English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51609856      Online Users : 399
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 會議論文 >  Item 140.119/68441
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/68441


    Title: 災難事件中社群媒體訊息之自動分類設計
    Authors: 施旭峰;李蔡彥;鄭宇君;陳百齡
    Contributors: 資科系
    Keywords: 災難傳播;社群媒體;鉅量資料;機器學習;社群感知
    Disaster communication;Social media;Big data;Machine learnin`;Social sensors
    Date: 2014.05
    Issue Date: 2014-08-07 18:09:27 (UTC+8)
    Abstract: 近年來,當重大災難發生時,人們經常透過網路通訊工具傳遞災情或求救訊息,大量的資訊人力已無法負荷,如何在第一時間進行有效分類,以即時傳遞到適當的救災、協尋或資源調度單位,一直是救援單位的重要課題。本研究以台灣莫拉克風災期間的五個災難頻道的資料集為分析對象,包括地方救災中心報案紀錄、災情網站貼文、Twitter 等文字資料。經過文字處理與專家分類後,透過詞頻分布、分類結構組成、詞彙共現網絡等方式,探討不同頻道資料集之異同。進一步使用空間向量模型與機器學習的方法,建立社群媒體災難資料的自動化分類器。本研究的歸納與所發展出來的分類方式與資訊探索技術,將可用於開發更有效率的社群感知器。
    In recent years, when disaster events occur, people often transfer information or distress messages through communication tools. As huge amounts of disaster information flows in, processing the data without the assistance of computational technologies becomes an increasingly challenging task. Therefore, understanding how to effectively classify information from social media, provide reliable information to disaster reaction centers, and assist policy decision-making is an important topic of discussion. In this study, we use the data collected during typhoon Morakot from five different channels, including the records of local disaster relief centers, the postings on disaster website, and tweets. After word processing and content classification by experts, we observe the difference between these datasets on the frequency distribution, classification structures, and word co-occurrence network. We further use the vector space model and machine learning method to train the classification model of social media information. We believe the techniques developed and results of the analysis can be used to design more efficient and accurate social sensors in the future.
    Relation: Proceedings of International Conference on Information Management
    Data Type: conference
    Appears in Collections:[資訊科學系] 會議論文

    Files in This Item:

    File Description SizeFormat
    201405.pdf895KbAdobe PDF2619View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback