number of independent sets is equivalent to the partition function of the hard-core lattice gas model with nearest-neighbor exclusion and unit activity. We study the number of independent sets md,b(n) on the generalized Sierpinski gasket SGd,b(n) at stage n with dimension d equal to two, three and four for b = 2, and layer b equal to three for d = 2. Upper and lower bounds for the asymptotic growth constant, defined as zSGd,b = limv→∞ lnmd,b(n)/v where v is the number of vertices, on these Sierpinski gaskets are derived in terms of the numbers at a certain stage. The numerical values of these zSGd,b are evaluated with more than a hundred significant figures accurate. We also conjecture upper and lower bounds for the asymptotic growth constant zSGd,2 with general d, and an approximation of zSGd,2 when d is large.
    Relation: Filomat, 27(1), 23-40
    Data Type: article
    DOI 連結: http://dx.doi.org/10.2298/FIL1301023C
    DOI: 10.2298/FIL1301023C
    Appears in Collections:[應用數學系] 期刊論文

    Files in This Item:

    File SizeFormat
    23-40.pdf120KbAdobe PDF2995View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback