English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113656/144643 (79%)
造訪人次 : 51716133      線上人數 : 619
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/68727


    題名: Trading Strategies Based on K-Means Clustering and Regression Model
    作者: 陳樹衡
    Chen,Shu-Heng
    貢獻者: 經濟系
    日期: 2007
    上傳時間: 2014-08-14 12:05:45 (UTC+8)
    摘要: This paper outlines a data mining approach to the analysis and prediction of the trend of stock prices. The approach consists of three steps, namely, partitioning, analysis and prediction. A commonly used k-means clustering algorithm is used to partition stock price time series data. After data partition, linear regression is used to analyse the trend within each cluster. The results of the linear regression are then used for trend prediction for windowed time series data. Using our trend prediction methodology, we propose a trading strategy TTP (Trading based on Trend Prediction). Some results of applying TTP to stock trading are reported. The trading performance is compared with some practical trading strategies and other machine learning methods. Given the volatility nature of stock prices the methodology achieved limited success for a few countries and time periods. Further analysis of the results may lead to further improvement in the methodology. Although the proposed approach is designed for stock trading, it can be applied to the trend analysis of any time series, such as the time series of economic indicators.
    關聯: Computational Intelligence in Economics and Finance 2007, pp 123-134
    資料類型: book/chapter
    顯示於類別:[經濟學系] 專書/專書篇章

    文件中的檔案:

    沒有與此文件相關的檔案.



    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋